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Nonlinear dynamics of driven superconductors with dissipation
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In the absence of dissipation a periodically driven BCS superconductor can enter a coherent nonlinear regime
of collective Rabi oscillations which last for arbitrary long times [Ojeda Collado ef al., Phys. Rev. B 98, 214519
(2018)]. Here we show that dissipation effects introduce dramatic changes: (i) The collective Rabi mode becomes
a transient. (ii) At long times a steady state is reached showing strong nonlinear effects for large enough
drive strength. We identify the physical parameters governing the various crossovers and present a detailed

computation of time- and angle-resolved photoemission spectroscopy (tr-ARPES) and time-resolved tunneling
spectra aiming at detecting the collective Rabi oscillations and the steady-state nonlinearities. We show also that
second harmonic generation is allowed for a drive which acts on the BCS coupling constant.
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I. INTRODUCTION

The recent advances in laser technologies have opened new
avenues for the study of collective behavior and emergent
phenomena in condensed matter [1-9] and ultracold-atom
systems [10—15] far from the linear response paradigm. The-
oretical examples of these strongly nonlinear phenomena are
dynamical phase transitions after a quantum quench [16,17]
or under a periodic drive [18].

While these studies are of interest per se, they can also,
in principle, shine some light on the nature of the precursor
equilibrium phases. In this context, superconducting conden-
sates have drawn increasing attention, both in theoretical and
experimental research, as challenging cases for the study of
collective out of equilibrium states, especially in the case
of superconductors with competing orders [1-9]. Much of
the interest in the field was fueled by theoretical studies of
quenched systems [16,19,20] and experiments in which the
superconductor is excited by a pump pulse without a complete
suppression of the superconducting state. In the perturbed
system, the superconducting order parameter A (Higgs mode)
or the charge modes evolve with collective oscillations at
frequency 2A which are rapidly damped due to dephasing
[2,3].

Another interesting way to manipulate a condensate is
through periodic drives. In solid-state superconductors, dif-
ferent type of drives have been discussed. Among them are
impulsive stimulated Raman scattering (ISRS) [21], phonon
assisted modulation of the density of states (DOS driving) as
in the case of 2H-NbSe, [22,23] or of the coupling constant
(A driving) as proposed for FeSe [18], microwave drives and
THz drives [24] as already realized in Ref. [4]. Periodic drives
can also be implemented in ultracold atoms where there are
well known techniques to modify Hamiltonian parameters at
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will: DOS driving can be achieved modifying the depth of a
periodic potential, as it has been done for bosons [10—12]. A
driving can be implemented either by periodically modulating
the magnetic field of a Feshbach resonance [13,15] or by
radiofrequency dressing with a third state [14].

Previously, we have shown that within a BCS self-
consistent dynamics, a periodic excitation at a frequency w,
in resonance with quasiparticle excitations (w; > 2A) can
produce collective Rabi oscillations of the quasiparticle pop-
ulation with a frequency proportional to the strength of the
drive resulting in a new nonlinear mode of the superconduct-
ing order parameter (Rabi-Higgs mode) [18]. This is due to
a subset of quasiparticle excitations with energy Ej satisfying
wg = 2E, =2V Skz + A? where Ej is the quasiparticle energy
and & is the energy of the fermions measured from the
chemical potential. A family of quasiparticles approximately
satisfying the above condition synchronize among themselves
and perform collective oscillations at the Rabi frequency both
for A and DOS driving. Actually, the phenomenon is very
general and is expected to occur for any driving that couples
with quasiparticles including THz and impulsive stimulated
Raman drives (see Appendices A and B of Ref. [18] for an
account of various electronic driving mechanisms). Usually
the Higgs mode refers to the amplitude mode of the supercon-
ducting order parameter which arises because of the broken
global U(1) symmetry of the superconducting state [3,4].
Here, Rabi-Higgs refers to a collective mode that corresponds
with a modulation of amplitude of the superconducting order
parameter (this is why we use the word “Higgs”) as a con-
sequence of Rabi oscillations of quasiparticle population in
resonance with a periodic drive.

The observation of a Rabi-Higgs mode requires enter-
ing into a highly nonlinear regime where damping and

©2020 American Physical Society
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FIG. 1. Superconducting dynamics in the absence of dissipation
for @ = 0.1 (left column) and & = 0.2 (right column) and w; = 4A,.
From top to bottom we show the superconducting order parameter
as a function of time, the time-dependent momentum distribution
function n;(¢) and the fast Fourier transform of A(z). We label the
states by the normal state quasiparticle energy &.

decoherence effects can be overcome. One of our goals is to
determine under what conditions this regime can be achieved.
It is well known from optical Bloch equations for a single
periodically driven two-level system [25] that a finite energy
relaxation time t leads to a linear response regime for weak
excitation amplitudes at long times. The nonlinear regime of
Rabi oscillations can be accessed at short times when the Rabi
frequency is larger than 1/7. This model has been applied to
the case of driven graphene [26] with similar conclusions.

While extrapolation to many interacting two-level systems
is not granted, in the present work we find that similar regimes
do exist in the case of the collective Rabi-Higgs oscillations in
BCS superconductors. Therefore, their observation requires
long relaxation times and/or strong drives (which result in
Rabi-Higgs frequency Qr > 1/17).

