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Period tripling in driven quantum oscillators reveals unique features absent for linear and parametric drive,
but generic for all higher-order resonances. Here we focus at zero temperature on the relaxation dynamics
towards a stationary state starting initially from a domain around a classical fixed point in phase space. Beyond
a certain threshold for the driving strength, the long-time dynamics is governed by a single time constant that
sets the rate for switching between different states with broken time translation symmetry. By analyzing the
lowest eigenvalues of the corresponding time evolution generator for the dissipative dynamics, we find that near
the threshold the gap between these eigenvalues nearly closes. The closing becomes complete for a vanishing
quantum parameter. We demonstrate that this behavior, reminiscent of a quantum phase transition, is associated
with a transition from a stationary state which is localized in phase space to a delocalized one. We further show
that switching between domains of classical fixed points happens via quantum activation, however, with rates
that differ from those obtained by a standard semiclassical treatment. As period tripling has been explored with
superconducting circuits mainly in the quasiclassical regime recently, our findings may trigger new activities
towards the deep quantum realm.
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I. INTRODUCTION

A system in contact with a thermal reservoir relaxes when
initially prepared in a state out of thermal equilibrium. This
fundamental process is ubiquitous in all fields of science
and is particularly interesting if, after a transient period of
time, the dynamics is completely governed by only a single
characteristic timescale, the inverse of the relaxation rate.
The archetypical situation is that of an ensemble of particles
initially confined in a potential well which is separated from
an adjacent well or a continuum by a sufficiently high energy
barrier. Then the local dynamics within the well can be
assumed to be much faster than barrier escape processes due
to either thermal activation or quantum tunneling [1,2]. The
situation becomes even richer when a system in contact with
a thermal bath is externally driven periodically to approach
a stationary state: First, these states can be of very diverse
nature, for example, following the periodicity of the external
source or not (broken time translational symmetry) [3–10].

Second, the relaxation dynamics towards these states oc-
curs not by traversing energy barriers but rather dynamical
barriers in phase space. Accurate control of the parameters
of the external drive (amplitude, frequency) allows one not
only to precisely access different stationary states but also
to explore the relaxation dynamics towards these states in
different domains of phase space [11–14].

A particularly fascinating class of systems are periodically
driven nonlinear oscillators that have received substantial
attention in the last decade. Despite their putative simplicity,
they reveal a wealth of dynamical features due to the subtle in-
terplay of driving, nonlinearity, and dissipation and allow for a
wide range of experimental implementations from supercon-
ducting circuits to nanomechanical systems, and cold atomic
gases [15,16]. Mostly the conventional cases of linear [17–22]

and parametric driving [23–28] of a weakly anharmonic os-
cillator have been studied. These systems are conveniently
described in a rotating frame by quasienergy Hamiltonians,
where quasienergy levels are associated with Floquet states.
Typically, the symmetry of the Hamiltonian in the laboratory
frame with respect to time translations is reflected in phase
space by rotational symmetries. Stationary states may then
appear in the rotating frame as either localized or delocalized
accessible by tuning drive parameters. The transition between
them is generally associated with the occurrence of slow
modes, bifurcations, and the existence of multiple orbits.

At low temperatures, quantum fluctuations are the domi-
nant source to induce switching between classical fixed points.
Accordingly, when the quantum oscillator is initially prepared
close to one of the classical fixed points, relaxation to the
stationary state occurs either via quantum tunneling [29,30],
in the absence or for very weak dissipation, or by quantum
activation, for stronger dissipation [25,31–33]. The latter phe-
nomenon is a manifestation of the fact that in a rotating frame
excitation and relaxation processes between local quasienergy
levels behave very different from the situation for Fock
states in the laboratory frame. Likewise, a stationary state
is in general not determined by a detailed balance condition
[31,33] in contrast to a thermal equilibrium. Additionally, time
translation symmetry breaking has been found for period-2
vibrations where the state of full symmetry (the unbroken
state) can merge with the broken states [34]. In any case,
driven nonlinear quantum oscillators may serve as testbeds to
explore features of phase-transition-like phenomena far from
equilibrium.

