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Controlling the energy gap of a tunable two-level system by ac drive
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We study the influence of a strong off-resonant driving signal to the energy levels of a superconducting flux
qubit both experimentally and theoretically. In the experiment, we carry out a three-tone spectroscopy. This
allows us to directly observe the modification of the qubit’s energy levels by the dynamical Stark shift caused by
the driving signal. A theoretical treatment including corrections from both rotating and counter-rotating frames,
allowed us to completely explain the observed experimental results and to reconstruct the influence of the
strong driving to the dissipative dynamics as well as to the coupling constants of the qubit. As one potential
application, the tunability of the minimal energy-level splitting of a superconducting qubit by a microwave-
induced dynamical Stark shift can help to overcome the parameter spread induced by the microfabrication of
superconducting artificial quantum circuits.
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I. INTRODUCTION

Several unique properties of superconducting devices make
them promising platforms for modern quantum technologies.
Due to their macroscopic size, superconducting quantum
circuits exploit large coupling constants and deliver a good
scalability as well as controllability. Although first experi-
ments [1–6] were mainly focused on the demonstration of
quantum effects, they were later used for the implementa-
tion of quantum gates [7,8]. Meanwhile complex circuits are
designed and operated in context of quantum computation
[9–12] and, for example, in such promising directions as
quantum metamaterials [13,14].

Besides decoherence [15,16], parameter spread, and a cer-
tain lack of reproducibility of the superconducting quantum
circuits due to microfabrication tolerances remain severe chal-
lenges [17]. In this context, additional tunabilities were dis-
cussed and realized. For instance, a so-called α loop [18,19]
has been introduced to flux qubits. Although this allows using
the flux qubit at its degeneracy point with an energy splitting
as desired, any additional circuit is a potential source of
low-frequency noise and, thus, introduces more decoherence
[16,20–22]. In order to avoid such unwanted effects, we
propose to use a natural tunability inherent in any addressable
quantum system, namely, the radiative shift of energy levels.
By making use of a flux qubit as one example of solid-state
quantum systems, we demonstrate the shift of its energy levels
by off-resonant driving. This effect can be interpreted as the
ac Zeeman shift that is the magnetic equivalent to the ac Stark
shift sometimes also called dynamic Stark shift. The latter has
been already observed in early circuit-QED experiments [23].
Although the energy-level shift induced by a single frequency
driving tone can be accurately described in frame of Floquet
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theory [24–27], its influence onto coupling constants with
resonators or further driving tones and to dissipative dynamics
needs to be as well considered.

In this paper, we analyze in detail the usability of such
an ac field-induced shift to tune the energy-level splitting of
a two-level system. We perform spectroscopic measurements
on a flux qubit to determine the shifted transition frequency.
Additionally, we develop a theoretical model for a driven
tunable quantum two-level system that explains the observed
measurement results. Especially, our investigations enable
to calculate the influence of the off-resonant drive to the
dissipative dynamics of the manipulated qubit and its coupling
to resonators and further microwave fields. Additionally, our
method is important for other applications of dynamical level
shifts, for example, to improve the accuracy of a suggested
microwave power calibration technique [28].

II. EXPERIMENTAL CHARACTERIZATION

We used an experimental setup as sketched in Fig. 1.
The sample is mounted to the millikelvin stage of a dilution
refrigerator (indicated by the dashed line). The probing tone
of a vector network analyzer (VNA) is combined with two
additional signals from rf generators (Gen). The resulting
signal is transferred into the cryostat. Attenuators (Att) at
room temperature, 1.5 K, and 20 mK with 20-dB attenuation
each are used to thermalize the signal before it drives a
coplanar waveguide resonator and thereby also the qubit.
The transmitted signal is amplified by a cryogenic amplifier
located at the 4-K stage with a noise temperature of about
7 K together with several room-temperature amplifiers be-
fore eventually measured by the VNA. An isolator (Circ),
located at the refrigerator base, shields the noise of the cold
amplifier from the sample. A small Helmholtz coil system is
supplied with a dc-bias current (IB) to apply a flux bias to
the qubit. The used twisted pair lines are filtered by RC and
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FIG. 1. (a) Schematic of the experimental setup. (b) SEM image
of the resonator’s central part with the coupled flux qubit. (c) Calcu-
lated qubit energies and population as a function of energy bias. From
dark to light color, the driving amplitude �d/2π is increased from 0
to 3 GHz in steps of 1 GHz whereas its frequency ωd is chosen at the
resonators third harmonic. The frequency of the spectroscopic signal
ωs/2π is fixed at 3.5 GHz with an amplitude �s/2π of 10 MHz. The
dashed line indicates the resonator’s fundamental mode frequency.

copper-powder filters at 1.5 K and 20 mK, respectively, to-
gether with feedthrough filtering at room temperature. To
reduce the influence of magnetic-field noise, two μ-metal and
one superconducting lead shields enclose the sample.

