
PHYSICAL REVIEW B 101, 054513 (2020)
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According to Clausius formulation of the second law of thermodynamics, for any thermal machine withdraw-
ing heats Q1,2 from two heat reservoirs at temperatures T1,2, it holds that Q1/T1 + Q2/T2 � 0. Combined with
the observation that the quantity Q1 + Q2 is the work W done by the system, that inequality tells us that only
four operation modes are possible for the thermal machine, namely, heat engine, refrigerator, thermal accelerator,
and heater. We illustrate their emergence in the finite time operation of a quantum Otto engine realized with a
single qubit. We first focus on the ideal case when isochoric and thermally insulated strokes are well separated
and give general results as well as results pertaining to the specific finite-time Landau-Zener dynamics. We
then present realistic results pertaining to the solid-state experimental implementation proposed by Karimi and
Pekola [Phys. Rev. B 94, 184503 (2016)]. That device is nonadiabatic both in the quantum mechanical sense and
in the thermodynamical sense. Oscillations in the power extracted from the baths due to coherent LZ tunneling
at too low of temperatures are observed that might hinder the robustness of the operation of the device against
experimental noise on the control parameters.
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I. INTRODUCTION

One of the cornerstones of thermodynamics is the Clausius
inequality,

∑
i

Qi

Ti
� 0 , (1)

where Qi are the energies that a central system undergoing
a cyclic transformation withdraws from a set of surrounding
heat baths at temperatures Ti. In the continuum limit, it gives
the celebrated expression

∮
δQ/T � 0. Noting that the equal

sign holds when the cycle is reversible led Clausius to natu-
rally introduce the state function S such that dS = δQrev/T ,
with Qrev being the heat exchanged during a reversible trans-
formation, and the property that S(B) − S(A) �

∫ B
A δQ/T . S

is the entropy [1].
For the simplest case of a central system interacting with

two baths only and a work source, the above Eq. (1), combined
with the first law of thermodynamics, gives the following
conditions:

β1Q1 + β2Q2 � 0, (2)

Q1 + Q2 = W , (3)

where W is the work delivered to the work source, βi are
the baths’ inverse thermal energies βi = (kTi )−1, and k is
Boltzmann’s constant. Looking at the system as a thermal
machine, depending on the signs of Q1, Q2,W , it may re-
alize various operation modes. Basic mathematics show that
the above constraints are simultaneously compatible only
with four (out of a total of 8 = 23) operation modes, see

Appendix A. Setting, without loss of generality, the conven-
tion β1 < β2, these are

[R]: Q1 � 0 Q2 � 0 W � 0, (4)

[E]: Q1 � 0 Q2 � 0 W � 0, (5)

[A]: Q1 � 0 Q2 � 0 W � 0, (6)

[H]: Q1 � 0 Q2 � 0 W � 0 , (7)

where [E] denotes energy extraction (heat engine), [R] de-
notes refrigerator, [A] denotes thermal accelerator, and [H]
denotes heater [2]. They are illustrated in Fig. 1(a).

In this paper, we illustrate how the four operations emerge
in a quantum Otto engine operating in finite time.

II. SINGLE-QUBIT QUANTUM OTTO ENGINE

We consider an engine consisting of a single qubit un-
dergoing a four-stroke cycle. See Fig. 1(b). We assume the
qubit is initially at thermal equilibrium at temperature T1. In
the first stroke, the qubit undergoes an evolution where its
resonant frequency changes from a value ω1 to a value ω2.
In the second stroke, the qubit at fixed resonant frequency ω2

interacts with the thermal bath 2 so as to reach temperature T2.
In the third stroke, the qubit undergoes a reversed evolution
where its resonant frequency changes from the value ω2 to
the value ω1. In the fourth stroke, the qubit at fixed resonant
frequency ω1 interacts with the thermal bath 1 so as to reach
temperature T1, thus closing the cycle.

The first and third strokes are adiabatic in a thermody-
namic sense (namely, they occur in thermal isolation), but are
not necessarily adiabatic in the quantum-mechanical sense,
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namely, during the evolution, quantum transitions may oc-
cur. The second and fourth strokes occur in thermal contact
with a heat reservoir, in absence of driving. The cycle can
accordingly be seen as a quantum version of the textbook
Otto cycle [3–12], where a working substance undergoes
two isochoric transformations alternated by two adiabatic
transformations [1].

