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How much entanglement can be created in a closed system
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In a closed system, the total number of particles is fixed. We ask how much does this conservation law restricts
the amount of entanglement that can be created. We derive a tight upper bound on the bipartite entanglement
entropy in closed systems, and find what a maximally entangled state looks like in such a system. Finally, we
illustrate numerically on an isolated system of one-dimensional fermionic gas, that the upper bound can be
reached during its unitary evolution, when starting in a pure state that emulates a thermal state with high enough
temperature. These results are in accordance with current experiments measuring Rényi-2 entanglement entropy,
all of which employ a particle-conserving Hamiltonian, where our bound acts as a loose bound, and will become
especially important for bounding the amount of entanglement that can be spontaneously created, once a direct
measurement of entanglement entropy becomes feasible.
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Entanglement is one of the most intriguing characteristics
of quantum systems. It evolved from its perception as a
mathematical artifact, as a result of the EPR paradox [1], to
becoming closely related and applicable to the fields of con-
densed matter [2–7], quantum information [8–14], quantum
metrology [15–20], and quantum gravity [21–25].

In the field of quantum information, entangled states are
the backbone of quantum information protocols as they are
considered a resource for tasks such as quantum teleportation
[9,26], cryptography [8], and dense coding [27].

In these quantum information protocols, more entangle-
ment usually leads to a better performance. Therefore, it is
important to set precise upper bounds on how much entan-
glement is in principle available in performing these tasks
[28–39].

As different tasks require different types of entangled
states, numerous measures of entanglement have been intro-
duced [40–43]. The most prominent measure of entangle-
ment is entanglement entropy [33,34,44]. It is defined as the
von Neumann entropy of the reduced density matrix ρ̂A =
trB[|ψ〉〈ψ |], where |ψ〉 denotes the state of the composite
system,

Sent ≡ S(ρ̂A). (1)

This is a valuable measure as it draws a direct connec-
tion between the density matrix and the amount of nonlocal
correlations present in a given system. Entanglement entropy
also gained significant attention in the past few decades due
to the discovery of its geometric scaling in the thermal state
as well as ground states (famously known as the volume law
[45] and the area law [46–48], respectively), and its use in
characterizing quantum phase transitions [2,49–51].
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Despite its importance, this quantity has proven extremely
difficult to probe experimentally, and related Rényi-2 entan-
glement entropy has been measured instead [52–54]. How-
ever, an experimental proposal for measuring the entangle-
ment entropy has been put forward recently [55], opening
exciting possibilities.

There exists a general bound on entanglement entropy. For
a pure state of a bipartite system, it is straightforward to show
that Sent ≡ S(ρ̂A) = S(ρ̂B). This leads to [25]

Sent � ln min {dim HA, dim HB}. (2)

However, one could wonder whether Eq. (2) is stringent
enough for systems with additional conservation laws, that
effectively restrict some degrees of freedom.

For example, consider a system of two fermionic particles
contained on a lattice comprising of six sites, partitioned into
two sublattices of three sites. Since there can be any number
of zero, one, and two particles in each sublattice, the upper
bound on entanglement entropy given by Eq. (2) is Sent �
ln [( 3

0 ) + ( 3
1 ) + ( 3

2 )] = ln 7, yet because of the conservation
law, this could be considerably larger than the actually achiev-
able entropy.

This is important because, among the aforementioned
quantum tasks, those that incorporate massive particles—such
as the constituents of condensed matter systems—often ex-
hibit constraints such as the conservation of the total number
of particles or charge [52–54,56–60]. Such restrictions are de-
scribed by superselection rules [61,62]. It has been suggested
that these restrictions can in fact be used as a resource and can
enhance the security of quantum communication [61,63–66]
and measurement accuracy [67–70]. However, among the vast
literature on quantum information protocols, specific bounds
on entanglement entropy in the presence of superselection
rules are not sufficient.

