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We describe boundary effects in superconducting systems with Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
superconducting instability, using Bogoliubov-de-Gennes and Ginzburg-Landau (GL) formalisms. First, we
show that in dimensions larger than one the standard GL functional formalism for FFLO superconductors is
unbounded from below. This is demonstrated by finding solutions with zero Laplacian terms near boundaries.
We generalize the GL formalism for these systems by retaining higher order terms. Next, we demonstrate that a
cuboid sample of a superconductor with imbalanced fermions at a mean-field level has a sequence of the phase
transitions. At low temperatures it forms Larkin-Ovchinnikov state in the bulk but has a different modulation
pattern close to the boundaries. When temperature is increased the first phase transition occurs when the bulk
of the material becomes normal while the faces remain superconducting. The second transition occurs at higher
temperature where the system retains superconductivity on the edges. The third transition is associated with the
loss of edge superconductivity while retaining superconducting gap in the vertices. We obtain the same sequence
of phase transition by numerically solving the Bogoliubov-de Gennes model.
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I. INTRODUCTION

Fulde and Ferrell [1] and Larkin and Ovchinnikov [2]
(FFLO) considered a superconducting state where a Cooper
pair forms out of two electrons with different magnitude
of momenta. The original considerations expected such a
situation to arise in the presence of a strong magnetic field
and thus Zeeman splitting of the Fermi surfaces for spin up
and spin down electrons. Later it was shown that in other
physical systems the fermionic imbalance occurs without any
applied magnetic field. Indeed the FFLO state was discussed
in cold-atom gases where one can create different imbalances
of fermions [3–6]. Similarly the difference in Fermi surfaces
naturally occurs in dense quark matter. The resulting super-
conducting states of quarks are called color superconductivity
which is suggested to realize FFLO state in the cores of
neutron stars [7]. Even in electronic superconductors, finite
momentum pairing may arise due to reasons other than ap-
plication of an external magnetic field [8]. This state has for
a long time been of great interest and was searched for in a
number of superconducting materials [9–19].

In the recent work [20], using microscopically derived
Ginzburg-Landau (GL) model, it was shown that systems that
support FFLO superconductivity in the bulk do not undergo a
direct superconductor-normal metal phase transition. Instead
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these systems have a different intermediate phase at elevated
temperatures where superconductivity occurs only on the
boundary but the bulk of the systems is a normal metal.

In this work we answer two questions. (i) We demonstrate
this effect in microscopic models for imbalanced fermions
without relying on a Ginzburg-Landau expansion. We show
that in dimensions larger than one, the superconductor
undergoes a sequence of phase transition where super-
conductivity survives in subdomains of sequentially lower
dimension. That is, by increasing the temperature and
fermionic population imbalance in a square system, at the
mean-field level, the system will undergo the following
sequence of the phase transitions: superconducting bulk →
superconducting edges → superconducting corners → nor-
mal state. (ii) For a Ginzburg-Landau approach, we explain
that, as alluded to in Ref. [20], in dimensions larger than one,
it is necessary to modify the Ginzburg-Landau expansion
compared to what is done in the standard calculations [21]
to describe systems with boundaries. By retaining higher
order derivative terms, we demonstrate the same sequence of
phase transition obtained in the microscopic model. That is,
a three-dimensional cuboid superconductor with imbalance
fermions undergoes the sequence of phase transitions:
superconducting bulk → superconducting faces → super-
conducting edges → superconducting vertices → normal
state, as temperature and fermionic population imbalance
is increased. We also demonstrate an alternative, simpler
Ginzburg-Landau expansion in the presence of boundaries,
which also exhibits the boundary pair-density-wave state but
does not capture the same sequence of phase transitions.

The plan of the paper is the following: In Sec. II
we first recap canonical microscopic derivation of the
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Ginzburg-Landau model for nonuniform FFLO supercon-
ductors. Then we demonstrate that the usual GL model is
unbounded from below because it is unstable to formation
of infinitely strong gradients near boundaries. In Sec. III we
construct a Ginzburg-Landau functional which has energy
bounded from below by retaining higher order derivative
terms in the expansion. That allows us to in Sec. IV obtain
the face, edge, and vertex states without divergent energies.
In Sec. V we construct an alternative form for the Ginzburg-
Landau expansion which does not suffer from the divergence
near the boundary but does not capture the full set of different
types of boundary states.

In Sec. VI we solve numerically Bogoliubov-de-Gennes
(BdG) equation to show that the states exist in microscopic
models that do not rely on any Ginzburg-Landau expansion.
In the Appendix we confirm the existence of the boundary
pair-density wave by solving a more general BdG including
Hartree terms.