The unitary dynamics U occurring in the first stroke are
generated by a generic time-dependent spin-1/2 Hamiltonian
H (t ), according to the rules of quantum mechanics:

H (t ) = x(t )σx + y(t )σy + z(t )σz, t ∈ [t1, t2] , (8)

U = T exp

[
−(i/h̄)

∫ t2

t1

H (s)ds

]
, (9)

where T exp denotes the time-ordered exponential [13], t1 and
t2 are initial and final times of the stroke, σx,y,z denote Pauli
operators, and x(t ), y(t ), z(t ) are generic time-dependent real
coefficients. The qubit-level spacings at the beginning and end
of the first stroke are give by the expressions

h̄ω1 = 2
√

x2(t1) + y2(t1) + z2(t1), (10)

h̄ω2 = 2
√

x2(t2) + y2(t2) + z2(t2). (11)

Similarly, the unitary dynamics Ũ occurring in the third
stroke are generated by

H̃ (t ) = x̃(t )σx + ỹ(t )σy + z̃(t )σz, t ∈ [t1, t2] , (12)

Ũ = T exp

[
−(i/h̄)

∫ t2

t1

H̃ (s)ds

]
, (13)

with the condition that

h̄ω2 = 2
√

x̃2(t1) + ỹ2(t1) + z̃2(t1), (14)

h̄ω1 = 2
√

x̃2(t2) + ỹ2(t2) + z̃2(t2). (15)

Let ρi and Ei denote the state of the qubit at the beginning
of stroke i and its according energy expectation value. By the
thermalization assumption and Eqs. (9) and (13), it is

ρ1 = e−β1H1/Z1, E1 = Trρ1H1,

ρ2 = Uρ1U †, E2 = Trρ2H2,

ρ3 = e−β2H2/Z2, E3 = Trρ3H2,

ρ4 = Ũρ3Ũ †, E4 = Trρ4H1 ,

(16)

where Zi = Tre−βiHi is the canonical partition function.
The thermodynamics of the engine is fully characterized

by the heats Q1, Q2 withdrawn from the baths 1,2 during the
thermalization steps which, under the assumption of weak
qubit bath coupling, equal the energies gained by the qubit
during those strokes, namely,

Q2 = E3 − E2 , (17)

Q1 = E1 − E4 . (18)

Since E1 and E3 are thermal expectations they can be readily
expressed as

E1 = − h̄ω1

2
tanh

(
β1h̄ω1

2

)
, (19)

E3 = − h̄ω2

2
tanh

(
β2h̄ω2

2

)
. (20)

For E2, we obtain

E2 =
∑

i, j ε
(2)
i e−β1ε

(1)
j

∣∣〈ψ (2)
i

∣∣U ∣∣ψ (1)
j

〉∣∣2

2 cosh(β1h̄ω1/2)
, (21)

where |ψ (r)
i 〉, ε(r)

i , i, r = 1, 2 are the eigenvectors and corre-
sponding eigenvalues of Hr : Hr |ψ (r)

i 〉 = ε
(r)
i |ψ (r)

i 〉. Choosing
the label i = 1, 2 for the ground and excited states respec-
tively, it is ε

(r)
1 = −h̄ωr/2, ε

(r)
2 = +h̄ωr/2.

Note that the 2 × 2 square matrix Pi j = |〈ψ (2)
i |U |ψ (1)

j 〉|2
is doubly stochastic [14], namely, 0 � Pi j � 1,

∑
i Pi j =∑

j Pi j = 1. This immediately implies that one of its elements
is sufficient to determine all of them, and that the matrix is
symmetric: if P11

.= P, then P12 = P21 = 1 − P, and P22 = P.
Hence, E2 reads

E2 = h̄ω2

2
tanh

(
β1h̄ω1

2

)
(1 − 2P) , (22)

where P contains all relevant information pertaining to the
degree of adiabaticity of the sweep. In the adiabatic limit
where there occur no transitions among the instantaneous
energy eigenstates, we have P → 1 and E2 → E1ω2/ω1 in ac-
cordance with the energy spectrum getting dilated/contracted
by a factor ω2/ω1.

Similarly, for the calculation of E4, we obtain

E4 = h̄ω1

2
tanh

(
β2h̄ω2

2

)
(1 − 2P̃), (23)

where P̃ = |〈ψ (1)
i |Ũ |ψ (2)

j 〉|2. Knowledge of the probabilities

P, P̃, along with the βi and ωi, i = 1, 2 allows us, accordingly,
to obtain Q1, Q2, and hence to characterize the thermodynam-
ics of the device.