How long can t be in superconductors? It is known that
quasiparticle relaxation times can be extremely long under
favorable conditions. A simple estimate can be obtained
through the Dynes parameter [27] in tunneling experiments
which, as explicitly shown in Ref. [28], is directly related to
the damping of quasiparticles by the bath ultimately limiting
the coherent dynamics. In aluminium samples, an inverse
Dynes parameter 1/y = t ~ 10°/A ~ us has been measured
[29] which suggests that there is a large time window for
coherent dynamics. Indeed, we found that for a moderate drive
strength the Rabi period 1z = 27 /2 is in the scale of tenths
or hundreds of 1/A <« t (see Fig. 1). On the other hand,
the above estimate for T is probably too optimistic as the
same out-of-equilibrium quasiparticles will open new relax-
ation channels [30] and hence the whole out-of-equilibrium
many-body problem should be considered in a self-consistent
manner.

Here we take a simple approach for the interplay of co-
herent nonlinear phenomena and damping by considering a
driven superconductor in the presence of a bath providing
energy relaxation. We make the simplest possible assumption

for the bath leaving a microscopic many-body description
for future work. Thus we treat the coupling with the bath
as a phenomenological parameter and present the spectral
signatures of the Rabi-Higgs modes varying the coupling
and other experimental parameters. Differently from previous
works, and as a first step towards a full many-body treatment,
the dissipative dynamics is treated in a self-consistent way
using the method introduced in Ref. [28]. Both tr-ARPES
and tunneling are analyzed in detail. Signature of the Rabi-
Higgs oscillations are accessible in both experiments at short
times. At long times a steady state is achieved with inter-
esting nonlinear phenomena also amenable to experimental
investigation as second-harmonic generation and population
imbalance saturation.

II. THE TIME-DEPENDENT BCS MODEL
WITH DISSIPATION

In the absence of dissipation, A drive and DOS drive
produce qualitatively similar results [18]. As we expect the
same to be true in the presence of dissipation, we restrict
hereon to study A driving.

In addition, in the dissipationless case, even for weak
drives and for w; > 2A the Rabi-Higgs mode appears with
frequency Qg proportional to the intensity of the drive. Ap-
parently the Rabi-Higgs mode violates any linear response
prescription. Indeed, as mentioned in the introduction, without
dissipation the system becomes inherently nonlinear at long
times no matter how weak the perturbation is. In analogy
with two-level systems we expect that dissipation effects
redress this anomalous behavior. This would imply that the
order of limits is important. Taking first the Rabi frequency
(proportional to the drive intensity) 2 — 0 and then energy
relaxation times T — oo a linear response regime should be
well defined. Inverting the order of limits it should not. The
numerical results below are consistent with this theoretical
expectation.

A. Model and formalism

We consider a single-band s-wave superconductor de-
scribed by the Hamiltonian,

Hgcs = Zékc;mck” — A1) ZCIiTCT—kLC—kak’T (1)
k,o kK

where cg, (c,ia) destroys (creates) an electron with momentum
k, energy &, and spin o. Here & = & — i measures the
energy from the Fermi level u and the pairing interaction A(t)
is parameterized as

A(t) = o[l 4+ Ot sin (wat)], )

where ©(¢) is the Heaviside step function. In most of our cal-
culations we take the parameter o € [0, 0.2] that corresponds
to a modulation of up to 20% of the equilibrium pairing
interaction Ao, to keep it within the range of experimental
accessibility in condensed matter systems assuming a phonon-
assisted A-driving mechanism [18,31]. In the thermodynamic
limit, the Hamiltonian (1) is equivalent to the mean-field
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Hamiltonian,

Hyie = Y U Hi(OYr, 3)
k

written in the Nambu spinor basis ¥ = (cs, Cik ¢)T, where
&k —A(r )>
=A@ =& )’

and the instantaneous superconducting order parameter is
given by

Ho(t) = ( @)

At) = M) Y (eh ()ct, (@), (5)
k

Here (...) denotes the expectation value on the initial state.
Notice that the expectation value on the right hand side of
Eq. (5) is in the Heisenberg picture so the full many-body
time evolution is taken into account by the unitary evolution
of the operators. Despite the simplicity of the drive Eq. (2), we
will see that A(#) can develop quite complex phenomena with
different frequencies entering into play in a self-consistent
manner.

In order to consider dissipation we couple the supercon-
ductor to a reservoir. For simplicity we will take the bath to be
at zero temperature, which means that if the superconductor
is out of equilibrium at some time and it is allowed to evolve
in the absence of the drive, it will eventually relax to the
ground state with the bath absorbing all the excess energy.
The method to treat the bath was explained in detail in Ref.
[28]. Here we summarize the main results.

To describe the reservoir effect, the self-consistent solution
of the gap equation is written in terms of the Keldysh two-
time contour Green’s functions. In the Nambu spinor basis, the
retarded and lesser Green functions are 2 x 2 matrices with
matrix elements given by

G{(t,1")ap = =IO — 1) (Yo (1), Y5 (1)),
G (1,1 )ap = i(Y, (W (1)),

respectively, here {, } denotes the anticommutator. Thus, the
superconducting gap equation [Eq. (5)] can be written as

A(r) = —iA(1) ZG;(;, 1)y
k

(6)

@)

When considering the coupling to a reservoir, the lesser
Green function satisfies the Keldysh equation in time domain
[28,32-34]

G,?(t,t’)=/dn/dtzG,If(t,t1)>:,§(t1,tz)G§(t’,tz)T ®)

where the dissipation effects are taken into account via the
lesser self-energy X, (t;,t,) and the retarded Green function
which is solution of the corresponding Dyson equation with a
retarded self-energy Z,’f(tl ,bh).