II. BREAKDOWN OF THE STANDARD
GINZBURG-LANDAU APPROACH IN FINITE SYSTEMS

A. Ginzburg-Landau model

The Ginzburg-Landau description of superconductors in
the presence of fermionic population imbalance was derived
from microscopic theory for superconductors in Ref. [21]. The
free energy functional reads F [ψ] = ∫

�
Fdd x where the free

energy density F is

F = α|ψ |2 + β|∇ψ |2 + γ |ψ |4 + δ|�ψ |2 + μ|ψ |2|∇ψ |2

+ μ

8
[(ψ∗∇ψ )2 + c.c.] + ν|ψ |6, (1)

where ψ is a complex field referred to as the superconducting
order parameter and c.c. denotes complex conjugation. The
coefficients α, γ , and ν depend on the fermionic population
imbalance H and temperature T accordingly [21]

α = −πN (0)

(
1

π
ln

Tc

T
+ K1(H, T ) − K1(0, Tc)

)
, (2)

γ = πN (0)K3(H, T )

4
, (3)

ν = −πN (0)K5(H, T )

8
, (4)

where N (0) is the electron density of states at the Fermi
surface, Tc is the critical temperature at zero H , and we have
defined the functions

Kn(H, T ) = 2T

(2πT )n

(−1)n

(n − 1)!
Re[� (n−1)(z)], (5)

where z = 1
2 − i H

2πT and � (n) is the polygamma function of
order n. The remaining coefficients are given as β = β̂v2

Fγ ,
δ = δ̂v4

Fν, and μ = μ̂v2
Fν, where vF is the Fermi velocity

and β̂, δ̂, μ̂ are positive constants that depend on the dimen-
sionality d . In one dimension we have β̂ = 1, δ̂ = 1/2, and
μ̂ = 4, in two dimensions we have β̂ = 1/2, δ̂ = 3/16, and
μ̂ = 2, and in three dimensions we have β̂ = 1/3, δ̂ = 1/10,
and μ̂ = 4/3. The Ginzburg-Landau description is valid in
the parameter regime in which the highest order terms are
positive, that is where ν is positive. In the parameter regime
in which β is negative, inhomogeneous order parameters may

be energetically favorable. The first considered structures of
the order parameter are the so-called Fulde-Ferrell (FF) state
ψFF ∝ eipx and the Larkin-Ovchinnikov (LO) state ψLO ∝
cos px, with p2 = − β

2δ
and transition into the normal state at

α = αbulk
c = β2

4δ
.

Inhomogeneous states can appear when the term |∇ψ |2 has
a negative prefactor. In this parameter regime, it is necessary
to include higher order terms, resulting in a free energy den-
sity expansion in Eq. (1). Where term |∇ψ |2 favors creation
of the gradients, while the positive term |�ψ |2 is added to
bound gradients from above. However we will show that in
some cases, the inclusion of the stabilizing term |�ψ |2 is not
sufficient. In small systems and generically in finite systems
in two dimensions or higher, there exist solutions that satisfy
�ψ = 0. These states are often characterized by enhancement
of ψ close to the boundary. The associated energy of such
state can potentially diverge and one needs to resort to a more
general Ginzburg-Landau theory.

B. Small systems

Consider first a one-dimensional domain � =
[−L/2, L/2] of length L. The equation �ψ = 0 is satisfied by
the real field ψ (x) = qx, for any parameter q. The modulus
|ψ | increases linearly as the boundaries are approached,
resulting in increasing potential energy density closer to the
boundaries. As system size increases, the penalizing potential
energy is non-negligible, making the linear solution less
energetically beneficial. Therefore, the linear solution is not
energetically preferable over conventional one-dimensional
inhomogeneous structures, such as ψLO ∝ cos px or
ψFF ∝ eipx if L � 1/p, where p2 = − β

2δ
. However, for

small system sizes, the potential term does become negligible
in comparison to the beneficial gradient term β|∇ψ |2 = βq2.
To lowest order in L, minimizing with respect to q2 gives

q2 = −2(αL2 + 12β )

5μL2
, F = − (αL2 + 12β )2

60μL
, (6)

with transition into the normal state at α = αc1 = −12β/L2.
In the limit of infinitesimal system size L → 0, we find that
αc1 → ∞, and the associated momentum q and energy F di-
verges. Note that the value of ψ at the boundary, ψ (±L/2) =
±qL/2, does not vanish in this limit since q ∝ 1/L. Con-
sequently the value of ψ at the boundary is independent of
system size for sufficiently small systems.

The effect generalizes to systems in higher dimensions.
Consider the d-dimensional cube with volume Ld . The linear
solution here generalizes to a multilinear solution ψn(x) =
qn

∏n
j=1 x j , where n � d . Analogously to the one-dimensional

case we find

q2
n = −1

n

[
5

3

(
2

L

)2
]n−1

2(αL2 + 12nβ )

5μL2
,

Fn = −Ld−1 1

n

(
5

18

)n−1 (αL2 + 12nβ )2

60μL
,

(7)

with transition into the normal state at αcn = nαc1. Conse-
quently we expect that in higher dimensions, we will see
a sequence of transitions from (n = 1) → (n = 2) → . . . →
(n = d ) before transitioning into the normal state, as seen in
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FIG. 1. Free energies associated with the multilinear solution
ψn(x) = qn

∏n
j=1 x j in three dimensions, in small system sizes. As

α is increased, we transition from the linear solution n = 1, to the
bilinear solution n = 2 and finally the trilinear solution n = 3 before
entering the normal state.

Fig. 1 in three dimensions. Studying the energy Fn, we see that
the free energy would approach some negative constant in two
dimensions, and zero from below in three dimensions, as the
system size approaches zero. Similarly to the one-dimensional
case, the multilinear solution ψn is constant and independent
of system size at the vertices of the n-dimensional cube, for
significantly small systems.