In the following, we shall assume that

H̃ (t ) = H (t2 + t1 − t ), t ∈ [t1, t2] , (24)

and that, for each t , H (t ) is invariant under the action of some
antiunitary operator K [15]:

H (t ) = KH (t )K† . (25)

Then, using Eq. (13) and the property 〈u|KAK†|w〉 =
〈u|A|w〉∗ (with A a linear operator, and K an antilinear op-
erator), [16] we get

P̃ = ∣∣〈ψ (1)
i

∣∣Ũ ∣∣ψ (2)
j

〉∣∣2 = ∣∣〈ψ (1)
i

∣∣KU †K†
∣∣ψ (2)

j

〉∣∣2

= ∣∣〈ψ (1)
i

∣∣U †
∣∣ψ (2)

j

〉∗∣∣2 = ∣∣〈ψ (2)
j

∣∣U ∣∣ψ (1)
i

〉∣∣2 = P . (26)

This choice reduces the complexity of the problem, and
allows us to write the heats and work exchanged in a cycle as

Q1 = − h̄ω1

2
[ f1 + f2(1 − 2P)], (27)

Q2 = − h̄ω2

2
[ f2 + f1(1 − 2P)], (28)

W = − h̄

2
f1[ω1 + ω2(1 − 2P)] − h̄

2
f2[ω1(1 − 2P) + ω2] ,

(29)
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FIG. 1. (a) The four possible operation modes for a device work-
ing with two reservoirs. (b) Sketch of a single-qubit-based quantum
Otto engine cycle.

where, for simplicity, we introduced the notation

fi = tanh(βi h̄ωi/2). (30)

The transition probability P contains information pertaining
to the qubit dynamics during the unitary strokes; as such, it is
a functional of {x(t ), y(t ), z(t )}, which we leave unspecified
for now. It is trivial to note that all energy exchanges are in-
creasing functions of P and are maximal in the adiabatic limit
P = 1. Departure from that limit means smaller exchanges.
As we shall see below it also means smaller thermodynamic
efficiencies.

It is instructive to write down the explicit expression of the
Clausius sum

∑
Qi/Ti, using Eqs. (27)–(29) in the following

form:

β1Q1 + β2Q2 = h̄(β1ω1 f2 + β2ω2 f1)(P − 1)

+ h̄

2
( f2 − f1)(β1ω1 − β2ω2) . (31)

The above expression gives evidence of two nonpositive
contributions: a term proportional to (P − 1), which becomes
null in the adiabatic limit P = 1, and a second term which
becomes null when β1ω1 = β2ω2. The total dissipation is
exactly null when both conditions hold simultaneously, which
identifies the Carnot point as P = 1, β1ω1 = β2ω2. As will
be illustrated in more detail below, departure from that point
signals increased dissipation.

Since the above expressions are linear in P, it is easy to find
the values of P, call them PQ1 , PQ2 , PW for which Q1, Q2, and
W , respectively, become null, and therefore mark their sign
reversal:

PQ1 = 1

2
(1 + f1/ f2), (32)

PQ2 = 1

2
(1 + f2/ f1), (33)

PW = 1

2

(
1 + ω1 f1 + ω2 f2

ω2 f1 + ω1 f2

)
. (34)

Figure 2 shows the curves PQ1 , PQ2 , PW as a function of ω2/ω1,
for various fixed values of β1h̄ω1, β2 h̄ω1. Crossing one curve
means reversing the sign of the according quantity, therefore
the curves draw the boundaries of the regions of distinct

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

P

1 1 0.1 , 2 1 0.2

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
1 1 0.1 , 2 1 0.4

Carnot point

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

P

1 1 1 , 2 1 2

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0
1 1 1, 2 1 4

FIG. 2. Operation regions in the (ω2/ω1, P) plane. Blue = [R].
Red = [H]. Green = [E]. Yellow = [A], in accordance with the
color convention in Fig. 1(a). Moving downward, the ratio β1/β2

is fixed and β2 increases. Moving to the right, β1 is fixed, while
β1/β2 decreases. The Carnot point (ω2/ω1 = β1/β2, P = 1) where
all operations coincide is indicated in the lower left panel only.

operation modes. As expected, there are only four regions,
corresponding each to one of the four allowed operation
modes described above, which we have filled with different
colors.

A few observations are in order. First, the regions, as
plotted in the (ω2/ω1, P) plane are connected. We note that
for P < 1/2 only the [H] operation is possible: from Eqs. (27)
and (28) one can immediately see that for P < 1/2 it is
Q1 � 0, Q2 � 0. As P gets larger and larger, above the value
1/2, the [H] region shrinks until it reduces to a single point,
which is in fact the Carnot point where all operations coincide,
and actually nothing happens (i.e., all exchanged energies are
null), while the efficiency, e.g., of the [E] operation reaches
the Carnot value ηC

[E ] = 1 − β2/β1. For P = 1, corresponding
to the quasistatic (i.e., adiabatic in the quantum-mechanical
sense) limit, only [R], [E], and [A] are possible, with [R]
occurring for ω2/ω1 � β1/β2, [E ] occurring for β1/β2 �
ω2/ω1 � 1, and [A] occurring for ω2/ω1 � 1.

