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Proximity effect in a heterostructure of a high-Tc superconductor with a topological insulator from
dynamical mean field theory
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We investigate the proximity effect in a heterostructure of the topological insulator (TI) Bi2Se3 deposited on
the high-temperature superconductor (HTSC) material Bi2Sr2CaCu2O8+δ . The latter is described by the one-band
Hubbard model and is treated with cluster dynamical mean field theory (CDMFT), the topological insulator (TI)
layers being included via the CDMFT self-consistency loop. The penetration of superconductivity into the TI
depends on the position of the Fermi level with respect to the TI gap. We illustrate the back action of the TI layer
on the HTSC layer, in particular the gradual disappearance of Mott physics with increasing tunneling amplitude.
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I. INTRODUCTION

An extraordinary feature of topological superconductors
(TSCs) is the presence of Majorana zero modes (MZMs)
near edges or within vortices. This is recognized as a key
ingredient to realize topological quantum computation [1,2].
Hence, designing and fabricating TSCs has drawn a lot of
attention in the past decade. Since odd-parity superconductors
are actually rare in nature, a more realistic route toward TSCs
is to build a heterostructure consisting of a conventional super-
conductor and a material with nontrivial band structure, such
as a topological insulator (TI) [3], or a semiconductor with
Rashba spin-orbit coupling [4–6]. The proximity effect plays
an essential role in these proposals: it induces an effective
p + ip pairing state in the nonsuperconducting material. Great
experimental progress has been made in that direction and
some evidence for MZMs have been reported [7–10].

Cuprate high-Tc superconductors (HTSC) have a higher
critical temperature and a much larger pairing gap in com-
parison with conventional s-wave superconductors. They are
therefore expected to offer more favorable experimental con-
ditions for realizing MZMs [11,12]. This perspective has stim-
ulated work on HTSC/TI heterostructures [11–18]. However,
efforts toward detecting the proximity-induced superconduct-
ing gap and pairing symmetry in Bi2Se3/Bi2Sr2CaCu2O8+δ

(BSCCO) heterostructures have given conflicting results
[16–18]. Followup theoretical work emphasizes the effect of
lattice mismatch between the cuprate and the TI [19], or
attributes the discrepancies to the different interface coupling
strengths of various samples [20]. In addition, recent work
shows that the two-dimensional (2D) TI in proximity to
a HTSC naturally hosts Majorana corner modes (MCMs)
[21–23], a high-order topological effect, which reinforces
interest in HTSC-based heterostructures.

Previous theoretical studies on the proximity effect in
HTSC/TI heterostructures are essentially based on mean field
theory [11,19], or assume a fixed superconducting amplitude

in the HTSC layer [13,20]. The effect of correlations on the
HTSC layer and of its hybridization with the TI layer have not
been fully taken into account. Moreover, no attention has been
paid to possible feedback of the TI layer onto the HTSC layer
[24]. These are the topics we will address in this paper.

We use cluster dynamical mean field theory (CDMFT)
with an exact diagonalization impurity solver to deal with
the superconductivity in the HTSC layer, and to solve the
whole HTSC/TI system in a self-consistent way. We identify
different regimes of penetration of superconductivity into the
topological insulator (TI), depending on the position of the TI
chemical potential (within the bulk gap or not). We also show
how the presence of the TI layers affects superconductivity in
the HTSC layer. In particular, even though the HTSC layer
would by itself host strongly coupled superconductivity, i.e.,
superconductivity that disappears at half-filling, it progres-
sively loses this character as the tunneling amplitude with the
TI layers increases.

The paper is organized as follows: In Sec. II we introduce
the model used, both on the TI and HTSC layers, and we
review the CDMFT procedure used to compute the SC order
parameter from that microscopic model. In Sec. III we present
our results, namely, how the superconducting order parameter
varies on different layers as a function of parameters such as
filling on the HTSC layer and tunneling strength.