Given the commonality of these conservation laws and
recent efforts in probing entanglement entropy experimen-
tally, it is an incentive to provide precise bounds for this
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FIG. 1. A two-dimensional lattice of size L = 24 sites and n = 8
particles is shown. The subsystems A and B are also depicted as red
and blue regions, respectively. The smaller subsystem A has M = 6
sites and nA = 2 particles in this example.

quantity. In this Rapid Communication, we derive a general
tight upper bound on entanglement entropy for closed systems
(in thermodynamic sense), which are defined as those where
the total number of particles stays constant. This can be
applied to quantum systems evolved with a time-independent
or a time-dependent Hamiltonian, as long as this evolution
conserves the total number of particles.

Bound on entanglement entropy. For a bipartite system of
n spinless particles moving on a system of L number of sites,
which is partitioned into two subsystems A and B (H = HA ⊗
HB) with M and L − M number of sites (see Fig. 1), assuming
that the state of the composite system is pure and that n �
M � L − M, the entanglement entropy is bounded by

Sent � ln
n∑

nA=0

min
{
dim H(nA )

A , dim H(n−nA )
B

}
, (3)

where H(nA )
A denotes the Hilbert spaces of exactly nA particles

contained in the subsystem A, and H(n−nA )
B denotes the Hilbert

space of exactly n − nA particles contained in subsystem B,
respectively. This is a tight bound, meaning that it can be
saturated with a specific wave function of n particles. An
application of this result is shown in Fig. 2.

The above formula can be generalized to include cases
n > M, but the fermionic and bosonic cases must be treated
separately. For fermionic systems (or systems of hard-core
bosons) dim H(nA )

A = ( M
nA

), which leads to

Sent � ln
min{n,M}∑

nA=max{0,n−L+M}
min

{(
M

nA

)
,

(
L − M

n − nA

)}
, (4)

while for bosonic systems dim H(nA )
A = ( M+nA−1

nA
), which

leads to

Sent � ln
n∑

nA=0

min

{(
M + nA − 1

nA

)
,

(
L − M + n − nA − 1

n − nA

)}
.

(5)

BA

FIG. 2. A maximally entangled state is such where one has
the maximal uncertainty about the state of the full system, but
determining the state of subsystem A also determines the state
of subsystem B with certainty. This means that when construct-
ing such a state, none of the orthogonal states spanning subsys-
tems A and B can be used twice. But since the conservation
law prohibits matching states whose particle numbers do not add
up to the total number of particles, the maximal entanglement
entropy is lower than initially expected. In this figure, one of
the maximally entangled states |ψ〉 = 1√

5
(|000101〉 + |001001〉 +

|010100〉 + |100010〉 + |110000〉) for the example mentioned in the
Introduction is shown, leading to S(max)

ent = ln [( 3
0 ) + ( 3

1 ) + ( 3
0 )] =

ln 5.

Proof. Assuming that n � M, the Hilbert space of n parti-
cles contained on a lattice of L sites can be decomposed as

H =
n⊕

nA=0

H(nA )
A ⊗ H(n−nA )

B . (6)

This means that any wave function |ψ〉 ∈ H can be written as

|ψ〉 =
n∑

nA=0

anA |ψnA〉, (7)

where |ψnA〉 ∈ H(nA )
A ⊗ H(n−nA )

B . Applying the Schmidt de-
composition, we can write each of these vectors as

|ψnA〉 =
dnA∑
i=1

b(nA )
i

∣∣χ (nA )
i

〉 ⊗ ∣∣φ(n−nA )
i

〉
, (8)

where dnA = min {dim H(nA )
A , dim H(n−nA )