The central element of the experiment is a flux qubit that
consists of a 5 × 5-μm2 superconducting loop interrupted by
three Josephson junctions. It is fabricated by the standard two-
angle shadow evaporation of aluminum with an intermediate
oxidation step [17]. The qubit is placed in the gap between
the central conducting line and the ground plane of a coplanar
resonator as shown in the SEM image of Fig. 1(b). The
resonator structure is formed by reactive ion etching of a
thin niobium film sputtered on a high-ohmic silicon substrate.
Its length is chosen for a fundamental mode frequency of
ωr/2π = 2.59 GHz, and a quality factor of 12 × 104 was
experimentally determined. The chosen geometry results in
a mutual inductance between qubit and resonator of about
1.2 pH.

In the experiment, we, in general, apply three signals to the
resonator. One strong driving signal at the resonator’s third
harmonic is used to dress the qubit states. We have chosen
the third harmonic because its coupling to the qubit is well
defined allowing to relate the input power in decibels to the
driving amplitude of the qubit (see below). By dressing the
qubit, its effective level splitting and dissipative rates are mod-
ified [29], and amplification and lasing could, in principle,
be achieved depending on experimental control parameters
[30–32]. The corresponding level shift is exemplarily shown
in Fig. 1(c). A second tone with variable frequency is used
for spectroscopy of the qubit’s shifted energy-level difference.

When the resonance condition is met, the qubit population is
modified as shown in the lower plot of Fig. 1(c). This leads
to a partial reduction of the dispersive shift [33,34] induced
to the resonator by the qubit. A third weak probe beam is
applied close to the resonators fundamental mode for probing
this frequency shift in a transmission-type measurement. An
analysis of its variation as a function of the applied driving
and spectroscopic signals’ amplitudes and frequencies gives
information of the dressed qubit’s properties. Corresponding
measurement results are shown in Fig. 2.

Therein, each subplot represents a spectroscopy of the
qubit’s dressed energy levels for a certain amplitude of the
driving signal. From the spectroscopic curve without the
strong dressing signal (upper left plot in Fig. 2), the param-
eters of the qubit can be extracted. The minimal level split-
ting (energy gap) and persistent current are found as �/h =
2.97 GHz and Ip = 160 nA, respectively. Here, h denotes the
Planck constant. Due to parameter spread in the fabrication,
the experimental determined qubit parameters are each about
15% off the aimed values. The persistent current connects the
energy bias ε = 2Ip(�0/2 − �e) to the external bias flux �e.
The mutual inductance and the currents in resonator Ir and
qubit Ip lead to an interaction energy h̄g = MIpIr . It can be
expressed by the coupling constant of qubit and resonator’s
fundamental mode g/2π that takes a value of about 3 MHz.

Although the experimental measured spectroscopic line
stays qualitatively the same with increasing driving amplitude,
the effective gap frequency of the qubit is reduced. The
extracted gap values are given in Fig. 2 as black text in
gigahertz. As will be shown below, the observed reduction
can be explained by a strong dynamical Zeeman shift of the
qubit’s energy levels. We note that this is true only away
from the resonance point. When considering small qubit-drive
detunings (compared to the driving induced splitting), the
description of the system should be carried out in the dressed-
state basis [30]. The latter allows, for example, the discussion
of amplification and damping of the resonator transmission
by the interaction of the dressed states with the fundamental
mode.

III. THEORETICAL DESCRIPTION

In the experimental situation presented above, three signals
with different amplitudes and frequencies are applied to a
qubit-resonator system. A corresponding Hamiltonian in the
eigenbasis of the qubit reads [29,34,35]

H = h̄ωra†a + h̄ωq

2
σz + h̄�p[e−iωpt a† + eiωpt a]

+
(

ε

ωq
σz + �

ωq
σx

)⎡⎣∑
i=d,s

�i cos ωit + g(a + a†)

⎤⎦.

(1)

It includes the quantized fundamental mode with frequency ωr

represented by the creation and annihilation operators a† and
a. The qubit is discussed in a two-level approximation. There-
fore, its dynamics can be described with the Pauli operators
σi. The energy splitting between the qubit eigenstates is given
by h̄ωq = √

�2 + ε2. The probing, driving, and spectroscopic
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FIG. 2. Spectroscopy of the dressed qubit levels. The normalized transmission amplitude at the resonators fundamental mode frequency
ωr is plotted as a function of the energy bias of the qubit ε and the frequency of the spectroscopy signal ωs. For the different subfigures, the
amplitude of the dressing signal at the third harmonic of the resonator is increased, whereas, for the upper left plot, no additional driving is
applied. A horizontal cut through any of the figures reveals the dispersive shift of the resonator frequency by the curvature of the qubit’s ground
state [33]. This shift is canceled if the spectroscopic frequency ωs is resonant to the qubit. Accordingly, its level splitting as a function of the
energy bias is observed. With increasing dressing amplitude �d , the qubit gap is effectively reduced. The extracted value of this minimal level
splitting in each respective plot is given in units of gigahertz together with the input driving power in decibels applied to the sample by the
black text. The black lines correspond to the calculated qubit level splitting as found from Eq. (11) with the same numbers as used for Fig. 3.

signals with amplitudes �i and frequencies ωi for the respec-
tive indices p, d , and s are included as quantum (probing)
and classical (driving and spectroscopic) signals, respectively.
Thus, the coherent coupling between the fundamental mode
and the qubit with coupling energy h̄g is explicitly denoted.
Because we are interested in calculating its transmission, the
probe tone is applied to the resonator whereas the other two
are considered to drive the qubit. To shorten the equations, we
indicate, in the following, the respective multiplication with
�/h̄ωq and ε/h̄ωq by a bar and a hat down.