Following Refs. [34,35] we consider a mechanism for
dissipation that couples each pair of states k 1, —k | with a
reservoir described by a time-independent one body Hamil-
tonian H, = ZLG Egdzgdgg where dgg creates an electron in
a single particle bath state with energy E,. In the limit of a
wide-band reservoir with identical coupling Vi, = V; for each

k all details of the bath band structure disappear and its effects
can be described by a single frequency independent parameter
y describing the effects of inelastic scattering, producing
a level broadening ~y and a finite lifetime v = 1/y. The
generalization to the case of a k-dependent lifetime y; is
straightforward and undemanding, however taking a constant
y is good approximation as all the physical process take place
in a narrow energy window around the Fermi energy.

In this formulation, the retarded and lesser self-energy be-
come momentum independent and diagonal in Nambu space,
ie, Xy =IZR and X7 =T~ with

2R, 1) = —iys(t — 0)/2,

»< Y /dw —iw(ty—1p)

(t.n) =iy | s-f(we . ©))

2

Here f(w) is the Fermi function evaluated at the bath tempera-
ture. Consequently, the Dyson equation for the retarded Green
function can be easily integrated, being given by Gi(z,1') =
Gf(o) (t,1)e " /2 where G,If(o)(t, t') is the retarded Green
function in the absence of dissipation. The latter can be
computed by solving the following differential equations (in
matrix notation in the Nambu spinor basis and setting /i = 1),

GXOt,1) = —il,
0,601, 1) = Hy()GFVt, 1), t>1,
i0,GyV(t,1) = -GV, HHR(t), t>1. (10)

Replacing Eq. (9) into Eq. (8) and assuming a reservoir at zero
temperature we obtain

t t
Gi(t,1") = —%/‘ dl‘l/ dl‘zG/lf(O)(f, t )Gf(o)(l‘,7f2)+
—0Q —0Q

e~ V(t—ti+t'—0)/2
X — (1)
t —tp +i0t
Hence, the time dependence of the order parameter [Eq. (7)]
can be obtained after computing the lesser Green function
[Eq. (11)] for ¢ = ¢. This equal-time lesser Green function
Gy (t,t) = G (¢) satisfies the equation of motion

Gy (t) = —yGp (1) + Iy (t) — i[Hr (1), Gg ()],  (12)
where
. t GR(O) t t/ GR(O) t t/ T ot
Ik(t)zi-/ dr'[ =% (’,) + & (’,) e
271 J_ oo t—t —i0t  t—t +i0*

13)

The initial condition for the differential Eq. (12) is given by
the equilibrium value of the lesser Green function

T 2F, —A
G () = 11 — — arotan (25 (% ). aa
2 wEy 14 —-Ay &

where Ex = V& + A}, which is time independent and eas-
ily obtained after replacing the equilibrium retarded Green
function in Eq. (11) (see Ref. [28]). As a consequence, in the
presence of dissipation, the equilibrium order parameter Ay is
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defined, via Eq. (7), by the gap equation

1 Ao 2E}
1=— — arct — ). 15
- Z z arctan ( > (15)

o Lk 14

In the y — O limit Eq. (15) becomes the standard BCS
gap equation. In the presence of inelastic scattering (y # 0)
the superconducting order parameter is reduced. As already
mentioned, another important result is that at equilibrium
the present formalism presents a rigorous justification for
the Dynes formula for the density of states [28]. As will be
shown explicitly below, this provides a simple way to estimate
the y parameter close to equilibrium directly from tunneling
experiments [27,29].

B. Rabi-Higgs modes in the superconducting response and
dissipation effects

We now present the numerical solution of our model for A
driving. For concreteness we shall show simulations for w; =
4A, but qualitative similar behavior is obtained for not too
large frequencies above the gap (w; > 2Ay).

At t < 0 the system is in equilibrium and the order pa-
rameter Ay is given by Eq. (15). At ¢ > 0 the drive switches
on according to Eq. (2) and we compute the equal-time
lesser Green function via Egs. (12)—(14) in order to self-
consistently determine the superconducting order parameter
evolution through Eq. (7).

1. Nonlinear effects in the undamped dynamics

Here we briefly present the superconducting response in
the absence of dissipation aiming at: (a) showing that the for-
mulation in terms of the Keldysh Green functions reproduces
the known results [18] obtained with the simpler Anderson’s
pseudospins description, (b) discussing the occurrence of an
anomalous second harmonic generation, and (c) presenting
results to compare with those in which the reservoir effects
play arole.

In the absence of dissipation the calculation is made by
considering the evolution of the equal-time lesser Green func-
tion dictated only by the commutator with the Hamiltonian
[Eq. (12) without the two first terms in the rh.s.]. The dy-
namics of A(¢) and the expectation value of the momentum
distribution function,

m(t) =Y (e}, (ks (1) = 1 = l1GF (11 — G ()] (16)

a

are shown in Fig. 1 for two different values of the perturbation
amplitude «. It is apparent from the figure that the order
parameter oscillates with two fundamental frequencies and,
after a short transient, averages to a smaller value with respect
to equilibrium. The drive frequency corresponds to a fast
oscillation that cannot be resolved on the scale of the figure
and leads to the filled black regions of the gap dynamic.
In addition, the amplitude of the gap shows the Rabi-Higgs
oscillations with a frequency that increases approximately
linearly with increasing «. Indeed,

Qp
x A(wq/Ao)a (17)
0

with

-G

Alwa/Ao) = (18)

1= 220x0»(@a)

where Xg, A(wq) is a bare susceptibility that takes into account
how the system respond to a periodic time-dependent stimuli
of frequency wy, (see Ref. [18] for an analytic approximation
for this susceptibility using linear response).