II. MODEL AND METHOD

A. Hamiltonian

We will model a TI/HTSC heterostructure with a Hamilto-
nian consisting of three parts:

H = HTI + HSC + H ′ . (1)

HTI and HSC refer to the TI and HTSC layers, and H ′ describes
the tunneling between them. As a typical three-dimensional
(3D) TI, we consider Bi2Se3, which can be described by an
effective two-orbital model on a cubic lattice [19,25]. Let us
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introduce the multicomponent annihilation operator

�r = (cr,1,↑, cr,1,↓, cr,2,↑, cr,2,↓), (2)

where cr,a,σ annihilates an electron at site r with orbital a (a =
1, 2) and spin σ (σ =↑,↓). The real-space Hamiltonian for
Bi2Se3 then reads as

HTI = (t0 − μTI)
∑

r

�†
r �r − tx

∑
r

�†
r �r+x − ty

∑
r

�†
r �r+y

− tz
∑

r

�†
r �r+z + m0

∑
r

�†
r τz�r − mx

∑
r

�†
r τz�r+x

− my

∑
r

�†
r τz�r+y − mz

∑
r

�†
r τz�r+z

+
{

Ax

2

∑
r

−i�†
r τxσx�r+x + Ay

2

∑
r

−i�†
r τxσy�r+y

+ Az

2

∑
r

−i�†
r τxσz�r+z

}
+ H.c. (3)

Here, μTI is the chemical potential for electrons within
Bi2Se3; τ0,x,y,z and σ0,x,y,z are the identity and Pauli matrices in
orbital and spin space, respectively; x, y, and z are the lattice
unit vectors along the x, y, and z directions. In momentum
space, the Hamiltonian (3) may be written as

HTI =
∑

k

�
†
kHTI(k)�k, (4)

where �k is the Fourier transform of �r and

HTI(k) = ε(k)τ0σ0 + M(k)τzσ0 + Ax sin kxτxσx

+ Ay sin kyτxσy + Az sin kzτxσz, (5)

where

ε(k) = t0 − 2tx cos kx − 2ty cos ky − 2tz cos kz − μTI,

M(k) = m0 − 2mx cos kx − 2my cos ky − 2mz cos kz. (6)

The parameters in Hamiltonian (3) can be obtained by fitting
to the dispersion of Bi2Se3 around the � point [25]. In this
paper, we choose the values given in Ref. [19], in which the
lattice mismatch between Bi2Se3 and the cuprate is taken into
account:

t0 = 0.5 eV, m0 = 1.9 eV,

tx = 0.1 eV, mx = 0.5 eV,

ty = 0.05 eV, my = 0.25 eV,

tz = 0.1 eV, mz = 0.4 eV,

Ax = Ay = Az = 0.4 eV.

(7)

The cuprate HTSC is modeled by the one-band Hubbard
Hamiltonian on a square lattice:

HSC = −
∑
r,r′,σ

tr,r′d†
r,σ dr′σ + U

∑
r

nd
r,↑nd

r,↓ − μSC

∑
r,σ

nd
r,σ ,

(8)

where dr,σ annihilates an electron at site r of the HTSC layer,
nd

r,σ is the corresponding number operator with spin σ , and
μSC is the chemical potential for the HTSC layer. We set the

nearest-neighbor hopping to t1 = 0.25 eV, the next-nearest-
neighbor hopping to t2 = −0.05 eV, and the onsite interaction
to U = 2.0 eV. In the remainder of this paper, we set t1 as the
energy unit, such that, for instance U/t1 = 8.0.

The Hamiltonian that couples the cuprate layer to the
Bi2Se3 layers is assumed to be

H ′ =
∑
r,σ

t ′
1d†

r,σ cr,1,σ + t ′
2d†

r,σ cr,2,σ , (9)

where r stands for the position within the HTSC layer, as well
as the corresponding position in the first TI layer. t ′

1 and t ′
2 are

the interface hopping amplitudes to orbitals 1 and 2 of Bi2Se3,
respectively. Note that the lattice mismatch between Bi2Se3

and the cuprate is ignored in Eq. (9) [17,20].
In experiments [16,17], the Bi2Se3 thin film, whose thick-

ness ranges from 0.5 to 12 quintuple layers, is grown on top of
the cuprate BSCCO. We therefore consider the slab of Bi2Se3

to be a few layers thick only, and the cuprate to consist of only
one layer, because of the small hopping along its c axis.

