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Making free-energy calculations routine: Combining first principles with machine learning
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The chemical potentials of atoms and molecules in condensed matter are fundamental properties that allow
one to predict a wide variety of thermodynamic properties. However, predictions using first principles are
challenging. Here, an efficient and accurate method using machine-learned force fields is presented. A key point
is that it requires training only at the end points of the thermodynamic pathway, rendering the training simple
and efficient. Applications to liquid Si, and Li and F ions hydrated by water show that the method can predict
accurate chemical potentials at low computational cost.
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The temperature-dependent chemical potentials of atoms
are exceptionally important fundamental properties. Their
knowledge enables the quantitative evaluation of a wide va-
riety of thermodynamic properties, such as coexistence points
of different phases, concentration of minority species, or
solubility in solvents to name only few. However, the accurate
calculation of the chemical potential from first principles (FP)
remains a very challenging task. To understand the problem
imagine that we want to calculate the chemical potential of
one or many atoms in a liquid using FP methods. Since
the free energy is not an observable, one needs to calculate
the free-energy difference between a known system and the
desired real system using thermodynamic perturbation theory
(TPT) [1] or thermodynamic integration (TI) [1,2] employing
extensive molecular dynamics (MD) or Monte Carlo simu-
lations [3–13]. The simplest approach is to perform a cou-
pling constant integration from the solvent and noninteracting
gaseous atoms to the atoms fully interacting with the solvent
and each other. To make such computations practically feasi-
ble, cleverly constructed intermediate steps are often used; for
instance, insertion of hard spheres into the liquid, charging
the hard spheres, and then switching to the full FP description
[11]. Each step then involves either TPT or TI. Brute force
methods, where the coupling between the added atoms and
the solvent is gradually switched on, are also feasible but
suffer from bad statistics [10]. In fact, the initial step, where an
infinitesimal small interaction between the inserted atom and
the liquid needs to be used, is the most problematic step, since
the not yet interacting atom can come very close to an atom
in the solvent and as a result experiences a huge repulsive
potential. Hence, the integrand in TI becomes infinite at zero
coupling. This issue can be partly circumvented by variable
transformations [12,13]. However, the remaining problem is
that most FP codes become unstable when two atoms are very
close. This means that the introduction of suitably constructed
intermediate “surrogate” models becomes a necessity. Struc-
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tures generated by classical force fields composed by physics-
based model functions, such as Lennard-Jones, Coulomb,
and/or modified embedded atom models, have often been
used as the surrogate models [14–17]. However, these models
are not flexible enough to describe atomic interactions in a
wide variety of materials, and construction of force fields
always needs significant human intervention. The fact that
only a handful of free-energy FP calculations have been
reported to date for disordered materials shows convincingly,
how challenging such calculations still are [7,8,10–13,18,19].

Machine learning (ML) is a rapidly evolving powerful
approach that allows one to systematically construct force
fields that can be used as surrogate models [20,21]. It has al-
ready been shown that MD simulations with machine-learned
force fields (MLFFs) can provide quantitative predictions on
atomic structures and dynamical properties of a wide variety
of materials [22–32]. A recent study by Grabowski and co-
workers showed that MLFFs can be used as surrogate mod-
els to efficiently compute anharmonicity in multicomponent
alloys [33]. However, a method to compute the chemical
potential of atoms and molecules in liquid phases relative
to a well-defined reference state has not been suggested.
For disordered systems, such a method is essential, because
simple reference statistical models, like the quasiharmonic
model, are not available for them. Integration from the ideal
gas, however, always leads to large integrands even for say
Lennard-Jones potentials. This causes large statistical errors
related to the problematic singularity described before. In
addition, the disordered structures of liquids need more statis-
tics. Here we propose and test an efficient and accurate ther-
modynamic integration scheme using MLFFs. This scheme is
computationally several orders of magnitude faster than the
usual FP calculations, retains the accuracy of FP calculations,
requires training only for the end points of the desired integra-
tion pathway, and entirely avoids the numerical instabilities
observed in other calculations. This will pave the way towards
routine calculations of thermodynamic potentials from FP for
a huge variety of disordered materials, for instance, aqueous
materials.
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The MLFFs are generated following the learn-on-the-fly
methodologies in our recent publications [31,32] [see also
Supplemental Material (SM) [34]]. All computations are car-
ried out using the Vienna Ab initio Simulation Package (VASP)
[35,36]. For the present calculations, crucial modifications
were made to allow for thermodynamic integration using
these potentials. These modifications are discussed in detail
in the next paragraph, and we call the corresponding method
λ-MLFF. A key point of our λ-MLFF is that the training is
necessary only for the two thermodynamic states located at
the end points of the coupling constant pathway. Training on
the intermediate points is unnecessary, and, in fact, would
be counterproductive: the ML potential is not supposed to
reproduce the hard well-like potential at small λ and short
interatomic distances. The crucial insight is that TI requires
only that the end points of the coupling constant integral are
described accurately. Points at intermediate coupling rely on
the surrogate model, which yields a smooth integrand very
different from the first-principles calculations. However, the
integral remains exact within the error bars of the ML poten-
tial. Our tests below show convincingly that this conjecture is
correct, and that the remaining errors related to the MLFF can
be easily removed by a final TPT step. This is not a trivial
insight, but rather an important shift in our understanding
of TI.