In contrast to the cases of linear and parametric driving,
much less attention has been paid to the study of period
tripling [14,35–38], where the oscillator is periodically driven
with three times its fundamental frequency. In fact, this is not
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just a generalization of the conventional situation but rather
displays unique dynamical features, absent for linear and
parametric drive, but generic for all higher order resonances
[27,39,40]. Classically, stationary orbits oscillating with an
integer multiple of the drive period do not emerge continu-
ously out of period-1 orbits (oscillating with the frequency of
the drive). Quantum mechanically, tunneling between broken-
symmetry states depends on a rotational geometric phase in
phase space [35], very different from the case of the paramet-
ric oscillator [29,30]. Even weak dissipation destroys coherent
tunneling and quantum activation is expected to set in.

While period tripling in the pure quantum case has been
studied in [35] and the quantum activation in [36], here we
complement these findings by exploring in detail the relax-
ation dynamics towards stationary states and the dissipation-
induced transition between these states being either localized
or delocalized in phase space. Indeed, experimentally higher
order photon resonances have already been observed in a setup
including superconducting resonators [41–43]. They may be
of relevance for the creation of higher order cat states for
quantum simulations, new types of quantum limited detectors,
or to explore the fundamental physics of phase transitions far
from equilibrium. Here we lay the basis to explore the deep
quantum regime and provide detailed predictions for future
experiments, e.g., with superconducting circuits including
Josephson junctions.

To set the stage, in Sec. II we introduce the generic
model and briefly discuss the classical behavior in both the
laboratory frame and the rotating frame. For the generalization
to the quantum regime, we study the relaxation dynamics
starting from a localized state in phase space numerically in
Sec. III based on a Lindblad master equation and in Sec. IV in
Liouville space for the dissipative generator of the dynamics.
Section V collects some results for the switching in the
semiclassical regime which allows in Sec. VI for a comparison
of the various extracted relaxation rates and in Sec. VII a com-
parison between ground state quantum tunneling and quantum
activation. Finally, Sec. VIII addresses the phase transition
between localized and delocalized phase. Main findings are
summarized in the Conclusions.

II. PRELIMINARIES: CLASSICAL
NONLINEAR OSCILLATOR

We start by briefly addressing the classical regime which
besides introducing the setting and the basic notation provides
a physical picture to better understand the quantum problem.

A. Steady state orbits

The system consists of a mechanical model, where a
weakly anharmonic oscillator of the generic form

q̈ + 2γ q̇ + ω2
0q + αq3 = F0q2 cos(ωFt ) (1)

is subject to weak damping with rate γ and to an external
driving with amplitude F0 and frequency ωF . The nonlinearity
is parametrized by α which is supposed to be weak, i.e.,
(α/ω2

0 )A2 � 1, where A is a typical amplitude of steady state
orbits (see Fig. 1). For the driving frequency we will specif-
ically focus on ωF ≈ 3ω0 with a quadratic coupling to the
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FIG. 1. (a) Classical bifurcation diagram in a rotating frame de-
picting steady state amplitudes (in units of C = √

8ω0δω/3α) versus
driving strength [scaled as in (5)] for γ /ω0 = 0.01, ωF /ω0 = 3.02;
the threshold beyond which multiple orbits coexist is fc,cl ≈ 0.49.
(b) and (c) Steady state orbits in the laboratory frame solving (1)
for f = 0.76. The period-1 orbit (b) is oscillating with the driving
frequency ωF (note the scale of the amplitude). Stable period-3 orbits
(c) oscillating with ωF /3 ≈ ω0 occur with relative phase shifts 2π/3,
4π/3; other parameters are αL2/ω2

0 = 0.003, F0L/ω2
0 = 0.05 with

arbitrary length scale L.

oscillator degree of freedom, in contrast to the conventional
situations of linear [ωF ≈ ω0 with F0 cos(ωFt )] and para-
metric [ωF ≈ 2ω0 with F0q cos(ωFt )] driving, respectively.
As we have demonstrated already in [35], this case is of
particular interest as it shows features that are absent in these
conventional situations but generic for all higher than second
order resonances.