The Rabi-Higgs mode is associated with a periodic inver-
sion of the population of the quasiparticles in resonance with
the drive. For w; = 4A, this is visible in the momentum
distribution function ng () as a narrow time dependent struc-
ture at quasiparticle energy & ~ £2A, (Fig. 1, middle panel)
with a frequency that matches the Rabi-Higgs period of A(z).
Notice that the inversion of colors along the anomaly represent
a cyclic inversion of population of the resonant quasiparticles.
Such a time-dependent anomaly represents a clear hallmark
of the Rabi-Higgs mode and opens the possibility to detect
it through spectroscopies as we shall demonstrate in the next
section.

Another nonlinear effect is the generation of a second
harmonic and its associated Rabi-Higgs mode. In the case
of an electromagnetic drive, second harmonic generation is
not allowed [36]. This follows from the general fact that the
current response to the vector potential A is J ~ p,(A)A where
ps(A) is the superfluid stiffness. In the absence of a steady
state current, the free energy and p;(A) are even in A, so
the lowest nonlinear contribution to J is order A3, i.e., third
harmonic generation [36]. In contrast, such symmetry does
not exist in our case since for A > 0, terms odd in §A are
allowed in the free energy and second harmonic generation
is possible. Indeed, as can be seen in the bottom panel of
Fig. 1 the superconducting response not only contains the
driving frequency wy; = 4A( but also 2w; = 8Ag. This can
also be seen in the middle panel of Fig. 1, where a less intense
Rabi-Higgs mode is developed, associated with the second
harmonic response, i.e., quasiparticles with & ~ £4A, show
a narrow time dependent anomaly in the population but with
a much smaller Rabi frequency.

2. Dissipative dynamics

We now present one of the central results of this con-
tribution: the effect of dissipation on the Rabi-Higgs mode
and in general on the charge dynamics. As mentioned in
the introduction, we know from Bloch equations for a single
two-level system that the Rabi oscillation becomes a transient
effect in the presence of dissipation. The driven supercon-
ducting response [A(#)] in the presence of a bath is shown
in Fig. 2 for different values of the bath parameter y and
the perturbation amplitude «. We see that also the collective
Rabi oscillations of many interacting and synchronized two-
level systems become a transient effect in the presence of
dissipation. Indeed, for sufficiently long times a steady state
is achieved where only the drive frequency is present.

As y is increased (from top to bottom in Fig. 2) the
system reaches a steady state more rapidly with a vanishing
of Rabi-Higgs oscillations. By increasing «, for a fixed value
of y, Qg increases [cf. Eq. (17)] and several Rabi-Higgs
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FIG. 2. Time dependence of the superconducting order param-
eter in the presence of dissipation for o = 0.1 (left column) and
a = 0.2 (right column). From top to bottom we use y = 0 (without
dissipation effects), y = 0.05A¢ and y = 0.2A, respectively.

oscillations are visible before they disappear as a consequence
of relaxation [see, for example, Figs. 2(c) and 2(d)]. Thus,
in order to detect the Rabi-Higgs modes experimentally it is
necessary to ensure that Qg 2 y. In fact, for the y values used
here, the slower Rabi-Higgs mode, associated with the second
harmonic generation (Sec. II B 1), is not visible.

Conversely, for small « and strong dissipation it is possible
to get Qr < v and only oscillations in synchrony with the
drive are visible as expected from linear response theory
(bottom panels of Fig. 2 and Fig. 3). In this regime, the
amplitude of the oscillation in the order parameter increases
linearly with o as shown in Fig. 3. However, it is important to
note that by increasing «, and after a very fast transient, the
superconducting gap decreases in average which constitutes
the first steady-state nonlinear effect arising in the dynamics.

As a conclusion, in the presence of dissipation, we can
distinguish two different main regimes: For Q < y there
are no Rabi oscillations and linear response theory can be
applied even at short times. For Qr 2 y Rabi-Higgs oscil-
lations can be observed as a transient phenomena. In both
cases, a steady-state nonlinear regime appears at large fields

@ 0.2 1 b).°
1.05 |
J TN
SRR QMMQWMQMM a 01 -
T
e
095 1 ‘ ‘ 0+ ‘ ‘
0 10 20 0 002 0.04
tAo «

FIG. 3. (a) Time dependence of the order parameter for y =
0.2A( and o = 0.004, 0.01, 0.016, 0.022. (b) Amplitude of the os-
cillation in the order parameter A; as a function of the strength of
the drive «. The filled points correspond with the curves of panel (a).
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FIG. 4. n; distribution as a function of time for « = 0.2 and
y = 0 (left column), y = 0.05A (middle column), and y = 0.24,
(right column). In panels (d)—(f), the time increases from bottom to
top as follows r = 0 (equilibrium), 7 = 0.17¢, t = 0.257¢, 1t = 0.57,
t = 0.75t, and ¢t = 1 (Rabi-Higgs period tr Ay = 15). For clarity,
the zero of each curve was displaced vertically by 2 units. The
oscillating ny, distributions in the steady state are shown in panels
(a)—(c) at different times within a drive period. Notice that for y = 0
the steady-state shows Rabi oscillations. In panel (a) the curves are
shown when population inversion is maximum.

which is also interesting. Below we will explore both; the
transient nonlinear regime for 27w /Qg < tyy < 1/y, with ty
the measurement time, and the steady-state nonlinear regime
for large drive amplitude and ), > 1/y.