A complete theoretical description of the dynamics has
to include the dissipation. We use the Lindblad operators
Lq(ρ) including qubit relaxation and pure dephasing with
the respective rates �r and γϕ as well as Lr (ρ) for the
resonators’ photon decay with rate κ . This assumes that the
noise causing dissipation can be considered as Markovian
and that the qubit’s dynamics can be described by relaxation
time T1 = 2π/�r and coherence time T2 = 4π/(2γϕ + �r ).
Besides being a good model for atomic systems [36], this
is also a good approximation for a flux qubit close to the
degeneracy point [21]. Thermal excitations of the qubit and
the resonator can be neglected compared to the relaxation
because of the low sample temperature at about 20 mK. With
denoting the systems density matrix by ρ, they read, in the
qubit eigenbasis,

Lq(ρ) = �r

2
(2σ−ρσ+ − {σ+σ−, ρ}) + γϕ

2
(σzρσz − ρ),

Lr (ρ) = κ

2
(2aρa† − {a†a, ρ}ρ). (2)

Here, the anticommutator is written as {A, B} = AB + BA, and
σ± = 1/2(σx ± iσy) denotes the qubit raising and lowering
operators.

A. Qubit level shift by the driving

In a first step, we analyze the level shift introduced by
the strong driving signal to the qubit. It is given by the time
average of the interaction energy expressed as the product of
the induced dipole moment,

p(t ) = 〈σ+〉 + 〈σ−〉, (3)

with the applied field [37] resulting in an energetic shift of

∂E = h̄�̄d cos ωdt p(t ). (4)

Neglecting the probing and spectroscopic signal as well as the
diagonal driving ∝σz in (1) results in the Hamiltonian of a
driven quantum two-level system,

Hd = h̄ωq

2
σz + h̄�̄d cos ωdtσx. (5)

Its time evolution is given by Bloch equations,

〈σ̇z〉 = −�r (〈σz〉 + 1) − i�̄d cos ωdt[〈σ+〉 − 〈σ−〉],

〈σ̇+〉 = i(ωq + i�ϕ )〈σ+〉 − i
�̄d

2
(e−iωd t + eiωd t )〈σz〉, (6)

〈σ̇−〉 = 〈σ̇+〉∗.
Above, �ϕ = �r/2 + γϕ is the qubit’s decoherence rate, and
the ∗ stands for complex conjugate. To solve these equations,
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we replace

〈σ+〉 = s+e−iωd t + s−eiωd t , (7)

in the second equation of (6) and find

s+ = �̄d

2[ωq + ωd − i�ϕ]
〈σz〉,

s− = �̄d

2[ωq − ωd − i�ϕ]
〈σz〉. (8)

These solutions enable calculating the mean population of
the qubit from the steady-state (〈σ̇z〉 = 0) of the first line of
(6). Neglecting oscillating terms, it is

〈σz〉 = −�r

�r + �̄2
d

2 Im
(

1
ωq−ωd −i�ϕ

+ 1
ωq+ωd −i�ϕ

) . (9)

From the above result, we conclude that the qubit stays
basically in the ground state if the driving signal is far detuned
from resonance so that δ± = ωq ± ωd is much larger than the
driving amplitude �d . The ± sign accounts for the respective
shifts obtained in the rotating and counter-rotating frame as
we demonstrate below. The off-resonant driving limit allows
to set 〈σz〉 = −1 when calculating the induced dipole moment
that we rewrite to

p = ( p̃e−iωd t + p̃∗eiωd t ), (10)

with p̃ = s+ + s∗
+. Finally, the energy shift is found to be

∂E = h̄�̄2
d

2
Re

(
1

ωq − ωd + i�ϕ

+ 1

ωq + ωd − i�ϕ

)
≈ h̄�̄2

d

ωq

ω2
q − ω2

d

= h̄ωac. (11)

The above equation describes the shift of the energy levels
with contributions of the total dynamical Zeeman shift and
the Bloch-Siegert shift. For the approximation in the lower
line, we considered large the detunings δ± compared to the
decoherence rate �ϕ . The equation is consistent with the
second-order shift found by Floquet theory [38]. It also very
well describes the observed experimental shift of the qubit
levels by the off-resonant driving as demonstrated by the black
lines in Fig. 2. We note that both terms in (11) contribute in
our experiment at about same order of magnitude.

B. Rescaling of coupling and dissipation

Above, we followed an approach often applied to natural
atomic systems to accurately describe their level shift induced
by off-resonant driving fields. It also includes the effect from
the linewidth broadening due to decoherence. In contrast to
the tunable quantum system that represents a flux qubit, there
exists no diagonal (σz) coupling between atoms and applied
signals in first order. Moreover, it is not clear what influence
the interaction responsible for shifting the energy levels has
on the coupling coefficients to both fundamental mode and
spectroscopy signal since a re-normalization of the coupling
coefficients can be expected.