By assuming periodic steady state solutions of the form
q(t ) = A cos(�t + ϕ) possible orbits can easily be obtained
from (1), for details see Appendix. Two types of orbits are
found, namely, those oscillating with the frequency � = ωF

of the external drive, and those oscillating with � = ωF /3 ≈
ω0, the fundamental frequency of the bare oscillator; the
former are termed period-1 orbits, the latter period-3 orbits.
A stability analysis reveals that there is a stable and an
unstable branch of period-3 orbits, see Fig. 1(a). Period-3
orbits only exist beyond a threshold for the driving strength
F0 and do not grow continuously out of period-1 solutions, in
contrast to the situation for parametric amplification, where
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period-2 solutions smoothly emerge out of period-1 orbits.
While the amplitudes for stable period-3 orbits grow with
increasing driving, those for unstable period-3 orbits shrink
and asymptotically approach the stable branch of the period-1
orbits. Amplitudes for the latter always remain small due
to the far-off-resonance driving, see Fig. 1(b). According to
the time translational symmetry of (1), period-3 solutions
appear (up to an overall offset) with three different phases
ϕ = 0, 2π/3, 4π/3, see Fig. 1(c). Note that if initially one
prepares the oscillator in a period-1 state for weak driving and
adiabatically increases the driving, in the absence of external
perturbations, the oscillator never approaches period-3 orbits.

B. Quasienergy in the rotating frame

The nondissipative part of (1) results from the time-
dependent Hamiltonian

H = p2

2
+ ω2

0q2

2
+ αq4

4
− F0q3

3
cos(ωFt ). (2)

If the driving is not too strong, so that the driving term, the
anharmonic term, and ω0δωq2 with detuning |δω| = |ωF /3 −
ω0| � ω0 are small compared to the bare harmonic part, it is
convenient to map this Hamiltonian in the laboratory frame
via a canonical transformation of the form

q = CQ cos

(
ωFt

3

)
+ CP sin

(
ωFt

3

)
(3)

to a rotating frame Hamiltonian HRWA. Here we introduced
dimensionless quadratures Q, P, and a scaling factor C =√

8ω0δω
3α

(we assume δω > 0 in the sequel). This way one finds
the dimensionless quasienergy

g(Q, P) ≡ 8HRWA

3αC4
= 1

4
(Q2 + P2 − 1)2 − f (Q3 − 3P2Q),

(4)
with a dimensionless driving strength

f = F0

3
√

24ω0αδω
. (5)

Note that here the definition of f differs by a numerical factor
from [35,36]. This quasienergy has a threefold symmetry in
QP space (C3 symmetry), see Fig. 2, that reflects the time
translational symmetry of the three steady state period-3 orbits
discussed in the previous section. Accordingly, a local max-
imum at Q0 = 0, P0 = 0 associated with the period-1 orbit
with low amplitude is complemented by three wells located
at (Qm, Pm), m = 1, 2, 3 corresponding to the period-3 orbits
with

P1 = 0, Q1 = Qmin,

P2,3 = ± sin(2π/3) Qmin, Q2,3 = cos(2π/3) Qmin, (6)

where Qmin = 3
2 f +

√
9
4 f 2 + 1 (see [35]). Rotations in the

QP plane by 2π/3 correspond to time translations in the
laboratory frame t → t + tF , tF = 2π/ωF , so that rotations
by 2π map onto t → t + 3tF , see [35] for further details. The
three wells are separated by saddle points with quasienergy
gsaddle < 0. The equations of motion in the rotating frame
in the presence of dissipation easily follow from Hamilton’s

FIG. 2. Classical quasienergy g(Q, P) according to (4) for differ-
ent driving strengths f = 0.1 (a) and f = 0.5 (b). The quasienergy
has a C3 symmetry in QP space, where the local maximum at
Q0 = 0, P0 = 0 corresponds to the period-1 orbit in Fig. 1(b) and the
three wells located at (Qm, Pm ), m = 1, 2, 3 are related to the period-3
orbits in Fig. 1(c).

equations augmented by friction, i.e.,

Q̇ = ∂Pg − κ Q, Ṗ = −∂Qg − κ P, (7)

with the dimensionless friction constant κ = γ

δω
. In

Appendix we discuss a protocol on how to realize
experimentally the situation in (1) via a conventional Duffing
oscillator with linear drive. We note in passing that time
translational symmetry breaking in the classical realm has
recently been studied experimentally in a two-oscillator setup
in [44].