We start discussing in more detail the transient nonlinear
regime, in particular the possibility of detection of the Rabi-
Higgs mode in experiments. Previously, we have demon-
strated that the Rabi-Higgs mode is associated with oscilla-
tions in the occupation values n; (see Fig. 1). These charge
fluctuations provide an efficient manner to detect the existence
of this nonlinear mode with standard experimental techniques
as we shall show in the next section.

Since for the simple electronic structure we are taking,
ng depends on k only through its distance from the Fermi
surface (&) it is useful to introduce the distribution function
n(&) = ng. When convenient, in the following we will drop
the momentum dependence and refer to n(£) loosely as the
“momentum distribution function” keeping in mind the above
equivalence.

In Fig. 4 we show the time-dependent ny, distribution taking
into account dissipative effects (middle and right column) in
comparison with the dissipationless counterpart (left column)
at different times within the first Rabi cycle [panels (d)—(f)]
and in the steady state [panels (a)—(c)]. We have used the same
y and o parameters as in the right column of Fig. 2.

For y = 0 the Rabi oscillations can be observed as os-
cillations in the occupation value ny for & &~ £2A, which
we will refer to as n(£&g). Small peaks also appear for & ~
+4 A, corresponding to the second-harmonic slower Rabi-
Higgs mode that starts to develop in the temporal window
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a

FIG. 5. Steady-state ny distributions for y = 0.2A¢ and o =
0.05 (a), « = 0.1 (b), « = 0.15 (¢), and @ = 0.2 (d). In panel (e)
the dashed and solid lines represent the (minimum, maximum) and
average value of n(&g), respectively, as a function of «. Notice that
n(&g) is nonzero even for @ = 0 as an excess of occupation is inherent
to the BCS ground state. The dot-dashed line is a quadratic fitting for
the average of excited population for small « values. The population
inversion starts when n(&g) exceeds the horizontal line n; = 1 which
is represented with arrows in the panel (d). As a consequence of the
presence of dissipation, in the steady state regime this does not occur
not matter how strong the perturbation is.

used in Fig. 4(d). At long times, the two Rabi-Higgs modes
can be seen as is shown in Fig. 4(a).

In the presence of weak dissipation (y = 0.05A¢), the
transient dynamic only shows oscillations of n(+&g), corre-
sponding to the fastest Rabi-Higgs mode. Finally, for strong
dissipation (y = 0.2Ay), a full Rabi cycle cannot be com-
pleted since the relaxation takes place in a very short time. As
a consequence n(&g) [n(—£&g)] increases (decreases) during a
short period of time and rapidly saturates without exhibiting
Rabi oscillations.

The ny; distribution in the steady state in the presence of
dissipation are shown in Figs. 4(b) and 4(c) for different
times within a period of the drive. In this case, ny shows a
peak at & ~ £2A such that n(+£g) ~ 1 all the time. Taking
into account spin this corresponds to half-filled single particle
states. Below we will show that the present value of ¢ = 0.2
is large enough to be in the steady-state nonlinear regime.
Thus, ultimately the fate of the superconducting dynamics
is a gap oscillation with the drive frequency [see Figs. 2(e)
and 2(f)] and a quasi-stationary population unbalance at the
quasiparticle energy &g.

Now we focus on the steady-state regime after the transient
to identify the crossover between linear and nonlinear regime.
We have extracted the ny distribution at long times for sev-
eral values of o with y = 0.2A. The population unbalance
changes considerably as a function of the amplitude of the
perturbation as can be appreciated in Fig. 5. This phenomenon
is well known in nonlinear quantum optics. There, one usually

considers a two-level system in the presence of a driving force
and damping effects via a phenomenological parameter in the
Bloch equation of motion. For a drive frequency in resonance
with the two level system, the excited population in the steady
state increases with the amplitude of the perturbation and
in the limit of large intensity, the largest possible excited
population is equal to the ground state population [25] (on
passing we notice that other outcomes are possible relaxing
the wide-band bath condition [37]).

As already mentioned, the present context is quite differ-
ent from quantum optics because the phenomenon does not
correspond to a single two-level system but a collection of
two-level systems interacting through the self-consistency that
determines the superconducting order parameter. Despite that,
we find that in the limit of large « [Fig. 5(e)] the steady state
population saturates at the half-filled value (counting spin)
n(ég) ~ 1. In other words, as for a single two-level system,
there is never a steady state with population inversion [e.g., a
sign change of n(£g) — n(—£&g)] no matter how large « is.

The above results show that nonlinearities are controlled in
a similar manner as for single two-level systems. Assuming
this analogy, the linear response regime is characterized by
off-diagonal elements of the density matrix linear in « and
diagonal elements quadratic in « (as dictated by symmetry).
Indeed, one sees that for small « values the average population
imbalance [full line in Fig. 5(e)] is quadratic in . Around
o ~ 0.1 this regime breaks down and the system crosses over
to the nonlinear steady-state regime. Thus the steady-state
linear regime requires o << 1 or equivalently Qg < Ay [cf.
Eq. (17)].

III. THEORETICAL MODELING OF TR-ARPES AND
TUNNELING EXPERIMENTS: SPECTRAL FINGERPRINTS
OF RABI-HIGGS MODE

Our main aim in this section is to identify some spec-
tral fingerprints giving experimental access to the interesting
nonlinear regimes we have identified in the previous sections
in the presence of dissipation, the transient nonlinear regime
(Rabi-Higgs mode), and the steady-state nonlinear regime.
Clearly, an emergent technique to detect transient phenomena
is tr-ARPES and so we discuss such a case first. Yet, in
addition, we shall demonstrate that also time resolved tun-
neling experiments could be useful to detect the nonlinear
mode discussed above. In all the calculations discussed below,
we obtain the spectral signals in terms of the lesser Green
function Eq. (11) as a function of @ and y.