Our theoretical goal is to obtain an approximate expression
for the one-electron Green function GAB(ω), where A, B are
indices associated with the one-body degrees of freedom
of the model. These are composite indices, which can be
explicited as follows:

A = (r, m, a, σ, α), (10)

where (i) r is a Bravais lattice site index along the plane
of the heterostructure, (ii) m is a layer index, from 0 to NL

(m = 0 corresponds to the HTSC layer, and m = 1 . . . NL to
the Bi2Se3 layers), (iii) a ∈ {1, 2} is an orbital index within
Bi2Se3, taking two values (it does not apply to layer m = 0),
(iv) σ is a spin index, which is nontrivial since Bi2Se3 hosts a
spin-orbit interaction, and (v) α is a Nambu index, necessary
since we are interested in superconductivity. In other words,
we are dealing with Nambu spinors of the form

�r,m,a,σ = (cr,m,a,σ , c†
r,m,a,σ ). (11)

The matrix structure of the Green function G(ω) is therefore
rather complex; in the following we will only display the
indices that are relevant to a specific explanation, others being
implicit.

Once the Green function GAB(ω) is known, various ob-
servables, such as the superconducting order parameter as a
function of layer, can be computed, as explained in Sec. II D
below. Readers less interested in the details of the CDMFT
procedure used to obtain the Green function GAB(ω) may skip
to Sec. III.

B. Impurity model

In order to study the possible superconducting state in
model (1), we use cluster dynamical mean field theory
(CDMFT) [26–29] with an exact diagonalization solver at
zero temperature (or ED-CDMFT). In CDMFT, the infinite
lattice is tiled into identical units, each of which is then
coupled to a bath of uncorrelated, auxiliary orbitals. The
parameters describing this bath (energy levels, hybridization,
etc.) are then found by imposing a self-consistency condition.

Let us consider only the HTSC layer for the moment. It is
tiled into identical 2 × 2 clusters, each of which represented
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by an Anderson impurity model (AIM) defined by the follow-
ing Hamiltonian:

Himp = Hc +
∑
i,r

θir (c†
i ar + H.c.) +

∑
r

εrsa
†
r as , (12)

where Hc is the Hamiltonian (8), but restricted to the cluster;
cluster orbitals are labeled by the index i and uncorrelated
(bath) orbitals by the indices r, s. These are composite indices,
comprising site, spin, and possibly Nambu indices. θir is a
hybridization parameter between cluster orbital i and bath
orbital r, and εrs is a hybridization within the bath, including
the bath energies εrr . We can always use a basis of operators ar

such that the matrix εrs is diagonal, but it is sometimes useful
to do otherwise, in particular when probing superconductivity.

In ED-CDMFT, the bath parameter matrices θ and ε are
determined by an approximate self-consistent procedure, as
proposed initially in [30], that goes as follows: (i) Initial
matrices {ε, θ} are chosen on the first iteration. (ii) For each
iteration, the AIM is solved, i.e., the cluster Green function
Gc(ω) is computed. The latter can be expressed as

Gc(ω)−1 = ω − tc − �(ω) − �c(ω), (13)

where tc is the one-body matrix in the cluster part of the im-
purity Hamiltonian Himp, �c(ω) is the associated self-energy,
and �(ω) is the bath hybridization matrix:

�i j (ω) =
[
θ

1

ω − ε
θ†

]
i j

. (14)