III. DYNAMICS TOWARDS STEADY STATE
IN THE QUANTUM REGIME

We will now turn to the main subject of this paper, namely
the quantum induced switching out of domains in QP space
around classical fixed points. The quantum equivalent to the
canonical transformation (3) is provided by the unitary opera-
tor U = exp(−i ωF t

3 a†a) with the standard ladder operators of
the bare harmonic system obeying [a, a†] = 1. The quantized
rotating frame Hamiltonian is then obtained as

ĝ = − �n + 1

4
(1 − �)2 + �2(n + n2)

− 4 f

(
�

2

)3/2

(a3 + a†3), (8)

with the effective Planck constant

� = h̄

Mω0C2
≡ 3h̄α

M8ω2
0δω

, (9)

including the mass M of the oscillator. The effective Planck
constant serves as an externally tunable parameter, for exam-
ple, via the detuning δω. The operator ĝ has an equivalent
representation in terms of phase space operators Q̂, P̂ with
canonical commutation relations [Q̂, P̂] = i� according to
a = 1√

2�
(Q̂ + iP̂) and a† = 1√

2�
(Q̂ − iP̂). This way, ĝ(Q̂, P̂)

results from the classical quasienergy g(Q, P) in (4) by replac-
ing classical variables by operators and P2Q → Q̂P̂Q̂.

For the dissipative dynamics of the quantum oscillator
we invoke a weak coupling approximation which leads to a
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FIG. 3. Wigner distribution ρW (Q, P, t ) starting initially from a
locally relaxed state in the well Q1, P1 of the quasienergy surface
at different time steps and for κ = 1.5, � = 0.1688, f = 0.9: t =
33 (a), t = 1636 (b), t = 4975 (c), and asymptotic state (d). The
population dynamics of a closed area indicated by a white box in
(a) is depicted in Fig. 4, such that the population p1(0) ≈ 1 at time
t = 0.

standard Lindblad master equation

ρ̇(t ) = 1

i�
[g, ρ] + κ (n̄ + 1)(2aρa† − a†aρ − ρa†a)

+ κ n̄(−2a†ρa + aa†ρ + ρaa†), (10)

where time is scaled with δω and n̄ = 1/[exp(h̄ω0β ) − 1] at
inverse temperature β = 1/kBT denotes the Bose distribution.

With the above ingredients and starting from a specific
initial state, one can now explore the quantum dynamics
analogous to the discussion of the classical steady state orbits
above. Here we are particularly interested in the quantum
fluctuations of one of the wells around (Qm, Pm), m > 0 in
the limit of vanishing temperature n̄ = 0. For that purpose,
we consider the dynamics of a locally relaxed state namely
the stationary solution of the local Fokker-Planck equation in
the harmonic well around Q1, P1 [15,45]. This way we obtain
in the Wigner representation

ρW (Q, P, t = 0) ∝ exp

[
− 2

�

(
gQQδQ2 + gPPδP2

gPP + gQQ

)]
, (11)

where δQ = Q − Q1, δP = P − P1, and gXY is the second
derivative with respect to X,Y taken at Q1, P1.

Monitoring the dynamics of this initial state according
to (10) we show snapshots of corresponding Wigner distri-
butions at different time steps in Fig. 3. Apparently, in the
long time limit, the distribution approaches a steady state
that is delocalized predominantly among the three wells with
minimal contributions around the origin. The set of parame-
ters is chosen such that classically the system is beyond the
threshold (see Fig. 1), where period-1 and period-3 orbits
coexist. This in turn implies that quantum fluctuations induce
the decay of classically stable fixed points towards delocalized
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FIG. 4. Decay of the population in the well around Q1, P1 [in
the white box in Fig. 3(a)] versus dimensionless times for κ = 1.5,
� = 0.1688, f = 0.9. On long timescales it is governed by a single
time constant 1/�L . The black line is a fit function, where p1(∞) =
0.32. The inset shows the transient behavior on very short timescales
(blue); also shown is the decay of a state initially located around the
origin at Q = P = 0 (green). The initial distribution at Q = P = 0
decays much faster than the initial population around the well Q1, P1.

distributions with C3 symmetry. Note the slight distortions of
the arms of the distribution due to friction.