B }, and {|χ (nA )
i 〉}dnA

i=1

and {|φ(n−nA )
i 〉}dnA

i=1 form orthogonal sets, and {b(nA )
i }dnA

i=1 are real,
non-negative scalars. Also, any two vectors |χ (nA )

i 〉 and |χ (ñA )
j 〉,

nA �= ñA, are orthogonal to each other, because they belong
into subspaces associated with different eigenvalues nA of a
Hermitian operator N̂A (measuring the number of particles in
sublattice A). The same argument can be made for vectors
|φ(n−nA )

i 〉 using N̂B. This allows us to compute the reduced
density matrix,

ρ̂A = trB[|ψ〉〈ψ |] =
n∑

nA=0

dnA∑
i=1

∣∣anA

∣∣2∣∣b(nA )
i

∣∣2∣∣χ (nA )
i

〉〈
χ

(nA )
i

∣∣, (9)
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and since vectors |χ (nA )
i 〉 are orthogonal to each other, we can

also compute the entanglement entropy as

Sent ≡ S(ρ̂A) = −
n∑

nA=0

dnA∑
i=1

∣∣anA

∣∣2∣∣b(nA )
i

∣∣2
ln

∣∣anA

∣∣2∣∣b(nA )
i

∣∣2
.

(10)

Using Jensen’s theorem on the strictly concave function
f (x) = ln x, which is a standard procedure for bounding the
Shannon entropy, we derive

Sent � ln
n∑

nA=0

dnA , (11)

which proves the theorem for n � M. The inequality is satu-
rated if and only if all the probabilities are equal, i.e.,

∣∣anA

∣∣2∣∣b(nA )
i

∣∣2 =
(

n∑
nA=0

dnA

)−1

(12)

for all nA and i. Considering decomposition (8), this equation
is the sufficient and necessary condition for the state to be
maximally entangled in a closed system.

Now let us include cases of n � M. For a fermionic system,
the three cases to consider are n � M � L − M, M � n �
L − M, and M � L − M < n. Combined, for any n � L the
Hilbert space can be decomposed as

H =
min{n,M}⊕

nA=max{0,n−L+M}
H(nA )

A ⊗ H(n−nA )
B . (13)

The rest of the analysis proceeds analogously and leads to

Sent � ln
min{n,M}∑

nA=max{0,n−L+M}
min

{
dim H(nA )

A , dim H(n−nA )
B

}
,

(14)

with equality if and only if |anA |2|b(nA )
i |2 =

(
∑min{n,M}

nA=max{0,n−L+M} dnA )
−1

for all nA and i. Considering

that dim H(nA )
A = ( M

nA
) (combination: the number of ways we

can distribute nA particles in a sublattice of M sites, where
no repetition is possible due to the Pauli exclusion principle
or hard-core condition) and dim H(n−nA )

B = ( L−M
n−nA

), we obtain
Eq. (4).

For a bosonic system, the decomposition of Hilbert space
is identical to Eq. (6) for any n. The formula therefore remains
the same, and considering that for a bosonic system we
have dim H(nA )

A = ( M+nA−1
nA

) (combination with repetition: the
number of ways we can distribute nA particles in a sublattice
of M sites, where multiple particles can be in a single site) and
dim H(n−nA )

B = ( L−M+n−nA−1
n−nA

), we obtain Eq. (5). �
The condition for the maximally entangled state, Eq. (12),

has an interesting implication. It gives a prediction for the
number of particles in each of the subsystems: If the state
is maximally entangled, then the probability of measuring
nA particles in sublattice A (which must be the same as the
probability of measuring n − nA particles in sublattice B) is
equal to

pnA = ∣∣anA

∣∣2 = dnA∑min{n,M}
nA=max{0,n−L+M} dnA

, (15)

dnA = min {( M
nA

), ( L−M
n−nA

)}, for the fermionic gas, and

pnA = ∣∣anA

∣∣2 = dnA∑n
nA=0 dnA

, (16)

dnA = min {( M+nA−1
nA

), ( L−M+n−nA−1
n−nA

)}, for the bosonic gas.
The mean number of particles in sublattice A is nA =∑min{n,M}

nA=max{0,n−L+M} pnA nA and nA = ∑n
nA=0 pnA nA (while nB =

n − nA) for the fermionic and the bosonic gas, respectively.
Therefore, if a state of a closed system does not satisfy these
properties, it cannot be maximally entangled [71].

