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Oscillation of zero-energy density of states under the rotation of an in-plane magnetic field is used to
identify node positions of the superconducting gap. Based on Eilenberger theory that can capture the vortex
core contribution appropriately, we quantitatively study the effects of nonmagnetic impurity scattering on the
oscillation in a dx2−y2 -wave superconductor, as a function of the magnetic field and the scattering rate in the
Born and the unitary limits. We find that the sign of the oscillation can be changed by the impurity scattering
at low fields, indicating that impurity effect is an important factor in the analysis of angle-resolved specific heat
measurements.
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In unconventional superconductors with pairing mecha-
nism other than the conventional electron-phonon interaction,
anisotropic pairing symmetries such as p, d , and f waves
are realized rather than the isotropic s wave. Therefore, in
order to understand the pairing mechanism of unconventional
superconductivity, we have to identify the pairing symmetry
including the node positions of the pairing function. For the
purpose, angle-resolved specific heat measurement is one of
the powerful experimental methods. There, the position of
nodes or gap minimum is examined from the small oscilla-
tion of low temperature specific heats under the rotation of
applied magnetic field’s orientation. These experiments have
been already done in various superconductors such as heavy
fermion superconductors [1–3], topological superconductors
[4–6], and Fe-based superconductors [7–10].

In the theoretical studies of the angle-resolved specific
heat, we consider the zero-energy density of states (DOS)
N (E = 0), which is proportional to the specific heat at low
temperature T . In the vortex state, N (E = 0) is sometimes
estimated by the calculation of the Doppler shift [11,12].
While the idea of Doppler shift provides intuitive explanation
for the oscillation of N (E = 0) under the rotation of magnetic
fields, the calculation does not include the contribution of
the vortex core since the amplitude of the pair potential is
assumed to be uniform in the real space. Therefore, for an
exact estimate of the oscillation of N (E = 0), we need self-
consistent calculation of the vortex structure by Eilenberger
theory in the vortex lattice state [13,14]. The DOS N (E ) is
used to evaluate also the T dependence in the oscillation of the
specific heat [15–17]. Eilenberger theory is derived under the
assumption �0/EF � 1 for the superconducting gap �0 and
Fermi energy EF. In heavy fermion superconductors, �0/EF

becomes larger but still smaller than 1. Thus, experimental
data of angle-resolved specific heat in these superconductors
was well explained by Eilenberger theory [1–3]. Since many
previous theoretical studies were done only in the clean limit,

we need systematic studies to clarify whether the impurity
effect seriously changes the oscillation of N (E = 0) or not.
Experimentally, the impurity effect was reported in FeSe [10].

The purpose of this work is to clarify the nonmagnetic im-
purity effect on the oscillation of N (E = 0) under the rotation
of in-plane magnetic fields in a fundamental case of dx2−y2 -
wave pairing with line nodes [3,11–13,15–17]. We evaluate
the oscillation of N (E = 0) by quantitative calculation of
self-consistent Eilenberger theory in the vortex lattice state
[13–15,18–23] and study the dependence on the magnetic
field B and the scattering rate 1/τ0 both in the Born and the
unitary limits.

For simplicity, supposing an energy dispersion
ε = h̄2(k2

a + k2
b )/2m − tc cos(kccc) with small tc, we

consider a quasi-two-dimensional rippled cylindrical
Fermi surface with a Fermi velocity vF = (va, vb, vc) ∝
(cos θ, sin θ, �−1 sin(kccc)) at a Fermi wave number
k = (ka, kb, kc) ∼ (kF cos θ, kF sin θ, kc) in the crystal
coordinate. We set the anisotropy ratio � of the coherence
length as � = 2 in our calculation. This is a simple Fermi
surface model for CeCoIn5 [3,15]. The pair potential is
�(r)ϕd (θ ) with the pairing function ϕd (θ ) = √

2(k2
a − k2

b )/k2
F

for the dx2−y2 -wave pairing. r is the center-of-mass coordinate
of the pair. Magnetic fields B are applied along the orientation
of angle φ from a axis within the ab plane. In the calculation
of the vortex structure, we use the vortex coordinate
(x, y, z) = (b cos φ − a sin φ, c, a cos φ + b sin φ), so that
B = (0, 0, B) in the vortex coordinate. The vector potential
is given by A(r) = 1

2 B × r + a(r) in the symmetric gauge.
We assume that the unit cell of the vortex lattice is triangular
lattice rescaled by �, as in the inset of Fig. 1.