After a transient period of time, this relaxation is very
accurately characterized by a single time scale �L when
following the population dynamics

p1(t ) =
∫

B1

dQdP ρW (Q, P, t ) (12)

according to ṗ1(t ) = −�L[p1(t ) − p1(∞)], see Fig. 4. Here
B1 indicates a closed area in QP space around Q1, P1 [white
box in Fig. 3(a)] such that initially p1(0) ≈ 1. Asymptoti-
cally, one has p1(∞) < 1/3 due to the portion of the distri-
bution that is still located around Q = P = 0. Apparently
the observed dynamics is purely relaxational in contrast to
coherent oscillations between the wells that are expected to
occur in the complete absence of dissipation and on different
timescales (cf. also below in Sec. VII). As we discussed in
[35], due to the energy level structure of (8) sufficiently be-
yond the threshold, only exponentially weak friction is needed
to induce decoherence (associated with transitions between
tunnel-splitted energy levels) and mixing of corresponding
eigenstates. For friction that substantially exceeds the tunnel
splitting (as considered here) the coherent dynamics turns
into unidirectional decay. Thus, on the timescale associated
with �L there occur transitions between the localized wells
(interwell transitions) that, as we will discuss in detail in
Secs. V and VII, are attributed to the phenomenon of quantum
activation. A condition for the long time dynamics to be
governed by this single timescale is a timescale separation
between interwell and intrawell processes, an issue that we
will explore more carefully in the next section.

Furthermore, we show in Fig. 4 that starting initially
from a ground state distribution localized around Q = P = 0
(classical period-1 orbit) provides a much faster decay
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towards the delocalized asymptotic steady state. The timescale
associated with this decay turns out to play an important role
near those domains in parameter space, where the nature of
the steady state changes from localized to delocalized, i.e.,
the quantum analog of the classical bifurcation as will be
discussed in Sec. VIII.

IV. TIMESCALE SEPARATION BETWEEN INTRAWELL
AND INTERWELL PROCESSES

In the previous section, the timescale which governs the
long time dynamics was obtained from the time evolution of
the Lindblad master equation ρ̇(t ) = L ρ(t ) with the super-
operator L as given in (10). Here we extend this analysis
to access also shorter timescales which capture not only
interwell but also intrawell dynamics. The most convenient
way to do so is to switch to a Liouville representation, where
the density is considered as a vector in Liouville space on
which L operates. The goal is then to find eigenfunctions and
eigenvalues of L according to

L ||vk〉〉 = λk ||vk〉〉 , (13)

where the density matrix at time t = 0 is represented as

||ρ(0)〉〉 =
∑
k�0

ak ||vk〉〉 . (14)

Of course, due to the existence of a steady state L ρss =
0, there is always a vanishing eigenvalue λ0 = 0; all other
eigenvalues have negative real parts Re{λk} < 0 and are either
real or appear in complex conjugate pairs. The Lindblad time
evolution in Liouville space

||ρ(t )〉〉 = eL t ||ρ(0)〉〉 = a0 ||v0〉〉 +
∑
k�1

akeλkt ||vk〉〉 (15)

is completely determined by the initial state projections ak

and the eigenvalues λk , and asymptotically approaches ρss =
lim

t→∞ ρ(t ) ∼ ||v0〉〉.
In the sequel we focus at zero temperature n̄ = 0 on the

lowest eigenvalues. The Liouville operator L is converted
accordingly to a N2 × N2 matrix which is diagonalized using
the Lanczos/Arnoldi algorithm. This provides eigenvectors
||νl〉〉 , l � 0 to each eigenvalue λl which are linear indepen-
dent, but not orthogonal.

Upon representing eigenvectors ||νl〉〉 again in N × N ma-
trices, i.e., ||νl〉〉 → ρ (l ), one can classify the eigendensities
into three classes according to the following structure in the
Fock state basis:

||ν3k〉〉 → ρ (3k)

=
N∑

n�0

p(k)
nn |n〉 〈n| +

N∑
n,m�0

(
α(k)

nm |n〉 〈3m + 3 + n| + H.c.
)
,

||ν3k+1〉〉 → ρ (3k+1)