Note that PQ2 → 1/2 as h̄ω2 → 0, which gives the [R]
region a triangularlike shape, with one side of fixed length
and the other side with a size that gets smaller and smaller
as the ratio β1/β2 decreases. That reflects the fact that, at
fixed hot temperature T1, extracting heat from the cold bath
becomes more and more difficult as T2 decreases. Note also
that, contextually, the [E] region would expand, reflecting the
fact that it is easier to deliver positive work, when there is a
larger thermal gradient. The region [H] is the biggest in the
(ω2/ω1, P) plane, in accordance with the intuitive idea that
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dumping heat in both baths is generally the easiest thing to
accomplish.

As anticipated, transitions are responsible for drops in
the thermodynamic efficiency. To see that, consider the [E]
regime, where Q1 � 0, Q2 � 0. The thermodynamic effi-
ciency η[E ] = W/Q1 = 1 + Q2/Q1 reads

η[E ] = 1 + ω2

ω1

(
f2 + f1(1 − 2P)

f1 + f2(1 − 2P)

)
. (35)

Note that both numerator and denumerator in the equation
above decrease with increasing P, so while the numerator
(i.e., −2Q2/h̄, which is positive) becomes less positive, the
denumerator (i.e., −2Q1/h̄ which is negative) becomes more
negative. Accordingly, the absolute value of the ratio (which is
a negative number) decreases with increasing P, implying that
η[E ] is an increasing function of P. Similarly, one can see that
the coefficient of performance in the [R] operation decreases
with P. Accordingly, the best thermodynamic performances
are achieved in the quasistatic limit, where the quasistatic
Otto efficiencies [4,7] occur: η

qs
[E ] = 1 − ω2/ω1 and η

qs
[R] =

1/(ω1/ω2 − 1), which in turn increase and tend to the Carnot
efficiencies ηC

[E ] = 1 − β1/β2, ηC
[R] = 1/(β2/β2 − 1) as one

gets close to the Carnot point. However, as pointed out above,
the absolute value of the exchanged energies go to zero at the
Carnot point.

III. LANDAU-ZENER-STÜCKELBERG- MAJORANA
DYNAMICS

We now focus on the specific case of the Landau-Zener-
Stückelberg-Majorana (LZSM) [17–20] evolution:

x(t ) = δ, y(t ) = 0, z(t ) = ut . (36)

Note that, if adopting the {σz} representation where the Pauli
matrices σx, σz are real, the according Hamiltonian is invariant
under the antiunitary complex conjugation K{σz} relative to that
representation [16], so we are within the assumptions stated
above.

The transition probability P can be expressed in this case
in terms of the problem parameters (δ, u, t1, t2) by means of
parabolic cylinder functions, as described in Ref. [21]. The
unitary evolution in the {σz} representation reads

U11(t2, t1) =U ∗
22(t2, t1) = 


(
1 − i δ2

2u

)
√

2π

× [
D

i δ2
2u

(t2
√

2ue−iπ/4)D
i δ2

2u −1
(t1

√
2uei3π/4)

+ D
i δ2

2u
(t2

√
2uei3π/4)D

i δ2
2u −1

(t1
√

2ue−iπ/4)
]
,

(37)

U12(t2, t1) = − U ∗
21(t2, t1) = 


(
1 − i δ2

2u

)
eiπ/4

δ
√

π/u

× [−D
i δ2

2u
(t2

√
2ue−iπ/4)D

i δ2
2u

(t1
√

2uei3π/4)

+ D
i δ2

2u
(t2

√
2uei3π/4)D

i δ2
2u

(t1
√

2ue−iπ/4),
]

(38)

where Ui j = 〈φi|U |φ j〉 and |φ1〉, |φ2〉 denote the spin-down
and spin-up eigenvectors of σz, respectively; Dν (z) denotes

the parabolic cylinder D-function and 
(z) is the Gamma
function [22]. Denoting with Uad(t2, t1) the time-evolution
matrix expressed in the time-varying instantaneous Hamilto-
nian eigenbasis, it is [21]

Uad(t2, t1) = RT (t2) · U(t2, t1) · R(t1), (39)

where U(t2, t1) is the time evolution matrix expressed in the
{σz} eigenbasis, R(tr ), r = 1, 2 is the rotation that changes
the basis from adiabatic (eigenstates of Hr) to diabatic (eigen-
states of σz):

R(t ) =
(

cos ϑ (t ) sin ϑ (t )
− sin ϑ (t ) cos ϑ (t )

)
, ϑ (t ) = 1

2
arctan

δ

ut
. (40)

The probability P then reads P = |Uad
11(t2, t1)|2.