In order to clarify these issues, we performed calculations
to map back the energy shift found in the rotating frames
with ±ωd to the laboratory frame, see Appendix A. As shown

there, we eliminated the off-diagonal driving with �̄d by a
transformation U = UtU+U †

t U †
t U−Ut with Ut = eiωd tσz/2 and

U± = eiσy arctan(�̄d /δ± )/2. Because the rotations around the y
axis are assumed small for U±, these transformations are
expanded to second order in �̄′

d/δ±. An analog approach
has been used to calculate the Bloch-Siegert shift in the
dressed-state basis for a quantized radiation field coupled to
a two-level system [39,40].

Additionally, we shift the time dependence introduced by
the probing signal to the coupling terms with the unitary
transformation Up = eiωpa†a. Note that this basis change only
effects terms containing fundamental mode operators. Trans-
formed in this way and in the rotating-wave approximation
(RWA), Hamiltonian (A12) reads

Ĥ = UHU †h̄
�R

2
σz + h̄δr pa†a + h̄�p[a† + a]h̄(�s cos ωst

+ g[eiωpt a† + H.c.])(ασz − βσx ), (12)

where the detuning δr p between resonator and qubit was
introduced and H.c. stands for Hermitian conjugate. The qubit
frequency splitting,

�R =
√

(ωq + ωac)2 +
(

2ε

�
ωac

)2

(13)

includes the complete dynamical Zeeman shift for large de-
tuning (see above). For small detunings δ−, the system is more
conveniently described in the dressed-state basis [29,30]. The
last term in Eq. (13) εωac/�, resulting from the diagonal cou-
pling, is a direct consequence of the qubit tunability. Because
this small term vanishes for natural (untunable) quantum
systems, its influence in a driven system’s dynamics has not
been discussed in literature.

The resulting renormalization of the coupling in Eq. (12) is
represented by the dimensionless factors α = ε

h̄ωq�R
(A[ωq +

ωac] + 2Bωac) and β = �
h̄ωq�R

(B[ωq + ωac] + 2ε2

�2 Aωac).
These factors depend on the variables A and B which are
of second order in �d/δ±, see Appendix A. We conclude
that, for small driving amplitudes compared to the detuning,
the modification in coupling constants is small compared
to the first-order level shift. Since this change in coupling
results from the modification of the qubit’s dipole moment,
a similar effect can be expected for its interaction with the
environment, and only second-order corrections are expected
in the dissipative rates.

In Appendix B, we present calculations to determine the
modifications of the Lindblad operator of the flux qubit in
presence of a strong off-resonant drive. We find

L̂ (̂ρ) = �̂r

2
(2σ−ρ̂σ+ − {σ+σ−, ρ̂}) + �̂e

2
(2σ+ρ̂σ−

− {σ−σ+, ρ̂}) + γ̂ϕ

2
(σzρ̂σz − ρ̂ ), (14)

with the respective relaxation, excitation, and dephasing rates,

�̂r = �r − C

2
(�r − γϕ ),

�̂e = C

2
γϕ, (15)

γ̂ϕ = γϕ + C

2
(�r − 2γϕ ).
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Above, we shortened C = �̄2
d [1/δ2

− + 1/δ2
+]. In interpreta-

tion, the mixing of the states induced by the strong driving
signal leads to a modification of the dissipative dynamics. This
is required to account for the slight change in population of the
ground and excited states. Note that compared to the rates in
the dressed-state basis [35,41], here, the lower populated state
is always the higher energetic state. Therefore, effects con-
nected to Rabi resonance, such as amplification or lasing in
strongly driven systems [30,31,42] cannot be explained in this
corrected laboratory frame. Additionally, the corrections are
of second order and, thus, can be neglected for small driving
amplitudes compared to the detunings δ±. Interestingly, the
rate of pure dephasing is reduced for strong driving signals
which indicates effects used in dynamical decoupling schemes
when the decoherence is dominated by pure dephasing.

C. Spectroscopy of the shifted qubit levels

Hamiltonian (12) describes a driven two-level system cou-
pled additionally to the mode of a resonator and tunable by
both the dc-bias field and the power of an additional driving
signal. We are interested in resonances between the shifted
qubit levels and the spectroscopic signal that we probe by the
resonator.

For the system given by Hamiltonian (12) together with
qubit dissipation (14) and resonator photon decay (2), we can
write Maxwell-Bloch equations for the expectation values of
qubit and resonator operators. When neglecting the diagonal
coupling terms and keeping only resonant terms (a†σ− and
aσ+), they read

˙〈a〉 = −i

(
δr p − i

κ

2

)
〈a〉 − i�p − igβ〈σ−〉eiωpt , (16)

˙〈σ−〉 = −i(�R − i�̂ϕ )〈σ−〉 + iβg〈aσz〉e−iωpt

+ iβ�s cos ωst〈σz〉, (17)

˙〈σz〉 = −4β Im(g〈a†σ−〉eiωpt + �s cos ωst〈σ−〉)