=
N∑

n,m�0

(
γ (k)

nm |n〉 〈3m + 1 + n| + δ(k)
nm |3m + 2 + n〉 〈n| ),

||ν3k+2〉〉 → ρ (3k+2) = ρ (3k+1)†
, k � 0, (16)
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FIG. 5. Real (a) and imaginary (b) parts of the lowest lying
eigenvalues of the Lindbladian in (10) versus the driving for � =
0.1688 and κ = 1.5. Shown are eigenvalues corresponding to the
class ρ (3k) (blue), namely, λ0 (�) and λ3 (•), and eigenvalues cor-
responding to the classes ρ (3k+1), ρ (3k+2) (black), namely, Re{λ1} =
Re{λ2} (∇). For very weak driving Re{λ1,2} describe relaxation of
a harmonic oscillator near Q = P = 0, while beyond a threshold fc

(here at the maximum of λ3) the eigenvalues become exponentially
small [see inset of (a) with a log scale] and capture interwell
transition processes. The imaginary part (b) of λ1,2 also decreases
towards λ0.

with real-valued coefficients p(k)
n and complex-valued

α(k)
nm, γ (k)

nm , δ(k)
nm . Eigendensity matrices have matrix elements

ρnm where n − m is identical (mod 3) within the same class.
This structure is explained by the fact that both the Hamilto-
nian (8) part as well as the dissipative part of the Lindblad
master equation (10) only couple such matrix elements. Diag-
onal elements of ρ (populations) only appear in the class ρ (3k)

associated with real eigenvalues λ3k , while λ3k+1 = λ∗
3k+2. As

we will see in Sec. VIII, for sufficiently weak driving the
dominating contribution to the steady state density ρ (0) is the
ground state density of the oscillator around Q0, P0, while
for stronger driving beyond a threshold strongly delocalized
components prevail.

Here we proceed with the analysis of the subset of eigen-
values with least negative real parts. Figure 5(a) depicts to-
gether with λ0 = 0 the three eigenvalues Re{λ1} = Re{λ2}, λ3

versus the driving strength. For very weak driving these
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eigenvalues reflect the expected results for a harmonic os-
cillator located at Q0 = P0 = 0, i.e., λ1,2 = −κ , λ3 = −2κ ,
according to the low energy properties of ĝ in (8) for f = 0.
With increasing driving, however, near a critical driving fc,
Re{λ1,2} turns into an exponential decrease towards λ0 = 0
for f > fc [see Fig. 5(a), inset]; a similar behavior is found
for their imaginary parts [Fig. 5(b)]. The appearance of a
new (exponentially small) timescale is associated with the
appearance of a new dynamical process, namely, the switching
between wells separated by quasienergy barriers (dynamical
barriers in phase space). For the present case, it is also
accompanied by the tendency of closing of the gap between
λ0 = 0 and the next lowest lying eigenvalue λ3, a signature
typically associated with the emergence of slow modes well
known for phase transition phenomena [46].

It becomes an exact closing only for � → 0 which may
thus be interpreted as the thermodynamic limit for this system,
see also Sec. VIII and Fig. 13. For any finite � the transition
is smeared out in a range around fc.

Thus we identify a critical driving fc ≈ 0.63 as that driv-
ing strength, where |λ3| approaches a minimum; as we will
see in Sec. VIII, around this point the steady state changes
from being localized around the origin of the QP plane to
being predominantly localized around Qm, Pm, m = 1, 2, 3.
Of course there is no sharp transition for finite �. All other
eigenvalues λk>3 remain sufficiently separated from λ3 near
fc. Beyond this threshold, |λ3| increases again to become well
separated from Re{λ1,2} and dives down into the pattern of
the other eigenvalues λk>3. For increasing f > fc this pattern
approximately captures that of a harmonic oscillator localized
in one of the wells QmPm, m = 1, 2, 3 (not shown). We thus
conclude that for f > fc, one has a clear timescale separation
between intrawell and interwell processes so that the long
time relaxation behavior is governed by a single timescale,
i.e., |Re{λ1,2}| = �L. Near the critical driving fc, another
dynamical role is assigned to the eigenvalues λ1,2: While for
very weak driving they are related to the relaxation dynamics
of the local harmonic oscillator at the origin of the QP plane,
for f sufficiently beyond fc their real parts correspond to
interwell transition processes. How this switching between
classical period-3 states happens is elucidated in Secs. V and
VII in more detail. A general theory connecting metastability
and separations in the eigenvalue spectrum of Markovian open
quantum systems has been put forward in [47,48].