C. Boundary state instability in Ginzburg-Landau model

Consider a two-dimensional domain � in the presence of
boundaries. We can represent the domain � as a section of the
complex plane, by defining a complex coordinate ζ = x + iy.
The order parameter ψ is now a function of ζ . Clearly if
ψ is an analytic complex valued function (i.e., it satisfies
the Cauchy-Riemann equations), it follows automatically that
�ψ = 0. The system becomes unstable towards states of the
form ψ (ζ ) = Aekζ with |k| → ∞, associated with a negative
divergent energy. Crucially, the formations of these states
require the existence of a boundary. If the complete two-
dimensional plane were considered, the solution ψ (ζ ) = Aekζ

would diverge in some direction, which would be penalized by
the potential terms. However, the divergence of |ψ | can be cut
off using the boundary of the system, as seen in Fig. 2.

For example, consider the half-infinite two-dimensional
domain x � 0. An analytic function which satisfies �ψ = 0
is

ψ = Ae−kx+iky (8)

with k > 0. This state is characterized by phase-wave mod-
ulation (FF state) tangential to the boundary and exponential
decay perpendicular to the boundary. We compute the energy
density along the boundary (that is in the y direction) by
integrating over x and find

F‖ = 6α|A|2 + 3γ |A|4 + 2ν|A|6
2k

+ 2β|A|2 + μ|A|4
2

k. (9)

FIG. 2. Order parameter of two-dimensional boundary state with
density modulation along the boundary. In an infinite system, such
a state would not be favorable due to divergent modulus in one
direction. However, in the presence of boundaries, the segment of
divergent modulus can be cut off, depicted on the image by the
transparent surface.

We see that as long as the amplitude |A|2 < −2β/μ, the en-
ergy diverges to −∞ as k increases. This shows that the model
has an instability towards formation of boundary states with
rapid modulation along the boundary. Analogous calculation
for the state

ψ = Ae−kx cos ky (10)

would yield the same conclusion, see Fig. 2.

III. GENERALIZATION OF THE
GINZBURG-LANDAU MODEL

In contrast to the example of linear solutions in small sys-
tems, see Sec. II B, the two-dimensional solutions with mod-
ulation along the boundary and exponential decay from the
boundary exist in any system in the presence of boundaries,
regardless of the system size. The divergence in energy and
Cooper pair momentum is indicative towards the existence
of superconducting boundary states. Note, however that GL
solutions can only represent the long-wavelength physics of
how order parameter decays away from the 1/kF length scales
from the boundary. Hence, in order to find a suitable theory
which is bounded from below, we have to include additional
terms in the Ginzburg-Landau expansion.

We would like to find the lowest order term in both
momentum and amplitude of the order parameter, which is
sufficient to include in order to stabilize the theory. The
origin of the inhomogeneous state is the negative term |∇ψ |2,
which is of second order in both momentum and amplitude.
Conventionally it is stabilized by the term |�ψ |2, which is
of fourth order in momentum and second order in amplitude.
Since there exists states that satisfy �ψ = 0, we have to
resort to higher order in either momentum or amplitude.
Terms such as |∇�ψ |2, which is of sixth order in momentum
and second order in amplitude, would not be helpful since
it is automatically zero if �ψ = 0. Therefore we resort to
retaining the term which is of fourth order in momentum and
fourth order in amplitude, which reads

κ|∇ψ |4. (11)
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Since this term is of higher order in amplitude than the lowest
order beneficial gradient term, there will exist inhomogeneous
superconducting states for any α, as long as the gradient
coefficients are negative. This term was used to find two-
dimensional solutions in Ref. [20]. Here we derive from the
microscopic theory the following estimate for the coefficient
κ in Eq. (11)

κ �
(

−29

32

)
πN (0)v4

F�d

2
K7(H, T ), (12)

where factor �d depends on the dimension d , where �1 = 1,
�2 = 3/8, and �3 = 1/5. Studying the functions K5(H, T )
and K7(H, T ), we see that there exist an overlapping region
in which both functions are negative, which implies that the
additional term is positive simultaneously as the previously
higher order terms. In order to study a minimal model, we
proceed with only retaining the term in Eq. (11) in the regular-
ized free energy expansion, even though additional terms also
proportional to K7(H, T ) could be included. For example, in
principle we could have included a potential term proportional
to |ψ |8. However, since the sixth order potential term remains
nonzero and positive, the inclusion of this term is not so
important.

Let us now consider the previous example of the boundary
state ψ = Ae−kx+iky, which previously was associated with
negative infinite energy and infinite momentum k. With the
inclusion of the term in Eq. (11), the associated free energy in
Eq. (9) obtains the additional term

κ|A|4k3, (13)

which makes the free energy bounded from below and the
optimal value of k is now finite.

IV. SEQUENTIAL PHASE TRANSITIONS
IN THREE DIMENSIONS

Having obtained the Ginzburg-Landau free energy expan-
sion without the spurious divergences enables us to study
higher dimensional systems. We will numerically minimize
the free energy functional using the nonlinear conjugate gra-
dient method, parallelized on the CUDA-enabled NVIDIA
graphical processing unit (GPU). It is convenient to introduce
rescaled coordinates and parameters defined accordingly:
ψ̃ = ψ/|ψU|, α̃ = α/αU, x̃ = px, where |ψU|2 = − γ

2ν
, αU =

γ 2

4ν
, and p2 = − β

2δ
. Expressed in these quantities, the free

energy reads F [ψ] = αU|ψU|2
pd F̃ [ψ̃], where F̃ [ψ̃] = ∫

�
F̃dd x̃,

where the rescaled free energy density F̃ is identical to
Eq. (1), but the coefficients have been replaced accordingly:
α 	→ α̃, β 	→ β̃, and so on, where γ̃ = −2ν̃ = −2, β̃ =
−2δ̃ = −2β̂2/δ̂, and μ̃ = β̂μ̂/δ̂. Among these coefficients,
all are constant except α̃, which parametrizes both tempera-
ture T and fermionic population imbalance H . With the inclu-
sion of the additional term in Eq. (11), in rescaled coordinates,
the coefficient κ̃ reads