In the application to liquid Si, the interactions between all
Si atoms are gradually switched on, i.e., we integrate from
the ideal gas to the ML Si potential. In this case, training is
necessary only for liquid Si, because the noninteracting case
is automatically recovered by the λ-MLFF at zero coupling.
Thus, we adopt the MLFF trained on solid, liquid, and inter-
facial Si that was used to calculate the melting point of Si in
our previous study [32]. In the application to hydrated Li and
F ions in water, the interactions between the water molecules
are always accounted for exactly, and the integration is per-
formed from gaseous ideal Li and F atoms to Li and F ions
fully interacting with the water molecules (and each other).
Accordingly, in this case, training was performed on the liquid
phase without and with Li and F ions. Details of the trainings
are shown in the SM [34].

The accuracy of our MLFFs is examined by comparing
their structural properties to the ones obtained from FP cal-
culations. In Figs. 1 and 2 the pair-correlation functions of
liquid Si and LiF in H2O are shown, respectively. The pair-
correlation functions were sampled on a trajectory obtained
from 30 ps molecular dynamics calculations. In both cases,
we obtain excellent agreement between the force fields and
FP calculations.

Thermodynamic properties of liquid Si are also accurately
reproduced by the MLFF as reported in our previous study
[32], but we emphasize that the method used before does
not allow us to determine chemical potentials. The density of
water at 300 K is calculated as 0.877 ± 0.009 g cm−3. This is
in good agreement with the density of 0.864 ± 0.005 g cm−3

calculated by our FP calculation as well as a reported value of
0.89 g cm−3 obtained by a neural network potential [23]. All
these values slightly deviate from the experimental value [37]
of 0.997 g cm−3. The deviation is well understood [23,38–43]
and mainly related to deficiencies of the approximate
electronic exchange-correlation functional, here the revised

FIG. 1. Pair-correlation function of liquid Si at 1800 K. Results
from FP calculations and MLFF are shown by black (continuous) and
red (dashed) lines, respectively. The bonds in the structure are shown
up to a neighbor distance of 2.6 Å.

Perdew-Burke-Ernzerhof (RPBE) [44] functional with the D3
dispersion corrections (+D3) [45,46], that we use in the FP
calculations.

In thermodynamic integration a coupling parameter λ is
introduced in the Hamiltonian to smoothly switch between

FIG. 2. Pair-correlation functions of LiF in H2O at 300 K. Re-
sults from FP calculations and MLFF are shown by black (continu-
ous) and red (dashed) lines, respectively.

060201-2



MAKING FREE-ENERGY CALCULATIONS ROUTINE: … PHYSICAL REVIEW B 101, 060201(R) (2020)

two thermodynamic reference states. The change of the free
energy and chemical potential along this pathway is then given
by the integral of the expectation value of the derivative of the
Hamiltonian dH (λ)/dλ:

�μ =
∫ 1

0

〈
dH (λ)

dλ

〉
λ

dλ, (1)

where 〈·〉λ means evaluation of the expectation value using
an ensemble created by the Hamiltonian at coupling λ. As
usual in MLFF, the Hamiltonian H (λ) is given by kinetic
and potential energy terms. The latter depends on the atomic
environment around each atom i:

H (λ) =
Na∑

i=1

|pi|2
2mi

+
∑
i/∈M

Ui(λ) + λ
∑
i∈M

Ui(λ) +
Na∑
i

Ui,atom,

(2)

where Na specifies the number of atoms, Ui,atom denotes a ref-
erence potential energy of a single atom in the noninteracting
case, and Ui(λ) denotes the atomic potential energy relative
to Ui,atom of the interacting system. M is the subset of atoms
whose interactions are controlled by the coupling parameter
λ. At λ = 0, clearly the atoms in M do not directly contribute
to the energy. However, the atoms in M are still visible to all
other atoms, hence, the atomic potential energy Ui(λ) also
needs to be modified, by gradually blending out the atoms
in M. As usual in kernel-based methods, we assume that the
local energies can be approximated by a linear combination of
functions K (Xi(λ), XiB ) [47]:

Ui(λ) =
NB∑

iB=1

wiB K (Xi(λ), XiB ). (3)

Here K (Xi(λ), XiB ) measures the similarity in the local struc-
ture surrounding atom i and atom iB in the reference structures
selected from the training set. The descriptors or fingerprints
Xi(λ) = X(ρi[(r, λ)]) are rotationally and translationally in-
variant functionals of the density distribution around atom i:

ρi(r, λ) =
∑
j /∈M

fcut (|r j − ri|)g[r − (r j − ri )]

+ λ
∑
j∈M

fcut (|r j − ri|)g[r − (r j − ri )], (4)

where fcut is a cut-off function that smoothly eliminates the
distribution of atoms outside a given cut-off radius, and g(r) is
a smoothed δ function. To blend out the atoms in M, we scale
their contributions to the density distribution by the coupling
parameter λ as well. Obviously, they become invisible to the
MLFF at λ = 0, whereas they are fully accounted for at λ = 1.
Importantly, the coupling parameter λ is introduced only in
production runs after the force fields have been trained. The
equations used to calculate the derivative dH (λ)

dλ
in Eq. (1) and

the parameters for the descriptors and the similarity measure
are summarized in the SM.

To test the approach for a simple well-studied system,
we applied it to liquid Si. Here, all atoms are included in
the set M, implying that we perform an integration from the
ideal gas to the fully interacting liquid. The integration in
Eq. (1) is carried out using the Gauss-Lobatto quadrature, and

FIG. 3. 〈 dH (λ)
dλ

〉 as a function of λ evaluated for different numbers
of integration points Nint for (a) liquid silicon and (b) LiF in H2O.
Green solid lines are supposed to guide the eyes and shows a seventh-
order polynomial fitted to all available data points.

a variable transformation is applied to λ (see SM) to cope with
the somewhat stronger variations of the integrand at small λ

values. The integrand of Eq. (1) dH (λ)
dλ

is shown in Fig. 3(a),
and we observe that it completely lacks the problematic
singularity at λ = 0 observed in FP calculations [12]. Note
that all the data provided by the ML potential at λ �= 1 or 0 are
extrapolations, without deep physical meaning. Regardless,
the predicted chemical potential is in excellent agreement with
the previous full FP results as shown in Table I, although
convergence with respect to the number of quadrature points
is somewhat slow. We relate this to difficulties in integrating
high-order contributions pertinent to the parametrization of
the MLFF. However, adding more integration points is very
cheap for MLFFs (four orders of magnitude faster for Si than
the FP calculation; see detailed data in SM). Finally, to correct
the results provided by the MLFF, TPT was used similar
to the one applied in Ref. [12]. The most accurate value
using 12 integration points and thermodynamic integration is
within 1.5 meV to the previous reference calculations, but is
obtained at a tiny fraction (approximately 1/1000) of the pre-
vious compute times. Also the previous calculations required
multiple thermodynamic integration steps with tedious error
control, whereas here we obtain the results in a single concise
calculation.

TABLE I. Chemical potential of Si. Nint: Number of points used
in the TI. MLFF: Machine-learning results. MLFF-TPT: Machine-
learning results with corrections from thermodynamic perturbation
theory. Standard deviations in parentheses are estimated by block
averaging method. The theoretical literature result is taken from
Ref. [12]. All units are in eV.

Nint MLFF MLFF-TPT Ref.