A. tr-ARPES

In our setting the A driving is turned on at time ¢ =0
and the photoemission process is induced by a wave packet
of photons centered at time 7y and with central energy hw,
larger than the work function of the solid W. For simplicity we
use a Gaussian shape for this probe pulse, s(t) = exp(—(t —
10)?/20%) /(0 /27 with standard deviation o

In a tr-ARPES experiment the momentum of the outgoing
electrons k., is measured. Energy conservation determines
the excitation energy left in the system after the photoemis-
sion process, fiw = fiwg — (hk,)?/(2m.) — W and momentum
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FIG. 6. tr-ARPES intensity for o« = 0.2 at several photoemission
times inside the first period tx of Rabi-Higgs mode, from left to
right, 7o = 0 (equilibrium), 7y = 0.1, fo = 0.251¢, 1y = 0.51¢, 1) =
0.75tR, and ty = t¢. From top to bottom we show results for y = 0
(without dissipation), y = 0.05A¢, and y = 0.2A as in Fig. 2.

conservation yields information on the momentum of the
excitations k. The momentum resolved photocurrent in the
detector at time ¢ is due to all electrons photoemitted before
such time and is determined by [38]

t t
I(w, 1) =Im / dn f dtys(t))s(t)e " TIGE (1, 1),y
—00 —00
(19)

In order to probe the Rabi-Higgs modes in real time in
the following we use different probe times 7, and take the
integration limit from a lower cutoff time #; = fy — 50 to
t =ty + 5o. Figure 6 shows the tr-ARPES intensity with and
without dissipation for different 7y during the first period
g associated with the Rabi-Higgs mode. For simplicity, we
consider a parabolic band for electrons & o (k> — k%) and use
a probe pulse with a standard deviation o = 0.1tg. From the
photoemission signal at equilibrium (left column in Fig. 6)
there is an almost imperceptible broadening of the spectral
line as y is increased, which leads to a decrease of supercon-
ducting order parameter according to Eq. (15).

The presence of Rabi-Higgs oscillations are clearly visible
in the top and middle panels of Fig. 6 via a spectral weight
around @ = £2A that increases (decreases) above (below)
the Fermi energy in the first half period and has the opposite
behavior in the second half period of the Rabi-Higgs mode.
One can visualize the process as an excitation of quasiparticles
from the lower quasiparticle branch to the higher quasiparticle
branch in the first half cycle followed by a deexcitation in the
second half cycle or equivalently as a stimulated absorption
phase followed by a stimulated emission phase. If y is large
enough, Rabi oscillations are not visible and only the spectral
weight corresponding with the steady state is observed after a
fast transient (bottom panel of Fig. 6).

Clearly the above dynamics is the photoemission image
of the momentum distribution function imbalance discussed

above. Indeed, integrating in frequency

[e%e] d t
/ —wIk(w,t)zlm/ d'st PGy (', )y
—0oQ

oo 2T

] t

= - f dt's(t'Yn(t') (20)
2J

which is clearly a moving average of ng(¢). For example, in
the large y case the unbalance over time in the tr-ARPES
intensity for w = £2A, matches the ny distribution in the
steady state shown in Fig. 5(d). It is interesting that in photoe-
mission spectral weight is transferred from small momentum
to large momentum which is clearly associated with the
rearrangement of the momentum distribution function. Such
rearrangement of the spectral weight is a hallmark of the
effects discussed and establishes tr-ARPES experiments as a
tool to investigate steady-state nonlinearities, like population
imbalance, and transient nonlinearities like the Rabi-Higgs
mode, in driven superconductors.

Floquet analysis of the steady state regime

As already mentioned for t 2 7 = 1/y one reaches a
steady state and the superconducting gap oscillates only with
the drive frequency. Therefore the mean-field Hamiltonian
Eqg. (3) is time periodic at long times and we can use Floquet
theorem to analyze the spectrum. This theorem guarantees
the existence of a set of solutions of the time-dependent
Schrodinger equation of the form

[V (7)) = exp(—ieyt/h)|¢, (1))

where |¢,(¢)) has the same periodicity of the Hamiltonian
Eq. (4) [39,40]. The Floquet states |¢,(¢)) are the solutions
of

2y

Hrlgy (1)) = €01y (1))

where Hp = Hyr — ihid/0t is the Floquet Hamiltonian and
&, is the quasienergy [41,42]. In the Floquet basis this Hamil-
tonian becomes a time-independent infinite matrix operator.
Since we are interested in the low quasienergy spectra we
restrict the Floquet Hamiltonian to a large enough but finite
subspace containing many multiphoton processes (finite num-
ber of replicas) [41,42].

For y = 0.2A¢ and o = 0.2 the steady-state condition is
reached already fort ~ 0.75tgx = 11.25/A¢. The quasienergy
spectrum in the long time limit is well described by A(¢) =
A + A cos(wgt) with A =0.86Ag and A = 0.42A¢ [cf.
Fig. 2(f)].

In the upper panels of Fig. 7 we compare the tr-ARPES
with the Floquet spectrum in the steady state. To analyze the
details, in the right panels we sacrifice temporal resolution
to gain energy resolution by using a wider probe pulse. We
see that the tr-ARPES signal nicely matches the Floquet
spectrum, depicted by the dashed line. Thus the tr-ARPES
signal essentially probes the occupied parts of the Floquet
band structure.