κ̃ = − 1

v4
F

β̂2

2δ̂2

κγ

ν2
. (14)

FIG. 3. Pair-density-wave states in a three-dimensional cube, of
size significantly bigger than characteristic length of the variation
of order parameter, obtained from Ginzburg-Landau theory, for
various temperatures T and fermionic population imbalances H . As
temperature is increased, we observe a sequence of phase transitions.
For low temperatures, superconductivity exists in the whole system.
In the interior the solution is of Larkin-Ovchinnikov type but has
higher gradients and different pattern on the boundary due to reasons
explained in the text. As temperature is increased, superconductivity
vanishes first in the bulk, second on the faces, and third on the edges,
such that eventually the superconducting gap only exists in the ver-
tices of the cube. The fermionic population imbalance H = 2πT/3
for each of the illustrations (a)–(e). The minimal and maximal values
ψ̃min and ψ̃max are different for each of the different illustrations.
In (a) −ψ̃min = ψ̃max = 0.7. In (b) −ψ̃min = ψ̃max = 0.4. In (c) and
(d) −ψ̃min = ψ̃max = 0.2. In (e) −ψ̃min = 2ψ̃max = 0.08.

Specifically in three dimensions we have that κ̃ = 145K3K7

18K2
5

,

which is not constant in the rescaled units. However, studying
the functions Kn in Eq. (5), we see that Kn ∝ T

T n · fn(H/T ),
where fn is some elementary function. Therefore, if we study
a line in the T H-plane where H/T is constant, the rescaled
parameter κ̃ will also be constant. Particularly, we will study
the line where H/T = 2π/3, along which κ̃ � 0.5752. On a
technical note, since we are working in rescaled units, where
we measure length in units of p−1 ∝ √

K5/K3, we also have to
alter the rescaled length accordingly in order to appropriately
describe the sample of fixed size.
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The obtained solutions are shown in Fig. 3. We see that as
temperature is increased, there are multiple phase transitions.
The dimensionality of the transition sequentially decreases.
At the lowest temperature, the system is in a superconducting
state with a nonuniform order parameter in the bulk. Note that
deep in the bulk the solution is of Larkin-Ovchinnikov type.
On the boundary, due to discussed above reasons we expect
larger gradients. This is indeed clearly seen on the upper
panel of Fig. 3. Note that the order parameter configurations
on the faces are very different from the Larkin-Ovchinnikov
solutions in the bulk.

As temperature is increased, we first transition into a su-
perconducting state which allows for modulation on the faces
of the cube, while the bulk now has transition into a normal
state. Second, when the temperature is elevated further, the
faces become normal too, but superconductivity survives on
the edges of the cube. Third, the edges become normal and
only the vertices remain superconducting, before finally the
fully normal state is entered at an even higher temperature.

V. RESOLVING THE BOUNDARY INSTABILITY IN AN
ALTERNATIVE GINZBURG-LANDAU EXPANSION

Let us consider how to obtain a model which does not
suffer from divergences near a boundary without introduction
of the higher order terms, as in Sec. III. First, observe that
when one uses the usual microscopic derivation of the model
Eq. (1) one does not obtain fully unambiguously the form
of the gradient terms. The ambiguity is due to freedom in
integration by parts. For example, the term −ψ�ψ∗ + c.c.
is not discriminated from |∇ψ |2. Another way to put it is
that the standard microscopic derivation fixes Euler-Lagrange
equations but does not fully fix the boundary conditions.

The GL free energy in Eq. (1) is unbounded from below
due to the existence of boundary states satisfying �ψ = 0.
We can rewrite the Laplacian term |�ψ |2 using integration by
parts as

∫
�

|�ψ |2dV =
∫

�

3∑
i, j=1

|∂i∂ jψ |2dV +
∮

∂�

f dS,

f =
3∑

i, j=1

((
∂2

i ψ∗)∂ jψ − (∂i∂ jψ
∗)∂iψ

)
n j, (15)

where n is the normal to the boundary ∂�. Since the standard
microscopic derivation does not unambiguously determine
the boundary contribution, we consider now the free energy
expansion where |�ψ |2 is replaced by

∑
i j |∂i∂ jψ |2 and the

boundary term f is discarded. The boundary state in Eq. (8)
does not nullify

∑
i j |∂i∂ jψ |2, and only linear function ψ =

a + ∑3
i=1 bixi with constants a, bi does. Note that in this

alternative form, the free energy does not suffer from bound-
ary divergences and the inclusion of higher order terms is
unnecessary.