− �̂r (1 + 〈σz〉) + �̂e(1 − 〈σz〉). (18)

In the following, we assume that qubit and resonator expecta-
tion values factorize 〈aσi〉 = 〈a〉〈σi〉 meaning that qubit and
resonator are not entangled. We use this standard practice
of quantum optics because we consider coherent driving and
continued measurements allowing the use of the semiclassical
approach [29]. Furthermore, as shown below, the analytical
solution found under this assumption agrees well with our
experimental results. Motivated by Sec. III, we use the ansatz,

〈σ−〉 = spe−iωpt + sse
−iωst , (19)

that in Eq. (17) results in

sp = βg

�R − ωp − i�̂ϕ

〈σz〉〈a〉,

ss = β�s

2(�R − ωs − i�̂ϕ )
〈σz〉. (20)

Here, and in the following, we only keep stationary terms.
With these expressions, we calculate the stationary solution
of (16) as well as (18) and find

〈a〉 = −�p

δr p − i κ
2 + g2β2

�R−ωp−i�̂ϕ
〈σz〉

, (21)

〈σz〉 = �̂e − �̂r

�̂e + �̂r − β2�̂ϕ

( 4g2〈a〉〈a†〉
[�R−ωp]2+�̂2

ϕ

+ �2
s

[�R−ωs]2+�̂2
ϕ

) . (22)

Therewith, the transmission through the resonator is given by
[34]

t = i

2

κ

δr p − i κ
2 + g2β2

�R−ωp−i�̂ϕ
〈σz〉

. (23)

The transmission coefficient above describes a resonance
curve around the cavities fundamental-mode frequency. Still,
by the coupling to the qubit, this resonant frequency becomes
a function of the qubit population 〈σz〉 as well as the detuning
of resonator and effective qubit frequency �R − ωp. The latter
is reduced by stronger off-resonant driving amplitudes �d ,
consequently, increasing the qubit’s pull of the cavity reso-
nance. On the other hand, the qubit population, as given in the
lower line of Eq. (22), can be influenced by the spectroscopic
signal as well as the signal in the cavity. The strength of a
qubit excitation by these signals depends on their respective
detuning from the qubit’s effective level splitting allowing for
spectroscopic measurements. Namely, this relation enables to
determine the shifted qubit levels as well as the observation of
cavity-qubit resonances.

By the strong off-resonant driving in our experiment, we
reduce the detuning between the resonator’s fundamental
mode and the effective qubit significantly. Therefore, the
corresponding term in Eq. (22) cannot be omitted. However,
the effect of the resonator’s fundamental-mode signal to the
qubit population can be assumed small for any practical
detuning since the system is operated in the intermediate
coupling regime where g < �ϕ [34] and with small probing
powers. Therefore, away from resonance, the actual mean
photon number N is not of critical importance as long as it
is small enough not to produce a significant change in the
qubit population. On the other hand, in resonance �R = ωp,
a change in photon number strongly influences to the qubit
population and vice versa. For the theoretical simulations, we,
thus, assume a constant photon number N in the fundamental
mode that would correspond to the value in resonance and is
smaller than the rather insignificant off-resonant one. It enters
to the calculations by the product of expectation values in
Eq. (22) N = 〈a〉〈a†〉 considering that the driving produces
a coherent state in the resonator.

With the use of Eq. (23), we simulate our experimental
findings as demonstrated in Fig. 3. As parameters for the
simulation, we used an amplitude of the spectroscopic signal
�s = 1 MHz, a photon number in the fundamental mode of
N = 5 photons as well as a respective relaxation and pure
dephasing rate �r = 10 and γϕ = 20 MHz. The values for
the driving amplitude are given as black text in each of the
subplots of Fig. 3. For comparison, always the second of the
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FIG. 3. Calculated transmission amplitude as a function of the energy bias ε and the frequency of the spectroscopic signal ωs/2π . From
up left to low right, the amplitude of the dressing signal �d is increased as in Fig. 2. The inserted numbers on the left and right of each subplot
correspond to the driving amplitude �d that is used for the calculation and to the one reconstructed from the applied power following Eq. (24),
respectively. The first is defined by the reconstructed effective gaps, see Fig. 2. Additionally, we used only the first-order corrections to the
dynamics for simulation of the negative bias region, whereas we account for the modification of dissipation and coupling to second order on
the positive bias data points. This separation is indicated by the inserted white line at zero bias.

two numbers is reconstructed from the input driving power as

�d = 4gd
√

Nd = 4gd
1

κd

Cc

2

√
10(Pin−30)/10

Z

√
hωd

Cr
. (24)

Here, the coupling constant gd = 31.5g to the third harmonic
to the qubit as well as its photon number Nd were introduced.
Also, we used the input power pin in decibels, a coupling
capacitance Cc = 5 fF between the input transmission line and
the resonator, a total resonator capacitance of Cr = 0.4 pF,
and a wave impedance Z of 50 �. The latter values are found
by an electromagnetic finite element simulation of the sample
design.