Surprisingly, also in the transient dynamics the tr-ARPES
intensity fits very well with a Floquet spectrum that is ob-
tained from an effective A(#) with a monochromatic depen-
dence (see lower panel of Fig. 7), even thought in this regime

(22)
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FIG. 7. t-ARPES intensity for drive strength o =0.2, 15 =
0.757g, and y = 0.2A (upper panel) and y = 0 (lower panel). We
use a probe duration of ¢ = 0.17¢ (left column) and o = 0.67¢
(right column). The dashed lines represent the quasienergy spectrum
assuming a periodic time dependence A(t) as defined in the main
text.

the superconducting gap shows several incommensurate fre-
quencies (Rabi-Higgs and drive frequency) and Floquet the-
orem is not strictly applicable. For y = 0, we compute the
Floquet spectrum for a A(t) = 0.63A¢ + 0.35A cos(wgt).
Thus, the transient response shown in Fig. 6 and the lower
panels in Fig. 7 can be seen as a time-dependent change in the
occupancy of the Floquet band structure. Clearly, the reason
this analysis works in the Rabi-Higgs oscillation regime is the
large separation of time scales between the slow Rabi-Higgs
dynamics and the fast drive oscillations [43].

B. Time-resolved tunneling experiment

We now discuss a possible setup to detect the Rabi-Higgs
mode and the steady-state nonlinearities via tunneling mea-
surements. In the last decades there have been efforts to
add temporal resolution to scanning tunneling spectroscopy
(STM) techniques and now subpicosenconds resolution can be
reached in experimental setups [44—46]. In principle one can
radiate a sample while performing the measurement making
STM a feasible time resolved technique at the same level as
pump-probe measurements [46]. However, since the spatial
resolution is not a requirement to reveal these nonlinearities,
a planar junction would probably be a more stable setting.
An antenna could be used to couple the radiation with the
superconductors as is done in detectors for photons with
energy matching the superconducting gap [47,48]. In what
follows, we will refer to STM signal but our formalism applies
also for the case of a planar junction.

To obtain the STM signal, we now consider a tip located
close above the out of equilibrium superconductor and tunnel
coupled locally to the k states in the system. The entire
problem can be described by a generic Hamiltonian H =
Hwyir + Hr + Hrs where we have added the tip (or metallic
planar junction) Hamiltonian

Hy = (€ + eV)aya,, (23)
p

and the coupling between both subsystem via the tunneling
Hamiltonian

Hrs =Y (Tipcfa, + He.). (24)
k.p
The tip or the metallic contact is connected to an external
voltage source with energy eV, a, (a;) destroys (creates) an
electron with momentum p and energy €, + eV in the tip
and Ty, is the strength of the tunneling. The electron current
operator is given by

[ =ie[N,H) = ie(LT — L), (25)
where e is the electron charge, N = Zp a;ap is the number

operator, and [ = ok » Tkpc,l'ap. Assuming a response linear
in Hrg (weak coupling between tip and superconductor) we
calculate the current through the tip as

1(1) = ie/ 0(t —t"){[1(2), Hrs(t")])o (26)

oo
where (...)o denotes the expectation value at zero order in
the tunneling Hamiltonian. Notice that we have not consider
the spin degree of freedom so far as the current is a spin
conserved quantity (not spin-flip are allowed in the tunneling
process). This will be included in the final expression of the
time-dependent current as a factor 2. From Eq. (26) we obtain

I(t) = 2eT? /

—00

di' Y ([ ef (e (1) Oy — eV)

k,p
— e e (DN O(—ep + V)] + (> 1)),
27)

where we have assumed a momentum-independent tunneling
coupling Tz, = T and a zero-temperature Fermi distribution
for the electrons on the tip via the Heaviside step function
®(x). Taking the derivative of Eq. (27) with respect to the
voltage V and using Eq. (6), the time-dependent differential
conductance can be written as

dl ! e
G@t) = v ImZ / dt'Tr[Gy (t,1')]e V=) (28)
k —00

where Tr represents the trace in Nambu space. In the absence
of the drive (that is, at equilibrium) the differential conduc-
tance becomes time independent, being proportional to the
well-know phenomenological Dynes density of states

eV +il’

J(eV +il)? — A2

where the Dynes parameter I' = y /2, A is the equilibrium
order parameter, and pg is the normal phase density of states.
It is worth recalling that the Dynes formula was originally
introduced phenomenologically [27]. There have been sev-
eral theoretical proposals to provide a formal justification
including Eliashberg physics [49], inelastic tunneling [50],
and magnetic impurities [51,52]. In our previous work we
have shown that the coupling with a bath [28] provides a
mechanism to justify Dynes formula and allows us to link
directly equilibrium tunneling with the y parameter. Of course
since we are not providing a microscopic theory of the bath
our justification is still semiphenomenological.

G x p(eV) = poRe (29)
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FIG. 8. Differential conductance for @ = 0.1 at several values of
times inside the first period Tz of Rabi-Higgs mode, from bottom
to top, t = 0 (equilibrium), t = 0.1tg, t = 0.25t¢, t = 0.51%, t =
0.75tg, and t = 7. We use y = 0.2A, and the zero for each curve
(horizontal dashed line) was displaced by factor 5 for clarity.