(iii) The bath parameters are updated, by minimizing the
distance function

d (ε, θ) =
∑
iωn

W (iωn)[Gc(iωn)−1 − Ḡ(iωn)−1], (15)

where Ḡ(ω), the projected Green function, is defined as

Ḡ(ω) = Nc

N

∑
k̃

1

ω − t(k̃) − �c(ω)
. (16)

In the above, k̃ is the reduced wave vector, belonging to
the reduced Brillouin zone associated with the superlattice of
clusters, t(k̃) is the partial Fourier transform of the one-body
part of the lattice Hamiltonian (8), N is the (nearly infinite)
number of sites, and Nc the number of sites in the cluster
(here 4). Essentially, Ḡ(ω) is the projection onto the cluster of
the lattice Green function obtained by carrying the self-energy
�c(ω) to the whole lattice. Ideally, Ḡ(ω) should coincide with
the cluster Green function Gc(ω), but the finite number of
bath parameters does not allow for this correspondence at
all frequencies, and so a merit function d (ε, θ) is defined,
with emphasis on low frequencies along the imaginary axis.
The weight function W (iωn) is where the method has some
arbitrariness; in this work W (iωn) is taken to be a constant for
all Matsubara frequencies lower than a cutoff ωc = 2t1, with a
fictitious temperature β−1 = t1/50. (iv) We go back to step (ii)
and iterate until the bath parameters or the bath hybridization
function �(ω) stop varying within some preset tolerance.

We use a four-site (2 × 2) cluster-bath system, as illus-
trated on Fig. 1. Each cluster site is associated with two
bath orbitals. We parametrize the hybridization matrix with
two amplitudes θ1 and θ2, as illustrated on Fig. 1. The bath

FIG. 1. The cluster-bath system used in our implementation of
ED-CDMFT. Bath orbital labels are indicated. See text for details.

orbitals are separated into two groups, with energies ε1 and
ε2. In order to probe superconductivity, we introduce singlet
pairing operators within the bath; this makes εrs nondiagonal
in Nambu space. Given two bath orbitals labeled by μ and ν,
the following pairing operators may be defined:

̂μν = aμ↑aν↓ − aμ↓aν↑. (17)

These pairing terms are added to the bath Hamiltonian, in or-
der to allow the system to be spontaneously pushed toward su-
perconductivity within the DMFT self-consistency procedure.
The cluster part of the Hamiltonian, however, will not contain
pairing terms, even though various SC order parameters will
be measured from the anomalous Green function derived from
the impurity problem (see below). In terms of the numbering
scheme illustrated in Fig. 1, the pairing terms added to the
bath Hamiltonian are

HSC = 1(̂12 + ̂34 − ̂13 − ̂24)

+ 2(̂56 + ̂78 − ̂57 − ̂68) + H.c. (18)

In the scheme used here, the AIM is characterized by six
variational parameters, all illustrated on Fig. 1: bath levels
ε1,2, hybridization amplitudes θ1,2, and in-bath singlet pairing
amplitudes 1,2.

C. Incorporating all layers

The NL TI layers of the heterostructure are not correlated.
Therefore, their effect on the Green function of the HTSC
layer can be represented by a momentum-dependent, addi-
tional hybridization function �TI(k̃, ω) entirely determined
by the parameters of HTI [Eq. (3)] and of H ′ [Eq. (9)]. The
projected Green function then takes the form

Ḡ(ω) = Nc

N

∑
k̃

1

ω − t(k̃) − �(ω) − �TI(k̃, ω)
(19)

and this modification ensures that the self-consistency condi-
tion incorporates the effect of the TI layers into the solution:
the self-energy �c(ω) of the converged solution will contain
the effects of the TI layers.