In comparing Figs. 2 and 3, we achieve very good agree-
ment between our experimental findings and the simulation.
Notably, we can accurately relate the applied driving power
to the driving amplitude �d using the observed level shift.
By the observed similarities of the results with and without
the second-order correction terms on coupling and dissipation
in the respective regions of positive and negative bias, we
also demonstrate that a far-detuned driving signal with not
too large amplitude will mainly effect the level splitting.
We conclude that, although a certain amount of absorption
is required to introduce an dynamical Zeeman shift to the
system, still because the driving signal is far detuned, it may
be interpreted as an effective two-level system with the qubit
mainly in the ground state. The fact that no adjustment of the
dissipative rates, i.e., the spectroscopy linewidth, is required
indicates that the strong microwave tone does not introduce
significant broadening as similarly discussed in Ref. [43].
Therefore, this method can be applied to dynamically modify
the level structure of a superconducting qubit in an experiment

either for a fast tunability or for the correction of unavoidable
parameter spread due to the microfabrication.

We show a possible application of such a dynamical tuning
of the qubit by shifting its energy level splitting into resonance
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FIG. 4. Transmission amplitude as a function of the energy bias.
The different colors represent varying power applied at the third-
harmonic frequency. Its values are given in decibels at the sample in-
put. With increasing amplitude, first the dispersive shift is increased
before two instead of one dip appears. These two dips correspond
to so-called avoided level crossings: direct interactions between the
resonator’s fundamental mode and the ac Zeeman-shifted qubit. The
amplitude of these dips is decreased as they are shifted away from
the degeneracy point (ε = 0) by even stronger driving because the
qubit coupling scales as ∝�/ωq.
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with the fundamental mode of the resonator. Accordingly,
we plotted curves of the change in transmission amplitude
of the probe signal by the dispersive shift of the resonator
that is induced by the qubit while additionally adjusting the
driving amplitude �d in Fig. 4. Because the detuning between
resonator and qubit gets smaller with larger driving amplitude,
the maximal dispersive shift at zero bias is increased until the
resonance condition is met. There, the characteristic dip is
split into two in the shown transmission amplitude. Plotting
the transmission phase (not shown) reveals the two steep
phase jumps that result from the double avoided level cross-
ings, compare, for example, to the results in Ref. [34] that are
also achieved in an intermediate coupling regime. However,
for large driving amplitudes, several additional resonances are
observed corresponding, for example, to multiphoton reso-
nances and direct interactions with the dressed states. In the
experiment, these multiple interactions with the fundamental
mode are each observed as dips and phase jumps, making
especially the plots of the phase curves rather complicated.
Therefore, we conclude, that the dynamical shift of the qubit
levels when used for tuning the energy levels should be
moderate to limit multiphoton interactions.

IV. CONCLUSION

We demonstrated that a strong off-resonant driving signal
can be used to introduce a radiative shift of the energy levels
of a superconducting qubit. We showed that the dressed qubit
can still be understood as the quantum two-level system and
standard techniques as coupling to a cavity as well as spec-
troscopy of the shifted qubit energy levels can be straightfor-
wardly performed. We developed a theoretical model that is
based on mapping of corrections found in both the rotating
and the counter-rotating frame back to the laboratory frame.
The method is similar as the one used to account for the
Bloch-Siegert shift in a rotating frame [39,40] and gives
a level shift that coincides with the one found by Floquet
theory [38]. Furthermore, it enables the description of the
driving’s influence to the dipole moment of the qubit and
the therewith introduced changes in coupling constants and
dissipative rates. Although we make use of the strong detuning
of the drive in our theory, the calculations can be carried
out to any desired precision by including higher-order terms.
Additionally, our method allows to increase the accuracy
of such methods that pick a certain rotating frame for the
description of interactions with special dressed states as, for
example, in Refs. [27,29,30] by including corrections from
fast oscillating terms. We also like to note that our paper
can be extended to account for multiphoton interactions as
well as to gain a higher accuracy for stronger driving in the
description of certain experimental results.

We believe that, for particular applications, the method
of tuning the energy levels by an ac drive can help to
overcome the still not resolved issues of parameter spread
and reproducibility in microfabricated superconducting quan-
tum circuits. Furthermore, compared to tuning energy levels
with low-frequency fields, our proposal does not introduce
additional low-frequency noise and the modification of the
dissipative rates is deterministic.
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APPENDIX A: APPROXIMATED HAMILTONIAN

To analyze the influence of the strong driving signal, we
split the system’s Hamiltonian (1) into three parts. The first
describes the off-diagonal interaction of the qubit with the
driving signal,

H (1)

h̄
= ωq

2
σz + �̄d cos ωdtσx. (A1)

In the second term, we summarize the remaining interactions,

H (2)

h̄
= [ f̌ + �̌d cos ωdt]σz + f̄ σx, (A2)

with f = �s cos ωst + g(a† + a). The third term contains
solely fundamental mode terms that are not influenced by the
transformation U . As mentioned above, the hat down denotes
a multiplication with ε/h̄ωd .