Introducing a qubit energy scale E0, we define the nondi-
mensional level spacing � = δ/E0, nondimensional sweep
rate, v = uh̄/E2

0 , and nondimensional time s = E0t/h̄.
In the following, we focus on a sweep between nondimen-

sional time s1 = −τ (with τ > 0) and s2 = 0, corresponding
to h̄ω1 = 2E0

√
�2 + (vτ )2, h̄ω2 = 2�E0. Note that with this

choice it is ω2 � ω1, hence we are exploring the region where
all four operations may occur (for ω2 � ω1 only [H] and [A]
may occur). Figures 3 and 4 show, for fixed temperature ratio
β2/β1 and different β1, the plots of Q1/E0, Q2/E0,W/E0,
the regions of operations, and the rescaled thermodynamic
efficiencies η[R]/η

C
[R] and η[E ]/η

C
[E ], as a function of v,�, for

fixed α = vτ . The limit v → 0 (τ → ∞) corresponds to the
adiabatic limit. Note how the low-temperature plots (Fig. 3)
present oscillations in � and v, which result in a breakdown
of the connectedness of the operation regions. These are a
consequence of the well-known oscillations that characterize
LZSM transitions in finite time [21,23]. Note that they do not
appear in the higher temperature plots (Fig. 4). Note how,
as � increases the intervals of v where [A] occurs shrink,
and in practice only [H] occurs in the � → ∞ limit. This is
well visible in low temperature plot [Fig. 3(d)], and would
be visible at higher temperatures [Fig. 4(d)], if one would
enlarge the �-axis end-scale accordingly. This behavior can
be understood by looking at Eq. (32). When � → ∞, both ω1

and ω2 go to infinity, hence the reversal point PQ1 goes to 1,
meaning that only at P = 1 (that is, in the slow limit v → 0),
[A] can occur. Physically, the reason is that when � is very
large, almost all the qubit population is in the ground state at
the beginning of an adiabatic stroke, hence the qubit jumping
up during the adiabatic stroke has an overwhelmingly larger
probability than jumping down. Accordingly, the probability
of releasing energy to the bath in the subsequent thermaliza-
tion stroke is overwhelmingly larger than the probability of
withdrawing it.

IV. THE QUANTUM OTTO ENGINE
OF KARIMI AND PEKOLA

We consider the solid-state implementation of a quantum
Otto engine presented by Karimi and Pekola [24] whereby
a superconducting qubit is coupled to two resistors Rj, j =
1, 2 each kept at temperature Tj [inverse thermal energy
β j = 1/(kTj )] and each embedded into an RLC circuit with
resonant frequency ωLC, j = 1/

√
LjCj with Lj,Cj the jth
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FIG. 3. Thermodynamics of the Landau-Zener-Stückelberg-Majorana quantum Otto engine as function of the nondimensional parameters
v, � at fixed vτ = 1/2. (a) Heat withdrawn from bath 1 in one cycle. (b) Heat withdrawn from bath 2 in one cycle. (c) Work output.
(d) Operation regions: Blue = [R]; Red =[H]; Green = [E]; Yellow = [A], in accordance with the convention set in Fig. 1(a). (e) Rescaled
refrigeration efficiency η[R]/η

C
[R]. (f) Rescaled heat engine efficiency η[E ]/η

C
[E ]. The temperature ratio is T1/T2 = β2/β1 = 2, while β1E0 = 10/3.

The Carnot point is accordingly at v = 0, � = 1/
√

12 	 0.29, and the Carnot efficiencies are ηC
[E ] = 1/2 and ηC

[R] = 1.

FIG. 4. Same as Fig. 3 but for β1E0 = 1/3.
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Ф

FIG. 5. Circuit scheme of the quantum Otto engine of Karimi and
Pekola [24].

circuit inductance and capacitance, respectively. The coupling
between the qubit and resistor Rj is achieved by tuning the
qubit level spacing to ωLC, j . Control over the qubit-level
spacing is provided through the control over the magnetic
flux, �, that threads the qubit, and is generated by a nearby
inductor, L. The Otto engine is then realized by bringing the
qubit in tune with the two RLC circuits, alternatively, see
Fig. 5. This smart strategy allows, with the manipulation of a
single parameter, to realize both the compression and dilation
of the energy spectrum, and the switching of the qubit-bath
interactions.

The qubit Hamiltonian reads

H = −E0�σx − E0q(t )σz , (41)

with

q(t ) = 1 + cos(2π f t )

4
. (42)

Accordingly, the qubit-level spacing periodically oscillates
between the maximal value h̄ω1 = 2E0

√
�2 + 1/4 and the

minimal value h̄ω2 = 2E0�, where it is in resonance, re-
spectively, with the hot and cold baths. Recall that � is a
dimensionless quantity, while E0 is an energy.