054512-3



XIANCONG LU AND D. SÉNÉCHAL PHYSICAL REVIEW B 101, 054512 (2020)

In the end, the full Green function of the heterostructure as
a function of reduced wave vector k̃, will take the form

[G−1(k̃, ω)]AB = ω − tAB(k̃) − �AB(ω), (20)

where the composite index A now stands for (i, m, a, σ, α),
where i labels different sites within the 2 × 2 cluster and the
other indices have the same meaning as before. The only
nonzero components of the self-energy are in the zeroth layer:
�m=m′=0(ω) = �c(ω). We can separate out the HTSC layer
(m = 0) from the others by singling out the layer index and
expressing tmm′ (k̃) as

tmm′ (k̃) =
(

t00(k̃) θTI(k̃)
θ†

TI(k̃) E(k̃)

)
, (21)

where E(k̃) is NL × NL matrix in layer indices, and θTI(k̃) is
a row-vector with NL indices in layer space. Again, orbital,
spin, and Nambu indices are implicit. Given this notation, the
TI hybridization function may be written as

�TI(k̃, ω) = θTI(k̃)
1

ω − E(k̃)
θ†

TI(k̃). (22)

The impurity Hamiltonian of the HTSC layer conserves
spin, and therefore the cluster Green function Gc(ω) can be
computed assuming spin is conserved, which is easier on
the ED solver, but it must then be immediately extended to
the full Nambu space before being combined with �TI(k, ω).
Likewise, the latter, and the matrices appearing in Eq. (22),
must be expressed in full Nambu space even though the
Hamiltonian of the TI layers has no anomalous component.
The anomalous part of �c(ω) will thus propagate to all TI
layers, through Eq. (20).

D. Computing averages

Once a solution is found for a given set of model pa-
rameters, average values of one-body operators defined on
the lattice can be computed from the Green function. In
particular, we are interested in the singlet (s-wave and d-wave)
superconducting order parameters, which are the expectation
values of the following operators:

D̂m,ab = 1

N

∑
r

(cr,m,a,↑cr+x,m,b,↓ − cr,m,a,↓cr+x,m,b,↑

− cr,m,a,↑cr+y,m,b,↓ + cr,m,a,↓cr+y,m,b,↑ + H.c.),
(23)

Ŝm,ab = 1

N

∑
r

(cr,m,a,↑cr,m,b,↓ − cr,m,a,↓cr,m,b,↑) + H.c.,

(24)

again m is a layer index, a and b are Bi2Se3 orbital indices
(these indices do not apply to the HTSC layer), and N is the
number of lattice sites. Thus, 〈D̂m,a,b〉 is the order parameter
for d-wave superconductivity on layer m between orbitals a
and b.

The triplet SC order parameter may be generally defined in
terms of the so-called d vector as

dm,ab,e = 1

N

∑
r

icr,m,a,ασαβσ2cr+e,m,b,β + H.c. (25)

FIG. 2. Density of states (DOS) of the seven-layer Bi2Se3 slab,
from Hamiltonian (3), at μTI = 1. The V-shaped DOS at the center
is due to the surface states. The other, bulk states kick in at various
frequencies, as apparent by the succession of van Hove peaks. The
two main van Hove peaks on each side of the minimum delimit what
we may call the “bulk gap.”

with additional layer (m), orbital (a, b), and a bond (e) indices.
σ is the vector of Pauli matrices.

Any one-body operator like the above can be expressed in
the basis of cluster sites and reduced wave vector k̃, as

Ô =
∑
A,B,k̃

c†
A(k̃)OAB(k̃)cB(k̃) (26)

in terms of the composite index A = (i, m, a, σ, α). The aver-
age 〈Ô〉 of the operator (per site) can then be computed from
the Green function G(k̃, ω) as [29]

〈Ô〉 =
∫

dω

2π

∫
d2k̃

(2π )2

∑
A,B

OAB(k̃)GBA(k̃, ω). (27)