We simulated numerically the GL model given by Eq. (1)
with Laplacian term replaced by

∑
i j |∂i∂ jψ |2. The typical

configuration of the order parameter is presented in Fig. 4. The
main difference from the GL model with usual Laplacian term
and higher order terms, see Fig. 3, is that we do not recover

FIG. 4. Boundary pair-density-wave state in a three-dimensional
cube obtained in rescaled Ginzburg-Landau model Eq. (1) with
Laplacian term replaced by

∑
i j |∂i∂ jψ |2 at α̃ = 4. The sample is

above bulk critical temperature but below the boundary critical
temperature. Order parameter has zero imaginary part and real part
is presented on panels: (a) Isosurfaces of ψ in a three-dimensional
sample that was simulated numerically. Observe that it is almost
zero in the bulk and nonzero on the boundary (most prominent in
vertices). (b) (orange) Order parameter in horizontal cross section of
the three dimensional sample (a) at the middle of the system. (blue)
zero of ψ . In this approximation even though the order parameter
is clearly bigger in the vertices and edges that on faces, there is no
clearly identifiable sequence of four phase transitions as in the case
presented in Fig. 3. Instead the model has only three phases: bulk and
boundary pair-density-wave and the normal phase.

the clear full four-step sequence (bulk-faces-edges-vertices)
of the phase transitions in the cuboid geometry. Instead in
this approximation it retains a two-step transition only from
bulk to boundary superconductivity and then to normal state
everywhere.
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Now we can construct an analytical guess for the edge
state, which is the same as in Ref. [20]. Namely, let us
consider superconductor positioned at x, y > 0 and for all z.
Then configuration of ψ in Fig. 4(b) can be approximated by

ψ (x, y) = η(x) + η(y), η(x) = e−kx cos(qx + φ). (16)

Even though this configuration has enhanced ψ on the edges,
due to the overlap of η(x) and η(y), it will, in this approx-
imation, have the same critical temperature, as the critical
temperature of the face superconductivity in the limit of
infinitely large sample.

VI. MICROSCOPIC BOGOLUIBOV-DE GENNES
(BdG) APPROACH

A. Derivation of BdG from path integral

We start from the Fermi-Hubbard model in path integral
formulation defined by action (first part of the derivation
follows [22])

S =
∫ 1

T

0
dτ

i, j=N,σ=↑∑
i, j=1,σ=↓

ψ
†
iσ (∂τ + hi jσ )ψ jσ −V

N∑
i=1

ψ
†
i↑ψ

†
i↓ψi↓ψi↑

(17)

with Grassman fields ψiσ (τ ), ψ†
iσ (τ ) corresponding to

fermionic creation and annihilation operators defined on some
lattice indexed by i, j = 1, 2, . . . , N . Kinetic part of action is
given by hi jσ = −(μ + σh)δi, j − tδ|i− j|,1, with chemical po-
tential μ, spin-population imbalance h, and nearest-neighbor
hopping parameter t . Interaction is set by on-site attractive
potential V > 0, which leads to s-wave pairing. Partition
function is given by path integral

Z =
∫

D[ψ†, ψ]e−S. (18)

We perform Hubbard-Stratonovich transformation, which
introduces auxiliary bosonic field �i(τ ). Up to a constant the
interaction term becomes:

exp

[
V

∫
dτ

∑
i

ψ
†
i↑ψ

†
i↓ψi↓ψi↑

]
=

∫
D[�†,�]

× exp

[
−

∫
dτ

∑
i

(
�

†
i �i

V
+ �

†
i ψi↓ψi↑ + �iψ

†
i↑ψ

†
i↓

)]
.

(19)

By introducing Nambu spinors

�
†
i = (ψ†

i↑, ψi↓), �i =
(

ψi↑
ψ

†
i↓

)
(20)

the action becomes

S =
∫

dτ
∑

i

�
†
i �i

V
+

∑
i j

�
†
i (δi j∂τ + Hi j )� j . (21)

With 2N × 2N matrix H defined by:

Hi j =
(

hi j↑ δi j�i

δi j�
†
i −h ji↓

)
. (22)

Integrating out fermionic degrees of freedom we obtain

Z =
∫

D[�†,�] exp

[
ln det (∂τ + H ) −

∫
dτ

∑
i

�
†
i �i

V

]
.

(23)

Note that up until this point this model exactly corresponds
to Fermi-Hubbard model Eq. (17). To simplify it and proceed
with mean field approximation we make two assumptions: (1)
�i is classical, i.e., it does not depend on τ , and (2) �i does
not fluctuate thermally, i.e., it extremizes the action S. Note
that this mean-field nature of BdG approach will give us a
sequence of second order transitions for the superconductivity
of the bulk, face, edge, and vertex states. Beyond mean-field
approximation the phase fluctuations make the face phase
transitions of Berezinskii-Kosterlitz-Thouless type.

Next, one can simplify the action by reducing the term

ln det (∂τ + H ) = Tr
∞∑

n=−∞
ln (iωn + H ) = −Tr ln f (H )

(24)
where last equality holds up to a constant, summation is
performed over Matsubara frequencies ωn = 2πT (n + 1/2)
and Fermi factor f (x) = 1/(ex/T + 1). Note that trace sums
over 2N diagonal elements of function of 2N × 2N dimen-
sional matrix H and hence equals to just sum over a function
evaluated at the eigenvalues of H . Finally, the action is given
by

S =
∑

i

|�i|2
TV

+ Tr ln f (H ). (25)

Taking variation of Eq. (25) with respect to �∗
i we obtain the

self consistency equation1

�i = −V eT
i f (H )hi = −V 〈ci↑ci↓〉 (26)

where vectors, following Ref. [23], are denoted as (ei ) j =
δi, j and (hi ) j = δi+N, j . Note that in this approach, based on
path integral formulation, we obtain an equation only for
�i Eq. (26). If one instead employs variational method self
consistency equations are also obtained for Hartree terms,
which shift the chemical potentials. In the Appendix we show
that the boundary states, discussed here, exist in the model
with Hartree term as well.