We found a slightly modified pattern of the lowest lying
eigenvalues for parameters κ < �, which, however, does not
change the conclusions about the transition. Specifically for
those parameters the eigenvalues exhibit a more complex
dependence on the driving below fc and the critical behavior
is observed for driving values slightly below the minimum
of |λ3|. For driving strengths near and above fc one finds a
similar behavior as for κ > � though.

V. SEMICLASSICAL SWITCHING RATE

In order to obtain a deeper insight into the interwell relax-
ation process, we employ a semiclassical treatment applicable
when formally Planck’s constant � � 1. Practically, this im-
plies a large number of states in the potential wells of g(Q, P)
such that |g(Qm, Pm)|/� ∼ f 4/� � 1 and also that κ by far
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FIG. 6. (a) Transition matrix elements |aν (g)| at two different
quasienergies g = −1.2 (diamonds), g = −0.2 (dots) for f = 0.66
(gmin = −3.55, gsaddle = 0.22). Shown are |aν | (blue) and |a−ν | (red),
where |aν | < |a−ν |(ν > 0). The matrix elements decrease exponen-
tially with growing ν and increase as energy grows towards gsaddle.
(b): Detailed balance ratio rμν according to (21) for r42 (blue) and r31

(red) at f = 0.5. The ratio rμν differs from 1 in both cases so that the
detailed balance condition is not fulfilled.

exceeds the tunnel splitting and switching rate to ensure a
timescale separation (see below). Technically, we follow the
methodology explained in [31]: One represents the master
equation (10) around one of the well basins in corresponding
intrawell eigenstates (Wannier basis) |μ〉 of ĝ that are linear
combinations of the global eigenstates, see [35]. Since we are
interested in the population dynamics, only the diagonal part
ρμ ≡ 〈μ|ρ|μ〉 is considered. We assume a quasicontinuum of
energy levels in the wells so that quantum mechanical matrix
elements can be obtained from classical orbits. Within this
semiclassical approximation, the steady state distribution is
obtained based on an exponential ansatz. For a system in
thermal equilibrium this would lead to a Gibbs distribution,
while here we find an exponent that depends nonlinearly on
quasienergies. Following these lines, we start from

ρ̇μ = −2κ
∑

ν

(Wμνρμ − Wνμρν ), (17)

with transition rates

Wμ+ν,μ = (1 + n̄)|〈μ|a|μ + ν〉|2 + n̄|〈μ + ν|a|μ〉|2. (18)

For vanishing temperature n̄ = 0 only transitions from μ +
ν → μ take place. Semiclassically, the relevant matrix ele-
ments follow from

aν (gμ) ≡
√

2� 〈μ| a |μ + ν〉

= 1

T (g)

∫
P.O.

dt e−iωμνt [Q(gμ, t ) + iP(gμ, t )], (19)

where we set (gμ+ν − gμ)/� ≈ νω(gμ), with gμ = 〈μ|ĝ|μ〉.
The integration is taken along periodic orbits (P.O.) in the
well area with position Q(g, t ) and momentum P(g, t ) at fixed
energy g with period T (g) = 2π/ω(g); these are period-3
orbits in the language of Sec. II. Note that since the right-hand
side of (17) is of order κ , the orbits are obtained from (7) in
the absence of friction.

The above matrix elements carry interesting information
about intrawell processes such as relaxation and quasienergy
diffusion in the rotating frame as we will discuss now.
Figure 6(a) depicts aν (g) versus ν at different values of g,
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where in accordance with the semiclassical limit we assume
a quasicontinuum of energies {gμ} → gmin � g � gsaddle. The
general tendency is that the matrix elements decrease expo-
nentially with growing ν and increase as the energy grows
towards the saddle point. Furthermore, |aν | < |a−ν |(ν > 0)
with a slight asymmetry in the decay as ν increases (for details
and analytical results cf. [36]). This unusual behavior at zero
temperature is a manifestation of the fact that relaxation
processes in the laboratory frame appear in the rotating frame
as both excitation and relaxation processes which gives rise
to the phenomenon of quantum activation [31]. Furthermore,
the asymmetry in the decay with growing ν has direct conse-
quences on the detailed balance condition

Wμν

Wνμ

= Wμμ′Wμ′ν

Wνμ′Wμ′μ
. (20)

As seen in Fig. 6(b), it is not fulfilled, even for n̄ = 0, since
the ratio

rμν = |aν |2|a−ν+μa−μ|2
|a−ν |2|aν−μaμ|2 (21)

clearly differs from 1. This in turn is a signature of the fact
that in the rotating frame dissipation induced relaxation and
excitation processes behave quite differently to the situation in
the laboratory frame. Notably, while for the Duffing oscillator
with parametric drive, detailed balance is at least guaranteed at
zero temperature, we here find detailed balance to be violated
for all temperatures.