III. RESULTS AND DISCUSSION

A. Proximity-induced superconductivity in the TI layer

We have used the method described in the previous section
to study how d-wave superconductivity penetrates into the TI
layers of the HTSC-Bi2Se3 heterostructure. As in previous
mean field studies [13,19,20], we first fix the parameters (e.g.,
μSC) in the HTSC layer, and measure various superconducting
order parameters in the TI layers. The spectrum of the pure
Bi2Se3 Hamiltonian (3) (i.e., without coupling to the cuprate
layer) contains gapless surface states in addition to bulk states
with a finite gap (see Fig. 2 for a plot of the density of states
of the TI part of the system). Depending on the position of
Fermi level, one can roughly define three regimes for the 3D
TI [31]: (i) a metal (M) with μTI located deep inside the
bulk conduction band; (ii) a topological metal (TM) with μTI

crossing the bottom of the conduction band (the bulk states
and the surface states coexist at the Fermi surface); and a
topological insulator (TI) with μTI within the bulk band gap.
The proximity effect in the heterostructure strongly depends
on the value of μTI.

CDMFT results for μTI in the three regimes defined above
(M, TM, and TI) are shown in Fig. 3, where the various order
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FIG. 3. The d-, s-, and p-wave order parameters in Bi2Se3 as a function of layer index m. D11 is the d-wave order parameter on orbital
1 of each Bi2Se3 layer, D22 the same for orbital 2, and D12 is the interorbital d-wave order parameter; likewise for the onsite s-wave order
parameters S11, S22, and S12 and p-wave order parameters T11, T22, and T12 (see text for a precise definition). The chemical potential of the
HTSC layer is fixed at μSC = 2.3 and the interface tunneling between two materials is t ′

1 = t ′
2 = 2.0. For (a)–(c), μTI = 4.0 (metallic regime);

for (d)–(f), μTI = 2.2 (topological metal); for (g)–(i), μTI = 1.0 (topological insulator regime).

parameters in Bi2Se3 are plotted as a function of layer number
m. The d-wave order parameters plotted are Dm,11, Dm,22, and
Dm,12, as defined in Eq. (23), and likewise for the s-wave
order parameters Sm,11, Sm,22, and Sm,12. The p-wave order
parameters plotted are defined as [see Eq. (25)]

Tm,ab = |dm,a,b,x|2 + |dm,a,b,y|2. (28)

In the metallic regime [μTI = 4.0, Figs. 3(a)–3(c)], both the d-
and s-wave order parameters decay algebraically as a function
of layer number m, with indications of Friedel oscillations.
By contrast, in the topological insulator regime [μTI = 1.0,
Figs. 3(g)–3(i)], the SC order parameters decay exponentially
as a function of m; this means that superconductivity is
confined to the first TI layer (m = 1) and that only surface
states take part in propagating superconductivity into the TI.
The situation in the topological metal regime [Figs. 3(d)–3(f)]
is intermediate between the other two regimes. On the first TI
layer (m = 1), superconductivity may come from both surface
and bulk states and their contributions are comparable, but
only the component coming from bulk states can propagate
to the top layer (m = 7) of the heterostructure.

The overall behavior of proximity-induced superconduc-
tivity in the HTSC/TI heterostructure, as shown in Fig. 3,
is similar to that of s-wave SC/TI heterostructures, studied
in Ref. [31]. As emphasized in Ref. [19], the s-wave SC
is caused by the breaking of π/2 rotation symmetry in the
heterostructure, that is, tx �= ty and mx �= my in Hamiltonian

(3). However, in the topological metal regime [Figs. 3(d)–
3(f)], the s-wave order parameter also decays like a power law,
and is roughly a fraction of the d-wave order parameter. We
do not observe that the s-wave pairing is dominant over the
d-wave component at the top layer of the slab, as reported in
Ref. [19], in which a weak attractive interaction is included in
the calculation.

The triplet (p-wave) component of the order parameter is
induced by the spin-orbit coupling within the TI layers and
follows the same general trend as the d-wave and s-wave
components, except that the strongest triplet component is
interorbital (T12), owing to the fact that the Rashba coupling is
also interorbital. A legitimate question is whether the spin-
orbit coupling within the TI layers could have a feedback
effect on the HTSC layer and induce a triplet component of
superconductivity there. Including the possibility of triplet
pairing in the CDMFT impurity problem increases consid-
erably the computational resources required because of the
increased size of the Hilbert space associated with a lower
spin symmetry. Nevertheless, we performed a few computa-
tions with additional triplet bath parameters in order to see
the importance of these contributions and found them to be
negligible.