At variance with the idealized situation described in
Sec. III, in this case strokes 1 and 3 are not perfectly separated
from the thermalization strokes 2 and 4. Accordingly, they
cannot be described by means of unitary evolution. Note
also that the qubit remains in contact with the baths for a
finite time, which might not result in its full thermalization.
Following Karimi and Pekola [24], we describe the dynamics
of the open qubit, encompassing both the interaction with the
resistors and the time-dependent driving, by means of the stan-
dard quantum master equation reading, in the instantaneous
qubit energy eigenbasis,

ρ̇gg(t ) = − �

q2(t ) + �2
q̇(t )
[ρge(t )eiφ(t )] − 
�ρgg(t ) + 
↓,

(43)

ρ̇ge(t ) = �

q2(t ) + �2
q̇(t )(ρgg(t ) − 1/2)e−iφ(t ) − 
�ρge(t )/2,

(44)

where φ(t ) = ∫ t
0 ω(t ′)dt ′ is a dynamical phase determined by

the instantaneous level spacing h̄ω(t ) = 2E0

√
q2(t ) + �2; 
↓

denotes jump-down transition rate of the qubit caused by the
interaction with the two baths, i.e., 
↓ = 
↓,1 + 
↓,2, with

↓,i the jump-down transition rate caused by bath i; 
� =∑2

j=1(
↓, j + 
↑, j ) being the sum of all transition rates caused
by all the baths.

The transition rates can be calculated by means of the
Fermi golden rule leading to the expression [24]


↓(↑), j = E2
0 M2

j

h̄2�2
0

�2

q2 + �2
SI, j (±ω), (45)

where SI, j (ω) = {R2
j [1 + Q2

j (ω/ωLC, j − ωLC, j/ω)2]}−1

SV, j (ω) is the unsymmetrized noise spectrum of RLC circuit
j expressed in terms of its resonance frequency ωLC, j =
1/

√
LjCj , quality factor Q j = √

L j/Cj/Rj , and voltage noise
across the resistor, SV, j (ω) = 2Rj h̄ω/(1 − e−β j h̄ω ). Here Mj

is the mutual inductance between the qubit and the jth RLC
circuit, and �0 = h/2e is the flux quantum (e denotes the
electron charge and h is Planck’s constant).

It is important to stress that the master equation, Eq. (44),
is valid as long as the driving frequency f is much smaller
than the inverse bath correlation time f � 1/tcorr.

The power extracted from resistor j by the qubit reads [24]

P j (t ) = −E (t )(ρee
↓, j − ρgg
↑, j ). (46)

We present results for the time-averaged powers, at steady
state, in dimensionless form,

�i = h̄

E2
0 T

∫ t+T

t
�i(s)ds , (47)

as a function of � and the dimensionless drive frequency � =
2π h̄ f /E0 where T = 1/ f is the driving period.

In Fig. 6, we plot �i, i = 1, 2, the according power output
�W = �1 + �2, the operation regions, and the [E ] and [R]
efficiencies (rescaled by the according Carnot efficiencies), as
functions of � and �, for fixed ratio β1/β2. Same in Fig. 7
but for higher temperatures. We remind the reader that, in
practical application, the plots can be trusted as long as � is
small enough that f � 1/tcorr is satisfied.

Note how some oscillations, signaling the presence of
quantum coherences, are present in the low-temperature
power plots, Fig. 6, while they are reduced in the higher
temperature plots, Fig. 7. This effect is analogous to that
observed in the ideal case, Figs. 3 and 4. The oscillations
are as well reflected in the plots of the regions of operation
resulting in a breakdown of the regions connectedness, see
Figs. 6(d) and 7(d).

Inspection of Figs. 6(e), 6(f), 7(e), and 7(f) shows, as
expected, that the efficiencies grow as the Carnot point is ap-
proached; note, however, that both in the [R] and [E] regions,
the maximal efficiency is about half the Carnot efficiency.

Note that, in the large � limit, only the [H] operation
occurs. While the physics behind this phenomenon can be
physically understood based on the previous analysis based on
the idealized LZSM dynamics, its emergence can also be seen
analytically by taking the large � limit of the master equation
Eq. (44), see Appendix B.