One can also notice that the derived bound stops depending
on the total system size L if it is large enough. Specifically, for
fermionic systems and

L � max

{
max

nA∈{0,...,min{n,M}}

{(
M

nA

)}
, n

}
+ M, (17)

the bound becomes

Sent � ln

[
1 +

min{n,M}−1∑
nA=0

(
M

nA

)]
, (18)

which no longer depends on L.
If in addition n � M, then

Sent � ln
M∑

nA=0

(
M

nA

)
= ln 2M, (19)

which is equal to the maximal entropy of subsys-
tem HA. This is the same result that could be recov-
ered from the original bound, Eq. (2). Therefore, for
fermionic systems with large enough baths (subsystems
B), and a large number of particles, these bounds are
the same. The same does not hold for bosonic sys-
tems however, for which Sent � ln [1 + ∑n−1

nA=0( M+nA−1
nA

)] <

ln
∑n

nA=0( M+nA−1
nA

) = ln dim HA, irrespective of n, for large L
and M > 1. Thus for closed bosonic systems, our bound is
always better.

It also turns out that Eq. (18) is the value of the bound in
the thermodynamic limit, where both the number of particles
n and size of the system L grow to infinity, but the particle
density c = n/L remains constant, while keeping M constant.
This can be shown by dividing condition (17) by n and taking
the limit, which gives c � 1, which must be by definition
satisfied for any spinless fermionic system.

Achievability of the bound in 1D fermionic lattice. Here,
we illustrate the derived upper bound (4) in a simulation. We
specifically focus on the case where n < M � L − M. The
other cases turned out to be very similar, and we shall not
show them here.

We consider a system of n spinless fermions in a one-
dimensional lattice of size L, with the Hamiltonian

Ĥ =
L∑

i=1

[ − t ( f †
i fi+1 + H.c.) + V n f

i n f
i+1

−t ′( f †
i fi+2 + H.c.) + V ′n f

i n f
i+2

]
, (20)

where fi and f †
i are fermionic annihilation and creation op-

erators for site i and n f
i = f †

i fi is the local density operator.
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FIG. 3. A one-dimensional lattice of size L = 5 sites and n = 3
particles is shown. The right-hand side of the figure illustrates the
hopping terms t or t ′, i.e., particles move to the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) sites, respectively. The left-
hand side of the figure shows the interactions of strengths V and V ′

between NN and NNN, respectively.

The nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping terms are respectively t and t ′ and the interaction
strengths are V and V ′ as illustrated in Fig. 3. We choose
this Hamiltonian since it has been extensively studied in the
literature [72–77], and because it is an archetypal example of
both nonintegrable (generic; t ′,V ′ �= 0) and integrable (t ′ =
V ′ = 0) quantum systems.

In the simulation depicted in Fig. 4, we take t = t ′ = 1.9,
V = V ′ = 0.5 [78], and cases with NN hopping only, and with
interaction only. The total number of particles is n = 3, and
we take subsystem A to be the M = 4 sites on the left side of
the chain, while the full system size L, and inverse temperature
β = 1/T are both varied.

We take the initial state to be the complex random pure
thermal state (RPTS) (also known as the thermal pure quan-
tum or canonical thermal pure quantum state [45,79,80]),

FIG. 4. S(max)
ent = maxτ Sent (|ψτ 〉) for different values of L and β,

n = 3 particles, for a subsystem A being fixed as the left M = 4
sites of the chain. In the low-temperature limit, β = 2, the initial
state is close to being a ground state. In the high-temperature limit,
β = 0.01, the initial state becomes a random pure state [44,81–83],
in which all the energy coefficients are equal on average. We show
cases of (1) nonintegrable system (t = t ′ = 1.9, V = V ′ = 0.5) and
varying temperatures, and cases of high temperature with (2) NN
hopping only (t = 1.9, t ′ = V = V ′ = 0), and with (3) interaction
only (V = V ′ = 0.5, t = t ′ = 0). In cases (1) and (2) and high tem-
perature, the maximum value of Sent reaches exactly the theoretical
bound (dashed line) for all L, but not in case (3). This shows that
the nonzero hopping term is the most important for reaching the
maximum.