8 −10.6702(0.0008) −10.6733(0.0009)
10 −10.6732(0.0008) −10.6763(0.0009) −10.6795(0.0011)
12 −10.6750(0.0006) −10.6782(0.0008)
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FIG. 4. Snapshot of the structures for LiF in H2O for (a) λ = 1.0
and (b) 0.002.

The solvation energy of LiF in water is a more relevant
and more difficult property to compute. It is a measure of how
much energy is gained when a LiF crystal dissolves in water.
The computations are also significantly more challenging, as
we now need to insert only two atoms (Li and F) into a simula-
tion cell with many atoms. This means that the statistical error
bars need to be made much smaller to obtain statistically con-
verged results. Using FP methods this is hardly possible with
present compute resources. Literally all previous calculations
used some (uncontrolled) approximation along the chosen
pathway or had significant error bars. Figure 4(a) shows a
snapshot of the structure for a fully interacting system (λ =
1.0) after equilibration. As reported in literature [48,49], the
Li cation is hydrated by four neighboring O atoms. This can
be clearly seen from the highlighted coordination tetrahedron
in the figure. The F anion is hydrated by approximately five
H atoms as reported previously in a FPMD [49]. With the de-
crease in the coupling parameter λ, interactions between H2O
and LiF and between Li and F are gradually turned off, and
a physically meaningful hydration structure disappears. Fig-
ure 4(b) shows a snapshot of the structure at small interactions
(λ = 0.002), where the Li and F atoms behave essentially
like gaseous noninteracting particles. Because of the lack of
interactions, in this snapshot the F anion approaches the Li
cation, and the ions are nonphysically close to some H2O
molecules (<1 Å). Nevertheless, all water molecules show
an almost perfect coordination structure, with one hydrogen
bond extending from each H atom, and every oxygen atom
receiving two hydrogen bonds. Only in the direct vicinity
of the LiF complex are slight disruptions of the network
noticeable. Structures at intermediate λ values can be to some
extent nonphysical in the vicinity of the Li and F atoms
(short bonds and disrupted hydrogen bonds), but nevertheless
our result for the chemical potential of −10.037 ± 0.040 eV
per LiF (Table II) is in superb agreement with the observed

TABLE II. Chemical potential of LiF in H2O. Nint: Number of
points used in integration. MLFF: Machine-learning results. MLFF-
TPT: Machine-learning results with corrections from thermodynamic
perturbation theory. Standard deviations are given in parentheses.
The literature results for theory and experiment are taken from
Refs. [11] and [50], respectively. All units are in eV.

Nint MLFF MLFF-TPT Ref.

8 −10.084(0.030) −10.073(0.040)
10 −10.048(0.030) −10.037(0.040) −10.417(0.041)
Expt. −10.098

experimental value of −10.098 eV per LiF from Ref. [50] and
in good agreement with previous FP calculations (using an-
other type of revised PBE functional [51] plus D3 dispersion
correction and a different FP code than applied here). We note
that these calculations involved many intricate integration
steps and that even the authors admit that “longer trajectories
would be required for a precise determination of the error
bar” [11].

In summary, we have developed an efficient and accurate
thermodynamic integration method using MLFF to compute
the temperature-dependent chemical potential. In this scheme
the density distribution of those atoms that are supposed to
be activated in the course of the thermodynamic integration
are scaled by the coupling constant variable λ to continu-
ously change the system from the case where some atoms
are noninteracting to the fully interacting material. We call
this scheme, λ-MLFF, as it allows a seamless description of
the coupling constant integral along the integration pathway
parametrized by λ. A remarkable point of the present ap-
proach is that training of MLFFs needs to be done only for
ensembles at the two end points of the constructed thermo-
dynamic pathway: the fully interacting and the noninteracting
systems. Although the force fields provide only extrapolated
interactions at intermediate points along the thermodynamic
pathway, since the appearing structures are outside of the
training data, the thermodynamic integral reproduces the free-
energy differences obtained by FP calculations exactly. The
present method is widely applicable to a wide variety of
materials, such as solvation energies, electrochemistry, and
free energies of adsorbates on surfaces relevant in catalysis
and chemistry.

The authors gratefully thank Ryoji Asahi for his many
suggestions on the application and use of machine-learning
methods to materials sciences.
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