We restrict ourselves to exemplarily demonstrate the trans-
formation of Hamiltonian (A1). The second term transforms
accordingly. In the rotating frame found by the unitary trans-
formation with Ut = eiωd tσz/2, Hamiltonian (A1) reads

H (1)
−
h̄

= δ−
2

σz + �̄d

2
(σx + [σ+e2iωd t + H.c.]). (A3)

Here, H.c. denotes the Hermitian conjugate. The unitary
transformation U− = eiθ−σy with the rotation angle tan 2θ− =
�̄/δ− diagonalizes the stationary part of Hamiltonian (A3).
Because we assume a large detuning δ− compared to the Rabi
frequency �̄d , we can expand

U− ≈ 1 + i
�̄d

2δ−
σy − �̄2

d

8δ2−
− i

3�3
d

16δ3−
σy, (A4)

and keep only terms of the Hamiltonian to second order in
�̄d/δ−. The relevant terms of the transformation are

U−H−U †
− ≈ H− + �̄d

2δ−

(
1 − �̄2

d

2δ2−

)
i[σy, H−]

+ �̄2
d

4δ−
(σyH−σy − H−). (A5)

Applying this to the qubit operators, we find

U−σzU
†
− ≈

(
1 − �̄2

d

2δ2−

)
σz − �̄d

δ−

(
1 − �̄2

d

2δ2−

)
σx,

U−σxU
†
− ≈

(
1 − �̄2

d

2δ2−

)
σx + �̄d

δ−

(
1 − �̄2

d

2δ2−

)
σz, (A6)

U−σ±U †
− ≈ σ± + �̄d

2δ−

(
1 − �̄2

d

2δ2−

)
σz − �̄2

d

4δ2−
σx.
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The transformation removes the term �̄dσx/2 from Hamilto-
nian (A1) and produces the dynamical shift ∝�̄2

dσz/δ− in the
new reading Hamiltonian,

H̃ (1)
−
h̄

=
(

δ−
2

+ �̄2
d

4δ−

)
σz + �̄d

2
(σ+e2iωd t + H.c.)

+ �̄2
d

2δ−
cos 2ωdtσz − �̄3

d

4δ2−
cos 2ωdtσx. (A7)

Similarly, the Bloch-Siegert shift can be calculated by writing
above Hamiltonian in a system rotating counterclockwise with
the same frequency ωd in relation to the laboratory frame. This
is achieved by H̃+ = U †

t U †
t H̃−UtUt , and we find

H̃ (1)
+
h̄

=
(

δ+
2

+ �̄2
d

4δ−

)
σz + �̄d

2

(
1 − �̄2

d

4δ2−

)
σx

− �̄3
d

8δ2−
(e−4iωd tσ+ + H.c.) + �̄2

d

2δ−
cos 2ωdtσz. (A8)

Similar as before, the Hamiltonian is rotated by a small angle
tan 2θ+ = �′

d/δ+ allowing an expansion of the transformed
Hamiltonian to second order in �′

d/δ+,

H̃ (1)
+
h̄

=
(

δ+
2

+ �̄2
d

4δ−
+ �̄2

d

4δ+

)
σz −

(
�̄3

d

8δ2−
+ �̄3

d

4δ−δ+

)
σx

− �̄3
d

8δ2−
(e−4iωd tσ+ + H.c.) + �̄2

d

2δ−
cos 2ωdtσz

− �̄3
d

2δ−δ+
cos 2ωdtσx. (A9)

Further on, we will transform back to the laboratory frame and
neglect terms oscillating with multiples of frequency ωd and
all orders higher than two of �̄d/δ±,

Ĥ (1)

h̄
=

(
ωq

2
+ �̄2

d

4δ−
+ �̄2

d

4δ+

)
σz

− �̄3
d

8δ2−
(σ+eiωd t + H.c.) − �̄3

d

4δ−δ+
cos ωdtσx. (A10)

With the approximated Hamiltonian above, we transformed
the strong driving of the qubit into an effective shift of its
energy levels. The remaining oscillating terms result from the
interplay of the oscillation in the rotating and counter-rotating
frame.

The same procedure is applied to Hamiltonian (A2) result-
ing in a rescaling of the coupling constants to the fundamental
mode and the spectroscopic signal described by the Hamilto-
nian,

Ĥ (2)

h̄
= �̌d

(
1 − �̄2

d

2δ2−
− �̄2

d

2δ2+
+ �̄2

d

2δ−δ+

)
cos ωdtσz

− �̌d

�̄d
ωacσx + f̌

(
1 − �̄2

d

2δ2−
− �̄2

d

2δ2+

)
σz

+ f̌

[
�̄d

δ+
σ+eiωd t + �̄d

δ−
σ+e−iωd t + H.c.