We calculate the spatial structure of vortices in the vortex
lattice state by self-consistent Eilenberger theory [13–15,18–
21], including self-energy from nonmagnetic s-wave impu-
rity scatterings [22–29]. This method appropriately captures

2469-9950/2020/101(6)/060501(5) 060501-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6844-6477
https://orcid.org/0000-0003-3616-806X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.060501&domain=pdf&date_stamp=2020-02-07
https://doi.org/10.1103/PhysRevB.101.060501


HASHITANI, TANAKA, ADACHI, AND ICHIOKA PHYSICAL REVIEW B 101, 060501(R) (2020)

-5 0 5
-2

0

2

0.5

1

1.5

0 5x
0

1

2

N

0.01
0.05

0.1

FIG. 1. Zero-energy local DOS N (E = 0, r) as a function of
radius x from the vortex center along the x axis for 1/τ0 = 0.01, 0.05,
and 0.1 in the Born limit (solid lines) and the unitary limit (dashed
lines). B = 2, and φ = 0◦. Inset shows density plot of N (E = 0, r)
within a unit cell of the vortex lattice for 1/τ0 = 0.1 in the Born
limit. Vortex center is located at (x, y) = (0, 0).

contributions of vortex core and intervortex interaction. In
previous studies [13,14], vortex states under the rotation of
in-plane magnetic field were calculated in the clean limit. We
introduce contributions of the impurity scatterings in the cal-
culation method. To obtain quasiclassical Green’s functions
g(iωn, k, r), f (iωn, k, r), and f †(iωn, k, r), we solve Riccati
equations obtained from Eilenberger equations [30–33]

{ωn + G + v · (∇ + iA)} f = (�ϕd + F )g,

{ωn + G − v · (∇ − iA)} f † = (�∗ϕ∗
d + F †)g, (1)

where g = (1 − f f †)1/2, v = vF/vF0 with vF0 = 〈v2
F〉1/2

k .
〈· · · 〉k indicates the Fermi surface average. In our calculations,
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FIG. 2. Spatial average of the amplitude |�(r)| as a function of
the magnetic field B for 1/τ0 = 0, 0.01, 0.05, and 0.1 in (a) the Born
limit and (b) the unitary limit. Solid (dashed) lines are for the case
when B ‖ antinode (B ‖ node).
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FIG. 3. Zero-energy DOS N (E = 0)/N0 as a function of the
magnetic field B for 1/τ0 = 0.01, 0.05, and 0.1 in (a) the Born limit
and (b) the unitary limit. In (b), we also present lines for the clean
limit 1/τ0 = 0. Solid (dashed) lines are for Nantinode (Nnode) when
B ‖ antinode (B ‖ node).

length, temperature, and magnetic field are, respectively, mea-
sured in units of ξ0, Tc, and B0. Here, ξ0 = h̄vF0/2πkBTc and
B0 = φ0/2πξ 2

0 with the flux quantum φ0. Tc is superconduct-
ing transition temperature in the clean limit at B = 0. The
energy E , pair potential �, and Matsubara frequency ωn are
in units of πkBTc. Within the t-matrix approximation [22–29],
self-energies G(iωn, r), F (iωn, r), and F †(iωn, r) in Eq. (1) are
given by

G = 1

τ
〈g〉k, F = 1

τ
〈 f 〉k, F † = 1

τ
〈 f †〉k, (2)

1

τ
= 1/τ0

cos2 δ0 + (〈g〉2
k + 〈 f 〉k〈 f †〉k) sin2 δ0

(3)

and δ0 = tan−1(πN0u0) with impurity strength u0. N0 is the
DOS at the Fermi energy in the normal state. In the Born limit
of weak impurity scattering potential, δ0 → 0. In the unitary
limit of strong scattering potential, δ0 → π/2. The scattering
time τ0 in the normal state is given by 1/τ0 = nsN0u2

0/(1 +
π2N2

0 u2
0), where ns is the number density of impurities. τ0 is

in unit of 2πkBTc/h̄ [23].
As for self-consistent conditions, the pair potential is cal-

culated by the gap equation

�(r) = g0N0T
∑

0<ωn�ωcut

〈ϕ∗
d ( f + f †∗

)〉k (4)

with (g0N0)−1 = ln T + 2T
∑

0<ωn�ωcut
ω−1

n . We use ωcut =
20kBTc. The vector potential for the internal magnetic field
is self-consistently determined by

∇ × (∇ × A) = −2T

κ2

∑
0<ωn

〈vImg〉k. (5)
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We set the Ginzburg-Landau parameter κ = 30 assuming
typical type-II superconductors.