V. REMARKS AND CONCLUSIONS

We have illustrated the emergence of the four operation
modes allowed by the laws of thermodynamics, in a single
qubit quantum Otto engine operating in finite time. We have
begun with a general treatment of the idealized case where
thermalization and generic thermally insulated strokes are
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FIG. 6. Thermodynamics of the quantum Otto engine of Karimi and Pekola [24] as function of the parameters �, �. (a) Power withdrawn
from resistor 1. (b) Power withdrawn from resistor 2. (c) Power output. White curves denote the zero-level contours. (d) Operation regions:
Blue = [R], red = [H], green = [E], yellow = [A], in accordance with the convention set in Fig. 1(a). (e) Rescaled refrigeration efficiency
η[R]/η

C
[R]. (f) Rescaled heat engine efficiency η[E ]/η

C
[E ]. The temperature ratio is T1/T2 = β2/β1 = 2, while β1E0 = 10/3. The Carnot point is

accordingly at � = 0,� = 1/
√

12 	 0.29, and the Carnot efficiencies are ηC
[E ] = 1/2 and ηC

[R] = 1. Following Ref. [24], the quality factor of
both RLC circuits is set to the value Q1 = Q2 = 30.

well separated. The geometrical properties of the various
operation regions in the (ω2/ω1, P) space is all encoded into

the bath temperatures, where P is the transition probability
among the qubit levels during the thermally insulated strokes,
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FIG. 7. Same as Fig. 6 but for β1E0 = 1/3.
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and ω1,2 are the qubit-level spacings during the thermalization
strokes. Simple analytical expressions have been obtained for
the boundaries of the regions. We have then specialized to the
case of LZSM dynamics. In this case, coherent oscillations
break the connectedness of the operation mode regions in the
parameter space (�, v).

We then investigated the realistic engine proposed by
Karimi and Pekola [24]. We have, accordingly, provided a
fully fledged characterization of the operation of that device in
its parameter space (�,�), which constitutes a solid basis for
its design and practical realization. The study of the idealized
LZSM dynamics provides a good guide to understand its
physics through an exactly solvable simplified model. In the
realistic case of Karimi and Pekola, coherent effects are less
evident than in the idealized LZSM case, which is probably
a consequence of a smoother driving (rather than of the
continuous interaction with the baths [24]).

We remark that the connectedness of the operation-mode
regions is important because it is associated with the robust-
ness of the engine operation against experimental noise on the
control parameters. In this regard, our work corroborates the
finding of Karimi and Pekola [24] that operation at too low
of temperature values might be hindered by coherences. We
also noted that, despite with increasing energy gap E0�, the
quantum adiabatic approximation gets better and better, the
engine tends to become a mere heater as � → ∞ limit, and
we have explained the origin of this phenomenon.

APPENDIX A: OPERATION MODES ALLOWED BY
CLAUSIUS INEQUALITY FOR THE TWO-BATH CASE

Equations (2) and (3), combined with the convention

0 < β1 < β2, (A1)

are incompatible with four sign combinations for Q1, Q2,W .
The case W > 0, Q1 < 0, Q2 < 0 is not allowed because if

Q1 < 0, Q2 < 0, then, by Eq. (3), it must be W < 0.
The case W < 0, Q1 > 0, Q2 > 0 is not allowed because if

Q1 > 0, Q2 > 0, then, by Eq. (3), it must be W > 0.
The above two cases are not consistent with energy conser-

vation, Eq. (3).
Regardless of the sign of Q1, the case W > 0, Q2 > 0 is

incompatible with the Clausius inequality Eq. (2). In fact,
assuming W > 0, Q2 > 0, it is, since β1 > 0, 0 < β1Q1 +
β1Q2 < β1Q1 + β2Q2, because of Eq. (A1), which is in dis-
agreement with Eq. (2), hence both case W > 0, Q1 > 0,
Q2 > 0 and case W > 0, Q1 < 0, Q2 > 0 are not allowed.
This reflects the impossibility of having a machine that is at
the same time a heat engine (i.e., a work provider W > 0) and
a refrigerator (Q2 > 0).

No incompatibility exists for the remaining four cases
listed in Eqs. (4)–(7).

APPENDIX B: MASTER EQUATION IN
THE LARGE � LIMIT

In this Appendix, we solve the master equation describ-
ing the open qubit evolution in the limit � � 1. This will
illustrate the mechanism underling the fact that in the large �

region of parameters, only the heater [H] operation is possible

even if the adiabatic approximation is better achieved when
� gets larger. The transition rates 
↓(↑), j read with the �

dependence made explicit


↓,1 = A1�
2

q2 + �2

⎡⎣1 + Q2
1

(√
q2 + �2

q̄2 + �2
−

√
q̄2 + �2

q2 + �2

)2⎤⎦−1

×
√

q2 + �2

1 − e−2E0β1

√
q2+�2

, (B1)


↓,2 = A2�
2

q2 + �2

⎡⎣1 + Q2
2

(√
q2 + �2

�
− �√

q2 + �2

)2
⎤⎦−1

×
√

q2 + �2

1 − e−2β2E0

√
q2+�2

, (B2)