We solve the problem numerically by taking a recursive
approach. That is, we start with some initial guess for the
pairing field �i. Secondly, we diagonalize the Hamiltonian
in Eq. (22), i.e., we calculate its 2N eigenvalues En and
eigenvectors wn

i = ( un
i

vn
i
). Then �i is updated through the self

consistency equation Eq. (26), which explicitly can be written
as

�i = −V
2N∑

n=1

un
i v

n∗
i f (En). (27)

The process is repeated until convergence.

1Note that this formula is equivalent to the usual one with hyper-
bolic tangent since −eT

i f (H )hi = 1
2 eT

i tanh H
2T hi.
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FIG. 5. Left panels: Numerically calculated pairing field � by solving the BdG equation for various temperatures T , for some fixed nonzero
spin-population imbalance h = 0.3. As temperature is increased, we observe a sequence of phase transitions. Firstly, the system transitions
from a uniform superconducting state with boundary enhancement, to the pair-density-wave FFLO state. Secondly, the pairing field vanishes in
the bulk, while the pair-density-wave state remains nonzero close to the boundary, before finally transitioning fully into the normal conducting
state. The behavior is of accordance with the prediction from Ginzburg-Landau theory in Ref. [20], from which the right panels have been
taken. Remaining parameters are set to t = 1, V = 2, and μ = 0.5.

B. Numerical results

In this study we will investigate the surface properties,
which requires significantly large system sizes. We consider
both one- and two-dimensional systems, using open boundary
conditions. In two dimensions we use a GPU-based approach,
while in one dimension we use CPUs.

The obtained order parameter for a one-dimensional sys-
tem, while varying the temperature, is shown in Fig. 5. The
remaining parameters are set to t = 1, V = 2, μ = 0.5, and
h = 0.3. Note that this parameter set does not correspond to
the microscopic physics where Ginzburg-Landau expansion
was obtained, so we should not expect quantitative similari-
ties. Rather the main question we ask is if the boundary states
exist beyond the Ginzburg-Landau regime. To emphasize that
the results do not require fine tuning in the Appendix we give
an example of a boundary state in a different Bogoliubov-de-
Gennes model with a Hartree term retained. We can notice,
as temperature is increased, a transition from the uniform
superconducting state with upshoot on the boundaries, into
the nonuniform LO state and eventually the boundary state,
referred to as the surface pair-density wave state, before finally
transitioning into the normal state. The solutions are very
similar to those obtained from the Ginzburg-Landau approach
in Ref. [20], shown on the same figure. Note however that the
microscopical considerations using BdG are not performed
in the weak-coupling limit where Ginzburg-Landau theory
applies. Therefore, a quantitative agreement between these
two models are neither necessary nor trivially expected. We
emphasize that the similarity between the two approaches
concern the order parameter structure and not quantitative
values in the phase diagram.

Note that in the tight-binding model, nonzero values of the
pairing field �i on the boundary, as in Fig. 5, does not mean
that it is discontinuous. Instead �i decays to zero outside
the superconductor over length scale corresponding to the
localization of the Wannier function’s tail or lattice spacing.

At a microscopic level, the mechanism of formation of
boundary states has many complex aspects beyond the sim-
ple energy argument given in Ref. [20]. As pointed out in
Ref. [20], at the level of Ginzburg-Landau theory, the state has
oscillatory energy density and boundaries are accompanied
with beneficial energy segments. However the ability of the
system to start with such a segment depends on microscopic
boundary conditions applied at a single-electron level. The
energetic argument clearly indicates that Caroli-de Gennes-
Matricon (CdGM) boundary conditions that conjecture zero
normal derivative of the gap modulus [24–27] should not be
expected to hold for pair-density-wave case because the sys-
tem has clear energetic preference for having high gradients
of the gap modulus near the boundary. In fact the Caroli-de
Gennes-Matricon (CdGM) boundary conditions do not hold
even for ordinary superconductors, at least for clean surfaces,
as was recently shown microscopically in Ref. [28]. It leads to
the fact that for the simplest non-FFLO superconductors, there
is an enhancement of the superconducting gap at the bound-
aries and superconductivity of clean surfaces [28]. Therefore
by varying the fermionic imbalance in the BdG formalism,
one can investigate how the surface pair-density-wave states
are connected with the boundary states in non-FFLO regime
discussed in Ref. [28]. By varying both the temperature and
the spin-population imbalance, we obtained the complete
phase diagram shown in Fig. 6. The phase diagram shows both
the PDW boundary state regime and the non-PDW boundary
state regime.

Next we show the existence of the boundary states in
two dimensions by solving the BdG equation in Eq. (27).
Obtained pairing fields are shown in Figs. 7–9. Consideration
of two-dimensional samples are computationally much more
demanding than one-dimensional. Hence we do not perform
full phase diagram exploration, but demonstrate boundary
states by fixing the spin-population imbalance h = 0.4 and
gradually increase the temperature, see Fig. 7. First, we study
a square system which is periodic in all directions—in this
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FIG. 6. Phase diagram obtained from solving the BdG equation
for various temperatures T and spin-populations imbalances h, in one
dimension in the model Eq. (25). We see the appearance of regimes
in the phase diagram, in which superconductivity does not exist in
the bulk, but exists only on the boundaries. More specifically, we see
two different boundary states; (1) the surface pair-density-wave state
discussed in Ref. [20] (referred to as boundary PDW here), and the
boundary superconducting state which can appear in conventional
superconductors [28]. The crosses mark the points for which the
pairing field is shown in Fig. 5. Remaining parameters are set to
t = 1, V = 2, and μ = 0.5.