First, we solve Eqs. (1)–(5) at T = 0.5Tc, and obtain self-
consistent solutions of �(r), A(r), and quasiclassical Green’s
functions [33]. We perform the calculations for 1/τ0 = 0.01,
0.05, and 0.1 in the Born and the unitary limits, in addition to
the clean limit 1/τ0 = 0.

Next, we study local electronic states, assuming that the
T dependences of �(r) and A(r) at low temperature T �
0.5Tc do not seriously change the results. Thus, using the
self-consistently obtained �(r) and A(r) in the calculation
of ωn, we solve Eqs. (1)–(3) with iωn → E + iη to obtain
g(iωn → E + iη, k, r) as a function of real energy E . η is an
infinitesimal constant. The local DOS, which is proportional
to low temperature specific heat, is obtained by

N (E , r) =
∫ 2π

0

dθ

2π
N (E , θ, r)

=
∫ 2π

0

dθ

2π

∫ 2π

0

dkc

2π
N (k)g(iωn → E + iη, k, r),

(6)

where N (k) is the k-resolved DOS on the Fermi surface, and
N0 = ∫ 2π

0 dθ
∫ 2π

0 dkcN (k)/(2π )2. The zero-energy local DOS
N (E = 0, r) has a peak at the vortex center, as shown in Fig. 1.
The peak structure is smeared with increasing 1/τ0, and the
smearing effect is greater in the unitary limit than in the Born
limit. The DOS N (E ) and the θ -resolved DOS N (E , θ ) are,
respectively, spatial average of N (E , r) and N (E , θ, r) as

N (E ) = 〈N (E , r)〉r, N (E , θ ) = 〈N (E , θ, r)〉r. (7)

We study B dependence of the vortex states for several
values of 1/τ0 comparatively in the Born and the unitary
limits. Figure 2 presents the spatially-averaged amplitude of
the pair potential, 〈|�(r)|〉r, as a function of B. The amplitude
decreases with increasing B and vanishes at the upper critical
field Hc2. With increasing 1/τ0, the amplitude and Hc2 become
smaller, since the d-wave superconductivity is suppressed by
the nonmagnetic impurity scattering. When we compare two
cases of the field orientations; φ = 0◦ (B ‖ antinode) and φ =
45◦ (B ‖ node), Hc2 is larger for φ = 0◦. As for the difference
between (a) the Born limit and (b) the unitary limit, 〈|�(r)|〉r

is slightly smaller in the unitary limit at low B. Hc2 is the same
for the two limits, because 1/τ in Eq. (3) becomes the same
when g → 1, f → 0, f † → 0 at B = Hc2.

In Fig. 3, we present B dependence of zero-energy DOS
N (E = 0), which corresponds to the low temperature specific
heat. In the Born limit in Fig. 3(a), with increasing 1/τ0

N (E = 0) becomes larger, reflecting the suppression of Hc2

by the impurity scattering. In the unitary limit in Fig. 3(b),
with increasing 1/τ0 N (E = 0) increases even at a zero field
B = 0 in addition to the suppression of Hc2 [34,35]. In Fig. 3,
solid lines present Nantinode ≡ N (E = 0)|φ=0◦ for the field ori-
entation B ‖ antinode. Dashed lines present Nnode ≡ N (E =
0)|φ=45◦ for B ‖ node. In all cases of Fig. 3, Nantinode < Nnode

at higher B, since Hc2 is smaller for B ‖ node.
To discuss the oscillation of N (E = 0) under the rotation

of in-plane magnetic field, in Fig. 4(a) we present the field
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FIG. 4. (a) Normalized zero-energy DOS N (E = 0)/N̄ as a func-
tion of field orientation angle φ for 1/τ0 = 0.1 in the Born and
the unitary limits in addition to the clean limit. B = 0.2. (b) dN ≡
(Nantinode − Nnode )/N̄ as a function of B for 1/τ0 = 0, 0.01, 0.05, and
0.1. Solid (dashed) lines are for the Born limit (the unitary limit).

orientation φ dependence of N (E = 0)/N̄ at B = 0.2 with
N̄ = (Nantinode + Nnode)/2. In the clean limit, as in previous
studies [11,13,14], N (E = 0) has minimum at φ = 45◦, i.e.,
Nantinode > Nnode. However in the presence of impurity scat-
tering with 1/τ0 = 0.1 in both the Born and the unitary limits,
the sign of oscillation is changed, so that Nantinode < Nnode, i.e.,
N (E = 0) has minimum at φ = 0◦. To discuss B dependence
of the oscillation, we present dN ≡ (Nantinode − Nnode)/N̄ as a
function of B in Fig. 4(b). In the clean limit, dN > 0 at low
B, while dN < 0 at high B, as is observed in a dx2−y2 -wave
superconductor CeCoIn5 [2,3].