The observations of Ref. [17], in which no proximity effect
is detected even with as few as two layers, clearly fall in the
TI regime. This is compatible with an exponential drop in
the superconducting amplitude with layer. Even with a large
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FIG. 4. (a) d-wave order parameter in the bulk HTSC and in the
HTSC layer for several values of the interface tunneling t ′

1 = t ′
2, for

μTI = 1. (b) The same, for μTI = 4. (c) Density on the HTSC layer
as a function of chemical potential μSC for bulk HTSC and the same
values of the interface tunneling t ′, for μTI = 1.

tunneling amplitude (t ′ = 2.0), as in Figs. 3(g)–3(i), the effect
drops by an order of magnitude between the first layer and the
second, and again between the second and the third, making
its observation virtually impossible in practice.

B. Effects of the TI layers on the cuprate

Most previous studies have focused on the superconduc-
tivity induced in the TI layers. Less studied, however, is the
feedback of TI layers on the HTSC layer [24]. In this section,
we fix the chemical potential μTI of Bi2Se3 and vary the
chemical potential μSC of the HTSC layer, as well as the
tunneling amplitudes t ′

1 = t ′
2 between the first TI layer and

the HTSC layer, and show their effect on the superconducting
order parameters. The results are presented in Figs. 4 and 5.

Figure 4 shows the d-wave order parameter on the HTSC
layer as a function of μSC, for several values of the tunneling
amplitudes t ′

1 = t ′
2, in the TI regime [Fig. 4(a)] and in the

FIG. 5. (a) d-wave order parameter in the bulk HTSC, in the
HTSC layer and in the first three TI layers for μTI = 1; note the
change of scale depending on layer. (b) The same, for μTI = 4. The
interface tunneling between two materials is t ′

1 = t ′
2 = 2.0.

metallic regime [Fig. 4(b)]. In Fig. 5, we focus on the strong
tunneling case (t ′

1 = t ′
2 = 2.0) and show, in addition, the d-

wave order parameter on the first three TI layers, this time as
a function of the electron density nSC on the HTSC layer.

The interface tunneling amplitudes t ′
1,2 play an essential

role in the proximity effect. However, they are difficult to
determine from experiments, and may vary greatly from sam-
ple to sample [20]. As t ′

1,2 increases, the order parameter on
the HTSC layer increasingly deviates from the HTSC bulk
result [black curve on Fig. 4(a)]. At large tunneling amplitudes
(t ′ = 1.8 or 2.0), a more catastrophic change occurs: In the
TI regime [Fig. 4(a)], the SC order parameter is strongly
suppressed in a region of the hole-doped phase diagram. This
does not occur in the metallic regime, leading us to speculate
that this effect can be attributed to the TI’s surface states
only. In the metallic regime [Fig. 4(b)], traces of the Mott
gap have entirely disappeared. Indeed, in the TI regime, as
shown on Fig. 5(a), the d-wave order parameter on all layers
vanishes when the density of electrons nSC on the HTSC
layer is unity. This is also true in the bulk HTSC (black
curve). That behavior, which is seen both in HTSC materials
and in CDMFT studies [32–34], is attributed to the loss of
quasiparticles that can participate in superconductivity near
half-filling because of the proximity to the Mott state. By
contrast, CDMFT studies of bulk HTSC below the critical U
for the Mott transition show superconductivity at half-filling.
In the metallic regime, as shown on Fig. 5(b), the d-wave
order parameter on all layers does not vanish at half-filling
(nSC = 1), contrary to the bulk result, as if the system were
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FIG. 6. Values of the CDMFT bath energies ε1,2 as a function of
the density nSC on the HTSC layer, for several values of the interface
tunneling t ′