case no boundary states can form and we obtain bulk critical
temperature Tc1 by identifying the temperature at which the
maximal pairing field goes to zero. Next, for a sample with pe-
riodic boundary conditions only in one direction, edge states

FIG. 7. Maximum absolute value of the pairing field � obtained
numerically in BdG model Eq. (22) in two dimensions, for var-
ious temperatures T at fixed spin-population imbalance h = 0.4.
Remaining parameters are set to V = 2.5, μ = −0.4, and t = 1.
The simulations are performed for system with: periodic boundary
conditions in both directions x and y (gray-dotted line), which
gives Tc1 = 0.09, periodic boundary conditions in only x direction
(purple-dotted line) yielding Tc2 = 0.105, and finally open boundary
conditions (black-dotted line), leading to Tc3 = 0.125.

(a) (b)

(c) (d)

FIG. 8. Pairing field � obtained numerically in BdG model (22)
with open boundary conditions. The panels display: (a) typical LO
bulk modulation (b),(c) the edge pair-density-wave state: the pairing
field is enhanced along the boundary while it decays to zero in
the bulk, by an exponentially dampened oscillation. (d) corner state
with pairing field enhanced in corners, which decays also along the
boundary. The remaining parameters are fixed to h = 0.4, V = 2.5,
μ = −0.4, and t = 1.

are formed, which gives edge critical temperature Tc2, see
Fig. 7. Finally, for open boundaries corner states survive even
for higher temperatures, until the corner critical temperature
Tc3 is reached.

For selected values of T we plot configurations of order
parameter in Fig. 8. The state in Fig. 8(a) is the usual LO
modulation in one direction. States in Figs. 8(b) and 8(c)
are identified as the edge pair-density-wave, in which the
pairing field is enhanced along the sample edges and decays
as an exponentially dampened oscillation into the bulk. As
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FIG. 9. Pairing field � obtained numerically in BdG model (22).
The state occurs for temperature T = 0.05, and spin-population
imbalance h = 0.5. The remaining parameters are set to V = 2.5,
μ = −0.4, and t = 1.
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temperature is increased, the pairing field vanishes on the
edges but remain nonzero in the corners, as shown in Fig. 8(d).
Finally, at even higher temperatures, the gap field vanishes
completely and the system transitions to the normal state.
These transitions would be the two-dimensional analog of the
multiple phase transitions that occur in the three-dimensional
cube in Fig. 3. The BdG simulations confirm the existence of
the boundary states.

Note however, that the precise structures of the edge and
corner states obtained from the BdG calculations differ from
those predicted by GL theory, which is not surprising given
that they correspond to different physical systems. Indeed,
BdG is considered in tight binding limit and hence corre-
sponds to localized electrons with much stronger interac-
tions than free electron approximation conventionally used
to obtain GL model. The microscopic BdG results in Fig. 8
exhibit parallel modulation and exponential decay, while the
Ginzburg-Landau results in Fig. 3 indicate modulation along
the edges. The apparent conclusion obtained from both sim-
ulations is the existence of the edge and corner states and
sequence of phase transitions.

On the other hand, when replacing the Laplacian term by∑
i j |∂i∂ jψ |2 we observe a strong resemblance between the

GL and BdG simulations—compare for example we obtain
configuration of the order parameter in GL, which is very
close to that of BdG: compare Figs. 4(b) and 8(c). In this case
modulation of ψ is mostly orthogonal to the boundary. How-
ever, the modification of GL model with the Laplacian term
replaced by

∑
i j |∂i∂ jψ |2, in contrast to the BdG solutions,

does not have the phases with gap formation on the edges and
vertices in the absence of the gaps on the faces.

To demonstrate the presence of edge-modulated states on
the BdG level we consider a sample with edges forming an
angle of π/4 with the crystalline axis. The effect of this
choice influences the interactions of the edge sites. In this
case there appears modulation of the gap field along the
boundaries. Figure 9 shows this result, characterized by the
order parameter suppression in the bulk and enhancement in
the corners.

In context of cold atoms a phase separation between FFLO-
like bulk and normal or BCS-like boundary was predicted
in a one-dimensional harmonic trap [29–31]. Note that these
states appear as different phase due to spatially variating local
density approximation chemical potential μ(z) = μ0 − V (z)
inside the trap making the system form different states at
different distances from the trap center. Where the potential
is deep, i.e., in the center of a trap, FFLO state appears
while near the boundary of the trap, normal or BCS states
are formed. By contrast, the states that we find not only are
represented by a very different solution but appear under
different conditions: induced by hard wall potential, when
particles are not permitted to hop outside the sample, which is
equivalent to infinite chemical potential at a boundary. It does
not have a direct counterpart in the phase separation picture
in traps. Another principal difference is that our states rely on
the density of state structure near boundaries, as can be most
clearly seen in a BCS superconductor with zero population
imbalance [28].