However, when the strength of the impurity scattering in-
creases, dN becomes negative even at low B in both the Born
and the unitary limits. We expect that future measurements
will detect these impurity effects in the B dependence, which
may give significant contributions on the angle-resolved spe-
cific heat. Since a fundamental case of dx2−y2 -wave pairing is
considered in the present work, calculations for complicated
s+− or s++ wave pairings on multibands, such as in Fe-based
superconductors, belong to future studies. In this work, we
studied zero-energy DOS proportional to low temperature
specific heat. It is worth mentioning that the sign of the
oscillation may be reversed even in a clean superconductor on
raising T [3,15–17]. The sign change by T reflects the field
orientation dependence of DOS spectrum N (E ) at finite E
[16,17]. The T dependence of the angle-resolved specific heat
belongs to future studies because we have to perform further
heavier calculation about the T dependence of the free energy
[15] or the E dependence of the DOS [16,17] in the various
cases of the impurity scatterings.

Lastly, we study the θ -resolved DOS N (E = 0, θ ), which
is often used to explain the difference between Nantinode and
Nnode. As shown in Fig. 5, N (E = 0, θ ) is distributed around
nodes of ϕd (θ ) on the Fermi surface. In the evaluation of
the Doppler shift by the phase winding around a vortex
[11,12], N (E = 0, θ ) equally appears at four nodes when B ‖
antinode, as schematically shown in Fig. 5(a). When B ‖ node
in Fig. 5(b), it largely appears at two nodes with k ⊥ B but
remains small at other two nodes with k ‖ B. While these
distributions are used to explain the result Nantinode > Nnode

in the clean limit at low B, we need to quantitatively con-
sider N (E = 0, θ ) in Figs. 5(c) and 5(d), which include vor-
tex core contributions by self-consistent Eilenberger theory
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FIG. 5. (a) Relation of dx2−y2 wave gap |ϕd (θ )| and zero-energy
DOS N (E = 0, θ ) is schematically presented on the circular Fermi
surface for B ‖ antinode of φ = 0◦. (b) The same as (a), but for B ‖
node of φ = 45◦. (c) θ dependence of Fermi surface DOS N (E =
0, θ )/N0 for B ‖ antinode of φ = 0◦ (solid lines) and for B ‖ node
of φ = 45◦ (dashed lines) at B = 0.1, 0.4, 0.7, and 1.0 in the clean
limit. (d) The same as (c) but at B = 0.1 in the Born and the unitary
limits with 1/τ0 = 0.1, in addition to the clean limit 1/τ0 = 0.

calculations. There, N (E = 0, θ ) has peaks at the nodes θ =
45◦ and 135◦. In Fig. 5(c), we see that width of the peak
becomes wider with increasing B. In Fig. 5(d), the broadening
by the impurity scatterings is pronounced in the unitary limit
than in the Born limit.

Both in Figs. 5(c) and 5(d), peaks at θ = 45◦ and 135◦
have the same width, when B ‖ antinode presented by solid
lines. On the other hand, when B ‖ node presented by dashed
lines, the peak at θ = 135◦ of k ⊥ B is wider than that at
θ = 45◦ of k ‖ B. Compared to the clean limit at low B
where Nantinode > Nnode, difference between dashed lines (B ‖
node) and solid lines (B ‖ antinode) increases near θ = 0◦ for
larger 1/τ0 or higher B. Therefore, Nnode is enhanced so that
Nantinode < Nnode by impurity scattering or B. We note that
the contribution of N (E = 0, θ = 0◦) at an antinode is not
negligible in Figs. 5(c) and 5(d). Thus, discussions based on
simple pictures of Figs. 5(a) and 5(b) are not always valid in
the presence of vortex core contributions.

In summary, based on the Eilenberger theory, we theoret-
ically studied nonmagnetic impurity scattering effects on the
oscillation of zero-energy DOS under the rotation of in-plane
magnetic field in a dx2−y2 -wave superconductor, which can
be compared to low temperature specific heat measurements.
We found that the sign of the oscillation can be changed
by the impurity scattering and clarified its dependence on
the magnetic field B and the scattering rates 1/τ0. These
results suggest that the impurity scattering effects also play
decisive role in the analysis of the angle-resolved specific
heat to identify node positions of the pairing function in
unconventional superconductivity.