which we define as

|ψ〉 = 1√
Z

∑
E

cE e−βE/2|E〉, (21)

where |E〉’s are the eigenstates of the total Hamilto-
nian, computed using exact diagonalization. The coefficients
{cE } are random complex numbers, cE ≡ (xE + iyE )/

√
2,

with xE and yE obeying the standard normal distribu-
tion N (0, 1), and Z = ∑

E |cE |2e−βE is the normalization
constant. This state emulates a thermal state, while be-
ing pure. This initial state is entangled but not maximally
entangled. For instance, in the case of β = 0.01 and a
given initial RPTS, the initial entanglement entropies asso-
ciated with system sizes L = [8, 9, 10, 11, 12, 13] are Sent =
[2.031, 2.091, 2.118, 2.122, 2.080, 2.020]. The initial state is
then evolved as |ψτ 〉 = e−iĤτ |ψ〉.

To find the maximum value that Sent can achieve during its
time evolution, we use the simplex search algorithm. For a
given L and β, we initialize the state in six different complex
RPTS, and find the maxima for each initial state by maximiz-
ing over phases φE = Eτ that appear in the time evolution
of the wave function, Ûτ = e−iĤτ . As long as the differences
of E ’s are irrational (or close to being to), this method must
give the same result as maximizing over all times τ . We do
this because maximizing over the time by simply evolving
the system would take an extremely long time. We then plot
the mean value of these six maxima as well as the standard
deviation (depicted as error bars) in Fig. 4. The theoretical
bound, Eq. (4) for the case where n < M � L − M, is plotted
in the same figure (dashed line) for various values of L.

As Fig. 4 illustrates, in the nonintegrable case for β = 0.01
the theoretical bound (4) is saturated exactly. For large L the
bound flattens, as expected from Eq. (18). As the temperature
drops, the system can no longer achieve this bound, but
the maximum entanglement entropy still stays approximately
constant for large L. Interestingly, we found that the up-
per bound is reached during the unitary evolution also for
integrable systems with NN interaction and hopping (t ′ =
V ′ = 0), or even for systems with just the NN hopping term
(t ′ = V = V ′ = 0), but not when there is no hopping, which
we can summarize as “as long as there is some hopping, in
both cases of integrable or nonintegrable systems, the bound
is achieved during the unitary evolution, if the temperature is
high enough.”

Regarding the average number of particles in the subsys-
tem, states for which Sent has reached its maximum were
measured to have nA = [1.50, 1.55, 1.58, 1.58, 1.58, 1.58] for
L = [8, 9, 10, 11, 12, 13], which corresponds exactly to the
prediction of Eq. (15).

Conclusion and applications. We derived a tight upper
bound on entanglement entropy for bipartite systems with a
conserved number of spinless particles. We showed numer-
ically that at high temperature, the maximum entanglement
entropy of a fermionic lattice in fact reaches this upper bound
during its time evolution. Furthermore, by studying the max-
imally entangled states, we found that measuring the particle
number in one of the subsystems can serve as a simple test of
whether the state can be maximally entangled.
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In contrast to Ref. [34], which derived bounds for the
average entanglement entropy of all eigenstates of quadratic
fermionic Hamiltonians, our bound holds for any state in
any spinless fermionic and bosonic system with a conserved
number of particles, irrespective of the Hamiltonian being
used.

Our results can be also directly transferred to lattices of
identical spin-1/2 particles with the total spin conserved,
where spin up and spin down take the place of a particle
and a hole, respectively, or to lattices of qubits consisting
of different energy states (such as cold atoms [4,52,53,84],
trapped ions [54,85,86], or superconducting qubits [87–90]),
when the total energy, and therefore also the total number of
excited states, is conserved, while neglecting the interaction
energy.