VII. CONCLUSIONS

In conclusion, we considered boundary effects in a
superconductor where Cooper pairing involves electrons
with finite center-of-mass momentum (Fulde-Ferrel-Larkin-
Ovchinnikov instability). Firstly, we demonstrated that the
standard microscopically-derived Ginzburg-Landau model
cannot be used to describe such superconductors in the pres-
ence of boundaries in dimension larger than one since it gives
a spurious divergence of the free energy near the boundaries.
To describe such states we constructed a generalized func-
tional with higher order derivative terms were retained to
guarantee finiteness of the free energy density. We showed
that at the mean-field level the system undergoes a sequence
of the phase transitions where each transition is associated
with decreased dimensionality of the superconducting state.
Namely as temperature is increased the system first looses
bulk superconductivity but retains two-dimensional supercon-
ductivity on its faces. The next phase transition is associated
with the loss of two-dimensional superconductivity on the
faces but retaining one-dimensional superconductivity on the
edges. When the temperature is increased further the super-
conducting gaps survives only at the vertices. The transition
from the bulk to surface pair-density-wave superconductivity
is also captured by an alternative and simpler form of the
Ginzburg-Landau functional described in Sec. V.

In order to demonstrate the existence of multiple phase
transitions in a model that does not rely on Ginzburg-
Landau expansion we solved numerically Bogoliubov-de-
Gennes model in two dimensions. Clearly the solution demon-
strates the phase transition from the bulk to boundary super-
conductivity.

The results provide a new route to identify and study prop-
erties of pair-density-wave superconductors. The results pre-
dict a discrepancy between the bulk-dominated specific heat
identification of critical temperature and surface-dominated
current and diamagnetic response probes. The predicted pos-
sibility of a different modulation of the order parameter on
the surface also has direct implication for scanning tunneling
microscopy and Josephson experiments.

The current work also opens up the question of the physics
of boundary states beyond mean-field approximation. Beyond
mean-field approximation, quasi-one-dimensional supercon-
ductors are always phase disordered in thermodynamic limit
at any finite temperature. However, again as in any supercon-
ducting wire that statement applies only to thermodynamic
limit and it’s expected to see the mean-field sequence of the
phase transitions in local probes such as scanning tunnel-
ing microscopy. The surface phase transition beyond mean-
field approximation should be of the Berezinskii-Kosterlitz-
Thouless type. However multiple transitions are also pos-
sible beyond mean field in cases where the modulation is
along the surface, associated with melting of stripes and
loss of crystalline modulation order. This will be a coun-
terpart of multiple transitions beyond mean-field approxi-
mation that attract currently substantial interest in the con-
ventional two-dimensional Larkin-Ovchinnikov cases [32,33]
that yields additional paired and charge-4e phases. Our results
indicate that beyond mean-field approximation, the charge
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charge-4e superconductivity via Berezinskii-Kosterlitz-
Thouless type transition can occur also at the surfaces of
bulk superconductors (for a detailed general discussion of
the fluctuation-induced paired phases in low-dimensional
multicomponent superconductors see Refs. [34,35]).
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APPENDIX

It is common to use variational approach to derive BdG
equations [36]. Namely, the self consistency equations are
obtained by setting the variation of the free energy � with
respect to mean fields to zero.

� = tr[HρMF + T ρMF ln ρMF ] (A1)

where H is Hamiltonian corresponding to exact Fermi-
Hubbard model Eq. (17) and ρMF = e−HMF /T

tre−HMF /T with mean field
Hamiltonian HMF .

The main difference from our derivation in Sec. VI is that
one has to include additional mean fields in HMF via Hartree
term

∑
i,σ Uiσ ψ

†
iσ ψiσ . It amounts to replacing matrix H in self

consistency Eq. (26) for �i with M = H + U , where

Ui j =
(

δi jUi↑ 0

0 −δi jUi↓

)
. (A2)

In addition, the fields Uiσ have to be solved for self consis-
tently using

Ui↑ = −V hT
i f (−M )hi = −V 〈ni↓〉,

Ui↓ = −V eT
i f (M )ei = −V 〈ni↑〉.

(A3)

In Figure 10 we present results in one dimension which
incorporate self-consistent solution for both the pairing field
and the Hartree fields, for various temperatures, keeping the
remaining parameters fixed. We show results using both peri-
odic and open boundary conditions, in order to investigate the
existence of boundary states. We find that boundary states also
exist in this model but with a smaller difference between the
critical temperatures. Note that modulation in spin population
imbalance 〈n↑ − n↓〉 is much smaller and is twice as frequent
as that of �. The latter is easy to explain by the fact that each
of the populations 〈nσ 〉 in Eq. (A3) is an even function of �.
Hence they depend on |�|, which has twice shorter period
than �. Note that the spin-population imbalance modulation
is enhanced close to the boundary, but the decay length signifi-
cantly shorter than for the pairing potential. This enhancement

(a)

(b)

(c)

(d)

FIG. 10. (a) Comparison between the maximal value of pairing
potential � for various temperatures, using either open (full line)
or periodic (dashed line) boundary conditions in one dimension.
Boundary states are present at T ∈ [0.150, 0.153]. Pairing potential
� (blue) and spin population imbalance 〈n↑ − n↓〉 (red) of: (b) LO
state at T = 0.147, which exhibits modulation both in � and 〈n↑ −
n↓〉, with the latter one being much less prominent. (c) Modulated
boundary state with exponentially dampened oscillations at T =
0.152. (d) State at which superconductivity is lost while the boundary
modulation in the spin imbalance remains at T = 0.155. Remaining
parameters are set to t = 1, μ = −0.65, h = 0.7, and V = 2.5.

remains even for higher temperatures, when superconductivity
is completely lost and is related to Friedel oscillations.
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