↑,1= − A1�
2

q2 + �2

⎡⎣1+Q2
1

(√
q2 + �2

q̄2 + �2
−

√
q̄2 + �2

q2 + �2

)2⎤⎦−1

×
√

q2 + �2

1 − e2E0β1

√
q2+�2

, (B3)


↑,2= − A2�
2

q2 + �2

⎡⎣1+Q2
2

(√
q2 + �2

�
− �√

q2 + �2

)2
⎤⎦−1

×
√

q2 + �2

1 − e2β2E0

√
q2+�2

, (B4)

where q is a shorthand for q(t ), q̄ = max q(t ) and A1 and
A2 are factors with the dimension of frequency that contain
information about the two resonators and the qubit energy
scale E0. Performing a Taylor expansion up to the leading
order in 1/�, we obtain


↓,1 	 A1�

(
1 − 1

2

( q

�

)2
)

×
(

1 + Q2
1

(q̄2 − q2)2

�4

)
(1 + e−2E0β1�) 	 A1�,

(B5)


↓,2 	 A2�

(
1 − 1

2

( q

�

)2
)

×
(

1 − Q2
2

( q

�

)4
)

(1 + e−2β2E0�) 	 A2�, (B6)


↑,1 	 −A1�

(
1 − 1

2

( q

�

)2
)

×
(

1 + Q2
1

(q̄2 − q2)2

�4

)
e−2E0β1� 	 −A1�e−2E0β1�,

(B7)


↑,2 	 −A2�

(
1 − 1

2

( q

�

)2
)

×
(

1 − Q2
2

( q

�

)4
)

e−2β2E0� 	 −A2�e−2β2E0�. (B8)
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The master equations for the time evolution of ρgg and ρge

then read

ρ̇gg(t ) = − �

q2(t ) + �2
q̇(t )
[ρge(t )eiφ(t )] − 
�ρgg(t ) + 
↓

	 (A1 + A2)�(1 − ρgg), (B9)

ρ̇ge(t ) = �

q2(t ) + �2
q̇(t )(ρgg(t ) − 1/2)e−iφ(t ) − 
�ρge(t )/2

	 −(A1 + A2)�ρge/2, (B10)

where 
� = 
↓,1 + 
↓,2 + 
↑,1 + 
↑,2 	 (A1 + A2)� and

↓ = 
↓,1 + 
↓,2 	 (A1 + A2)� and the fist terms on the
right-hand side of both equations have been neglected because
they are of order 1/� while all the other terms are of order �.
In this limit, the two equations are no longer coupled and they
can be easily solved:

ρgg(t ) 	 1 − (1 − ρgg(0))e−�(A1+A2 )t , (B11)

ρge(t ) 	 ρge(0)e−�(A1+A2 )t/2. (B12)

In our case, the initial state of the qubit at t = 0 is a ther-
mal state at reverse temperature β1 and when � � 1 it
becomes

ρgg(0) = eE0β1

√
q̄2+�2

cosh(E0β1

√
q̄2 + �2)

	 1

1 + e−2E0β1�

	 1 − e−2E0β1�, (B13)

ρge(0) 	 0. (B14)

Substituting Eqs. (B13) and (B14) into Eqs. (B11) and (B12),
respectively, we obtain

ρgg(t ) 	 1 − e−�(E0β1+(A1+A2 )t ), (B15)

ρge(t ) 	 0. (B16)

We note that for � → ∞, it is ρgg → 1. Accordingly, the
qubit tends to stay in its ground state for all t’s and this
effect is more evident for larger β1 (smaller temperatures).
The expression for instantaneous dimensionless power � j to
resistor j reads

� j (t ) = 2(h̄/E0)
√

q2 + �2(
↓, j − ρgg(
↓, j + 
↑, j ))

	 2(h̄/E0)�
(
Aj� − (

1 − e−�(E0β1+(A1+A2 )t )
)
Aj�

)
	 2(h̄/E0)Aj�

2e−�(E0β1+(A1+A2 )t ) � 0. (B17)

Hence the dimensionless average value of power over a period
T of the driving becomes

� j 	 2h̄A j�
2

E0T

∫ T

0
e−�(E0β1+(A1+A2 )s)ds

= 2h̄A j

E2
0 T

(1 − e−E0β1�(A1+A2 )T )

β1(A1 + A2)
�e−E0β1�

	 2h̄

E2
0 T

Aj

A1 + A2

�

β1
e−E0β1� � 0. (B18)

Accordingly, in the large � limit, both the powers to resistors
are positive and consequently the only possible regime is the
heater [H].
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