This work was supported by JSPS KAKENHI Grant No.
17K05542.
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[31] P. Miranović and K. Machida, Thermodynamics and magnetic
field profiles in low-κ type-II superconductors, Phys. Rev. B 67,
092506 (2003).

[32] M. Ichioka, V. G. Kogan, and J. Schmalian, Locking of length
scales in two-band superconductors, Phys. Rev. B 95, 064512
(2017).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.101.060501 for the details of formulation
and the calculation methods.

[34] P. J. Hirschfeld, P. Wölfle, and D. Einzel, Consequences of
resonant impurity scattering in anisotropic superconductors:
Thermal and spin relaxation properties, Phys. Rev. B 37, 83
(1988).

[35] C. Kübert and P. J. Hirschfeld, Vortex contribution to specific
heat of dirty d-wave superconductors: Breakdown of scaling,
Solid State Commun. 105, 459 (1998).

060501-5

https://doi.org/10.1103/PhysRevB.68.052501
https://doi.org/10.1103/PhysRevB.68.052501
https://doi.org/10.1103/PhysRevB.68.052501
https://doi.org/10.1103/PhysRevB.68.052501
https://doi.org/10.1088/0953-8984/17/50/015
https://doi.org/10.1088/0953-8984/17/50/015
https://doi.org/10.1088/0953-8984/17/50/015
https://doi.org/10.1088/0953-8984/17/50/015
https://doi.org/10.1143/JPSJ.79.094709
https://doi.org/10.1143/JPSJ.79.094709
https://doi.org/10.1143/JPSJ.79.094709
https://doi.org/10.1143/JPSJ.79.094709
https://doi.org/10.1103/PhysRevLett.96.237001
https://doi.org/10.1103/PhysRevLett.96.237001
https://doi.org/10.1103/PhysRevLett.96.237001
https://doi.org/10.1103/PhysRevLett.96.237001
https://doi.org/10.1103/PhysRevB.75.224501
https://doi.org/10.1103/PhysRevB.75.224501
https://doi.org/10.1103/PhysRevB.75.224501
https://doi.org/10.1103/PhysRevB.75.224501
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF00681621
https://doi.org/10.1007/BF00681621
https://doi.org/10.1007/BF00681621
https://doi.org/10.1007/BF00681621
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.70.104510
https://doi.org/10.1103/PhysRevB.70.104510
https://doi.org/10.1103/PhysRevB.70.104510
https://doi.org/10.1103/PhysRevB.70.104510
https://doi.org/10.1103/PhysRevB.89.174504
https://doi.org/10.1103/PhysRevB.89.174504
https://doi.org/10.1103/PhysRevB.89.174504
https://doi.org/10.1103/PhysRevB.89.174504
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1103/PhysRevB.29.3913
https://doi.org/10.1143/JPSJ.69.3378
https://doi.org/10.1143/JPSJ.69.3378
https://doi.org/10.1143/JPSJ.69.3378
https://doi.org/10.1143/JPSJ.69.3378
http://arxiv.org/abs/arXiv:cond-mat/0106546
https://doi.org/10.1103/PhysRevB.66.132511
https://doi.org/10.1103/PhysRevB.66.132511
https://doi.org/10.1103/PhysRevB.66.132511
https://doi.org/10.1103/PhysRevB.66.132511
https://doi.org/10.1007/BF02769568
https://doi.org/10.1007/BF02769568
https://doi.org/10.1007/BF02769568
https://doi.org/10.1007/BF02769568
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1088/1367-2630/11/7/075008
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.67.092506
https://doi.org/10.1103/PhysRevB.67.092506
https://doi.org/10.1103/PhysRevB.67.092506
https://doi.org/10.1103/PhysRevB.67.092506
https://doi.org/10.1103/PhysRevB.95.064512
https://doi.org/10.1103/PhysRevB.95.064512
https://doi.org/10.1103/PhysRevB.95.064512
https://doi.org/10.1103/PhysRevB.95.064512
http://link.aps.org/supplemental/10.1103/PhysRevB.101.060501
https://doi.org/10.1103/PhysRevB.37.83
https://doi.org/10.1103/PhysRevB.37.83
https://doi.org/10.1103/PhysRevB.37.83
https://doi.org/10.1103/PhysRevB.37.83
https://doi.org/10.1016/S0038-1098(97)10154-5
https://doi.org/10.1016/S0038-1098(97)10154-5
https://doi.org/10.1016/S0038-1098(97)10154-5
https://doi.org/10.1016/S0038-1098(97)10154-5