1,2, in the metallic regime (μTI = 4). The Mott behavior
at half-filling is characterized by a sharp increase of |ε1,2|. This is
attenuated as t ′

1,2 increases and has basically disappeared at t ′
1,2 =

2. The hybridization amplitudes θ1,2 show similar singular behavior
near nSC = 1 in the pure HTSC case and that behavior is likewise
attenuated upon increasing t ′

1,2.

below the Mott-Hubbard transition. The hybridization of
HTSC orbitals with the uncorrelated layers and the presence
of bulk states in the TI effectively decreases the interaction.

For the TI layers 1,2,3, we plot on Fig. 5 the sum Dm,11 +
Dm,22, i.e., the sum of d-wave order parameters over the two
Bi2Se3 orbitals. The vanishing of the order parameter in the
TI regime appears slightly shifted toward the electron-doped
side compared to the bulk HTSC. In the metallic regime, not
only does superconductivity exist at half-filling, but the order
parameter decreases much more slowly as a function of layer,
as also shown on Fig. 3.

On Fig. 4(c) we show the HTSC layer density nSC as a
function of the chemical potential μSC on the same layer, for
several values of the tunneling amplitudes t ′

1,2, for μTI = 1.0
(TI regime). The Mott gap disappears as soon as t ′ > 0, and
this generates a small region around nSC = 1 where the order
parameter is weak but nonzero [it is apparent on Fig. 5(a) for
t ′ = 2.0]. In the TI regime, electrons on the HTSC layer are
hybridized with the surface state of the insulating TI, while
in the metallic regime they are hybridized with bulk states as
well. Thus, there is no actual Mott gap in the system. This has
nothing to do with spin-momentum locking and also applies
to any heterostructure of a correlated HTSC layer with an
uncorrelated layer that has a nonzero density of states at the
Fermi level. Moreover, this effect is present in the impurity
model itself and not only the result of the propagation of a
Mott-type self-energy to the Green function via the additional
hybridization �TI brought about by the TI layers. Indeed,

Fig. 6 shows the CDMFT bath energies ε1,2 of Hamiltonian
(12) as a function of the density on the HTSC layer, for several
values of the tunneling amplitudes t ′

1,2. The Mott character
of the pure HTSC solution is seen as a sudden spike of
|ε1,2| near half-filling. This progressively disappears as t ′

1,2
increases. This being said, even in the absence of Mott gap,
superconductivity is still suppressed in the TI regime when
the HTSC layer is half-filled.

Note that we have neglected the possibility of antifer-
romagnetic order. This would certainly play a crucial role
close to half-filling. The extent of antiferromagnetism within
the TI layers is an interesting issue, given the strong frus-
tration caused by spin-orbit coupling. In the bulk HTSC,
simulations show that Néel antiferromagnetism and d-wave
superconductivity may coexist close to half-filling [34]. How
this coexistence propagates to the TI layers remains to be
seen.

Another question that arises is whether our results are an
artifact of the small cluster (4 sites) used in our DMFT com-
putations. We believe that using larger clusters would only
bring quantitative improvements. A larger cluster will give
more room to superconducting phase fluctuations within the
cluster and possibly reduce the extent of the superconducting
phase. We are confident that the main features found in this
study (the weak proximity effect in the TI phase, the large one
in the metallic phase, the disappearance of the sharp Mott gap
as tunneling t ′ increases) would still be present with a larger
cluster.

IV. CONCLUSIONS

We have applied cluster dynamical mean field theory to the
problem of a few layers of Bi2Se3 deposited on the HTSC
material BSCCO. We have identified different regimes of
penetration of superconductivity into the topological insulator
(TI), depending on the position of the TI chemical potential.
We have also shown how the presence of the TI layers affects
superconductivity in the HTSC layer, in particular, how the
strongly coupled superconductivity taking place in the bulk
HTSC becomes effectively more weakly coupled by the con-
tact with the TI layers.
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