Turning to the driven case, for small y values the out-of-
equilibrium differential conductance is computationally very
demanding since the whole dynamics has to be integrated
in Eq. (28), differently from the photoemission case where
the integrals are cutoff by the probe pulse shape. To make
the computations feasible we use y = 0.2A¢ and o = 0.1.
The nominal Rabi-Higgs period corresponds to 1Ay ~ 27
but because of the large damping a steady state is reached
before a full Rabi cycle is completed. Still as shown in Fig. 8,
the time-dependent differential conductance clearly shows
a nontrivial transient dynamics. Indeed, a clear depression
in the time-resolved conductance around eV = 2A( can be
observed as a function of time which can be identified with
the beginning of the Rabi-Higgs oscillation.

As in the case of photoemission two effects determine the
features in the spectrum. The upper and lower Bogoliubov
bands hybridize with the first Floquet sideband of the lower
and upper Bogoliubov bands, respectively, creating a pseudo-
gap at w, /2 (see right column of Fig. 7). Furthermore, the
depression of the population at energy —w, /2 depresses the
probability to extract electrons and the excess of population
at energy wg/2 prevents injecting electrons due to Pauli
blocking.

Another effect of the drive is that the whole shape of the
conductance gets modified. Due to the Dynes parameter, at
equilibrium the differential conductance does not vanishes
sharply for energies lower than Ay. Once the time-dependent
perturbation is turned on, the superconducting coherence peak
decreases according to a decreasing in the average order
parameter.

IV. SUMMARY AND OUTLOOK

We have studied the dynamic of a BCS superconductor
subject to a periodic drive in the presence of dissipation
focusing on possible nonlinear phenomena. An important

effect of dissipation is that the Rabi-Higgs oscillations of
Ref. [18] which persist forever when y = 0, become a tran-
sient phenomenon and require y < Qg to be observable. At
long times ¢ 2 1/y, linear response is valid for a weak drive
such that Qp < Ay, while steady-state nonlinearities such as
the phenomenon of saturation of population imbalance, are
obtained for large drives. Another interesting nonlinearity is
second harmonic generation, which we have found is allowed
for the peculiar symmetry of A drive. We stress that except
for this last result, all the other effects are expected to be
universally present for other kinds of drives (DOS-driving,
THz, and optical excitations, etc.).

Our system is very different form a single driven two-
level system. Indeed, the Rabi oscillations are collective
and involve a finite fraction of two-level systems thanks to
interactions that produce synchronization. Notwithstanding
that, there is a close analogy with the nonlinear regimes of
a single two-level system which paves the way to explore
quantum optics protocols taken to a collective level to control
and manipulate the superconducting state of materials. We
have identified two nonlinear regimes: a transient regime
at short times in systems with long relaxation times and a
steady-state regime. It is customary to consider “transient
effects” as unimportant but one should keep in mind that
practically all modern quantum technologies are based in
such nonlinear transient phenomena and the problem of fight-
ing decoherence effects, so its current importance cannot be
overemphasized.

The experimental detection of these highly nonlinear be-
haviors in driven superconductors could be a major step
towards the quantum control and manipulation of quantum
phases. We have proposed tr-ARPES and time-resolved tun-
neling to detect Rabi-Higgs oscillations in the presence of dis-
sipation. The time resolution required for these experiments
is not necessary high and would depend on how long is the
out-of-equilibrium relaxation time which limits the slower
Rabi oscillations that can be seen. Assuming a Rabi-Higgs
period on the order of 102/ Ay, in superconducting aluminum
thin films it corresponds to the range of 0.1 ns, which is much
larger than usual tr-ARPES time resolution (typically ~300 fs
or in some cases ~30 fs). It is also long with respect to the
subpicosecond resolution achieved in some STM experiments
[44-46].

In tr-ARPES, the excited quasiparticle population appears
as a decrease (increase) in the photoemission intensity at
energy —w,;/2 (+wy/2) measured from the chemical poten-
tial. For the Rabi-Higgs mode this imbalance will change
cyclically while for the steady-state nonlinear regime it should
stabilize in a distribution compatible with the unbalance popu-
lation seen in the momentum distribution function (Fig. 5) ac-
cording to Eq. (20). In the last case, time resolution, of course
would not be an issue. Remarkably, we have demonstrated that
tr-ARPES signals match very well with a Floquet spectrum
not only in the steady-state regime but also in the transient
dynamics. The tunneling intensity should show an analogous
cyclic time-dependent depression of intensity at +w,/2 due
to the lacking of spectral density and population unbalance
causing Pauli blockade. This anomaly should stabilize at a
reduced value at long times as a signature of the steady-state
nonlinear behavior. We remark that also the detection of these
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steady-state features would be of interest and does not require
high temporal resolution.

We have previously proposed a phonon-assisted mecha-
nism to induce periodic modulation of the pairing interaction
in superconducting FeSe which represents a possible candi-
date to explore all nonlinear phenomena discussed here. The
main idea is to excite a Aj, mode (oscillations of Se anions)
which controls the pairing. Taking into account infrared light
pulse with typical fluence values, the estimated o parameters
in this case are <0.1 (see Ref. [18]). Here we used slightly
larger values for technical reasons. On the other hand, the
driving can also be implemented in ultracold atomic systems
as discussed in the introduction. In this case, larger values of
a could be explored.

The present formalism can be easily extended to take into
account more interesting relaxation mechanisms via more
sophisticated self-energies beyond the wide-band approxima-
tion used here for the bath. An interesting direction is to
analyze how robust the Rabi-Higgs mode is in the presence of

dephasing, decoherence, and relaxation sources from a more
microscopic point of view by considering residual Coulomb
and electron-phonon interactions where heating effects could
be relevant.
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