]
+ f̄

([
σx − ω2

ac

�̄2
d

σx

]
+ 2ωac

�̄d
cos ωdtσz

)
. (A11)

Above, as before, we neglected terms with orders higher
than two of �d/δ± with any combination of the subscript
plus and minus sign as well as oscillations with multiples
of frequencies ωd (RWA). Still, we emphasize that keeping
the latter would allow to describe interaction processes with
multiple photons of the driving signal and the qubit as well as
the fundamental mode and spectroscopic signal. The modifi-
cations of Hamiltonian (A2) as found in (A11) result from the
additional dipole moment of the qubit induced by the driving
signal �d . It leads to a reduction of the coupling constants
given by the upper line, the second term in the second line
as well as the first term in the brackets of the lower line of
(A11). These corrections are all second order in �d/δ±. The
diagonal coupling of the qubit to the driving signal addition-
ally produces a stationary transition rate between the modified
qubit states as given by the first term in the second line of
(A11). Other interesting terms are found in the third line of the
same equation. They describe interactions between the qubit
and the fundamental mode as well as the spectroscopic signal
that additionally require driving photons. They actually allow
a theoretical description of processes as the spectroscopy of
the dressed levels and dressed-state amplification or damping.
We note, that the related coupling constant scales in the same
way as in Ref. [30] for large detunings.

Because those interactions are not of interest in the present
paper, we neglect the remaining terms oscillating with ωd in
Eqs. (A10) and (A12) to find the transformed Hamiltonian,

Ĥ = h̄
ωq + ωac

2
σz − ε

�
h̄ωacσx

+h̄[�s cos ωst + g(a† + a)]

(
εA

ωq
σz + �B

ωq
σx

)
.

(A12)

Above, we used �̌/�̄ = ε/� and abbreviated A = 1 − �̄2
d

2δ2−
−

�̄2
d

2δ2+
as well as B = 1 − ω2

ac

�̄2
d

to keep the equation in a compact

form.

APPENDIX B: APPROXIMATED DISSIPATION

The transformations to include the dynamical Zeeman shift
to the qubit will also influence to the relaxation dynamics. In
principle, we transform the Lindblad operator (2) in the same
way as the Hamiltonian,

L̂ = �r

2
(2Uσ−ρσ+U † − {Uσ+σ−U †,UρU †})

+γϕ

2
(UσzρσzU

† − UρU †). (B1)

Here, we can insert 1 = U †U in each product of operators
and note that ρ̂ = UρU † is the density matrix in the mod-
ified basis. Therefore, we transform each of the containing
operators into the new approximated basis. In performing the
above calculation, the original Lindblad operator given in Eq.
(2) stays the same in the rotating frame found by Ut because
concerning the relaxation in each term the factors from σ+
and σ− compensate each other, and the dephasing is invariant
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under rotation around σz. The transformation U− produces

L̃− = �̃r

2
(2σ−ρ̃−σ+ − {σ+σ−, ρ̃−}) + γ̃ϕ

2
(σzρ̃−σz − ρ̃−)

+ �̃e

2
(2σ+ρ̃−σ− − {σ−σ+, ρ̃−})

+ �̄d [�r − γϕ]

2δ−
(σ−ρ̃−σz + H.c.)

− �̄dγϕ

2δ−
(σzρ̃−σ− + H.c.) + �̄d�r

4δ−
{σ+ + σ−, ρ̃−}

− �̄2
d [�r − 2γϕ]

4δ2−
(σ−ρ̃−σ− + H.c.). (B2)

We neglected additional dissipation at the Rabi frequency that
might be introduced by the approximate diagonalization U−
because we restrict our discussion to strong off-resonant driv-
ing [16,35]. Above, we abbreviated the respective relaxation,
excitation, and decoherence rates in the approximated rotating
basis,

�̃r = �r − �̄2
d

2δ2−
[�r − γϕ],

�̃e = �̄2
d

2δ2−
γϕ, (B3)

γ̃ϕ = γϕ + �̄2
d

2δ2−
[�r − 2γϕ].

Note, these rates are consistent with the results found for
example in Ref. [29] when expanded to second order for small

�̄d . We neglected all terms with orders larger than two of
�̄d/δ−. Additionally, we can safely omit the last two terms in
Eq. (B2) because they will produce only fast oscillating terms
back in the laboratory frame after the final transformation.

We repeat the above procedure in the counter-rotating
frame and with the transformation U+. Thereby we note that
�̃e is already second order in �̄d/δ− so that this term is not
further modified. The remaining terms in the approximate
diagonal counter-rotating frame read

L̂+ =
(

�̃e

2
+ �̄2

d

2δ2+

)
(2σ+ρ̂+σ− − {σ−σ+, ρ̂+})

+ 1

2

(
�̃r − �̄2

d

2δ2+
[�̃r − γ̃ϕ]

)
(2σ−ρ̂+σ+ − {σ+σ−, ρ̂+})

+ 1

2

(
γ̃ϕ + �̄2

d

2δ2+
[�̃r − 2γ̃ϕ]

)
(σzρ̂+σz − ρ̂+)

+ �̄2
d

2δ−δ+
(σ+ρ̂+σ+e−2iωd t + H.c.)[�r − 2γϕ]. (B4)

We again neglected all terms that are of higher order than
two of �̄d/δ±. Additionally, we only kept terms that are sta-
tionary in the laboratory frame in which the final Lindbladian
is given by Eq. (14). Note that compared to Eq. (B4), we
neglected the last line because when calculating expectation
values [see Eqs. (16)–(18)], the order of operators under the
trace can be changed resulting in a vanishing of these terms.
Therefore, the basis transformation modifies the relaxation
and decoherence rates and adds excitation to the system with
the respective rates given in Eq. (15).
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