Using that for a pure state ρ̂AB, S(ρ̂AB) = 0 and S(ρ̂A) =
S(ρ̂B), a noteworthy consequence of the bound, Eqs. (4) and
(5), is that it sets a lower bound on conditional entropy
S(A|B)ρ̂ = S(ρ̂AB) − S(ρ̂B) [91–93], which gives a sufficient
and necessary condition for teleportation [94], and an upper
bound on the mutual information I (A; B) = S(ρ̂A) + S(ρ̂B) −
S(ρ̂AB) [92,95,96], which determines the largest possible rate
of communication [97–99], and has applications in quantum
machine learning [100–102].

Another implication of this result is with regards to Rényi
entropies of higher order. For a general density matrix, en-
tanglement entropy (Rényi entropy of order α = 1) is re-
lated to Rényi entropies of higher order, Sα>1, by inequality
Sent (ρ̂ ) � Sα>1(ρ̂ ) [103]. This means that the upper bound
on entanglement entropy found in this Rapid Communication
could be taken as a loose upper bound on Sα>1(ρ̂).

This is important due to the existence of experiments
involving measurements on Rényi-2 entanglement entropy
Sα=2 [52–54], which allows us to compare our bound with
experimental data. Reference [52] used a system of ultracold
bosonic atoms trapped in an optical lattice, evolving by the
Bose-Hubbard Hamiltonian. The maximum Rényi entropy
of a ground state for a system of L = 4 sites and n = 4

particles, and various sizes of subsystems M = [1, 2, 4]
was obtained from Fig. 4 in Ref. [52] (including an offset
of about 0.5) as Sα=2 = [0.6, 0.9, 0], which is below the
bound S(bound)

ent = [1.6, 2.2, 0] calculated from Eq. (5).
The maximal achieved entropy obtained from Fig. 6 in
Ref. [52] for L = n = 2 and M = 1 is Sα=2 = 0.8 which
is much closer to the bound S(bound)

ent = 1.1. Reference [53]
focused on measuring the Rényi entropy of an evolving
system using the same model. The maximum values of
the Rényi entropy read out from Fig. 3 in Ref. [53] for
L = n = 6 and M = [1, 2, 3, 6] are Sα=2 = [0.8, 1.9, 2.6, 0],
while the bound gives S(bound)

ent = [1.9, 3.0, 3.4, 0]. Finally,
Ref. [54] used a system of trapped ions, each carrying
a spin, evolved by an XY Hamiltonian which conserves
the total spin. This model is therefore mathematically
identical to a lattice of spinless fermions. L = 10 atoms
were prepared in the Néel state (n = 5), and after 5 ms the
Rényi entropy was read out for M = [1, 2, 3, 4, 5, 6, 7, 8, 9]
(Fig. 2 in Ref. [54]) at values scattered around Sα=2 ≈
[0.6, 1.3, 1.7, 2.1, 2.4, 2.3, 1.9, 1.5, 0.8] (recalculated by
changing the base of logarithm log2 → ln). These values
are comparable but two of them are slightly higher than the
bound S(bound)

ent = [0.7, 1.4, 2.1, 2.8, 3.5, 2.8, 2.1, 1.4, 0.7]
calculated from Eq. (4), due to inadvertently introduced
decoherence (the total Rényi entropy was 0.5 at the time of
measurement).

We conclude that our results are in accordance with current
experiments, and will become especially useful for bounding
the amount of entanglement spontaneously created in closed
systems, once a direct measurement of entanglement entropy
becomes feasible.

We are grateful to Joshua M. Deutsch and Anthony Aguirre
for fruitful discussions, and thank Joshua M. Deutsch for
providing his code for simulating one-dimensional fermionic
lattice. D.Š. acknowledges support from Foundational Ques-
tions Institute [104] and from the Faggin Presidential Chair
Fund.
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