Now, in steady state according to an eikonal ansatz, the
density is of the form ρμ ∼ exp(−Rμ/�) with Rμ = R(gμ) so
that ρμ+ν ≈ ρμ exp[−νωμR′(gμ)], R′ = dR/dg. The balance
equation (17) can then be cast in the form

μsaddle∑
ν=−μ

= Wμ+ν,μ

(
1 − ξν

(μ)

) = 0, (22)

where the parameter ξ(μ) = e−R′
μωμ is independent of � in

leading order. The above equation can easily be solved nu-
merically for the parameter ξ from which R′(g) is obtained.
This way, by assuming a simple relation between steady state
density and interwell relaxation rate (similar to the relation
between the Boltzmann distribution and the thermal escape
rate for barrier escape problems in absence of driving), one
finds

�scl = D0 e− R(gsaddle )
� , (23)

with an unknown prefactor D0 and the action R(g) =∫ g
gmin

dxR′(x), known for quantum activated processes [31].
The calculation of the prefactor is much more challenging.
According the known procedure for static barriers, one would
seek in the low viscosity limit for a flux solution which de-
scribes deviations from the stationary distribution for energies
close to the barrier top. The matching between this solution
and the stationary one then provides the prefactor. It is not
clear yet how such a procedure can be extended to phase
space barriers and the deep quantum regime. The classical
Kramers result [1] suggests D0 ≈ κ for sufficiently weak
friction, while for somewhat larger friction D0 ≈ 1/T (gmin)
is the expected transition state theory (TST) result. This issue
will be discussed in the next section.
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FIG. 7. (a) Action R(g) at f = 0.66 (gmin = −3.55, gsaddle =
0.22) and for different temperatures: n̄ = 0 (black), n̄ = 0.1 (blue),
n̄ = 0.2 (red). The action increases linearly with g. (b) Saddle
point action R(gsaddle ) determining the rate for quantum activation
versus the driving strength at n̄ = 0 (black), n̄ = 0.1 (blue), n̄ = 0.2
(red). R(gsaddle ) increases almost linearly with increasing driving
beyond fc.

One important remark is in order here: The basic assump-
tion underlying the above treatment, particularly (22), is that
state populations remain stationary due to transitions between
neighboring states. As a recent study revealed [36], however,
this is in a strict sense no longer true for the present case,
but only applies approximately for values of f sufficiently
away from fc. In fact, as shown by Zhang and Dykman,
stationarity is maintained by nonlocal transitions so that, at
least in principle, one must start from the full balance equation
(17) to determine the stationary distribution. Nevertheless, in
case of a sufficient timescale separation between intrawell
processes (fast) and interwell decay (much slower), the domi-
nating contribution to the interwell rate (i.e., on a logarithmic
scale) is still expected to be fairly accurately captured by (23).

Figure 7(a) illustrates the dependence of the action R(g)
on g for various temperatures n̄. The action grows basi-
cally linearly with g with slight deviations for elevated tem-
peratures. The action for interwell transitions R(gsaddle ) is
shown in Fig. 7(b) versus the driving strength and reveals a
monotonously growing, nonlinear behavior which turns into
an almost linear one beyond fc.

VI. COMPARISON OF SWITCHING RATES

We now collect the results of the previous sections with
respect to the relaxation timescale in the regime f > fc. First,
as to be expected, one finds that numerically to very high
accuracy

�L ≈ |Re{λ1,2}|, (24)

for driving strengths sufficiently beyond the threshold, cf.
Fig. 5(a). The rate exponent depends roughly linearly on f
for f > fc [see inset of Fig. 5(a)], a behavior that is approx-
imately also found for the exponent in �scl, see Fig. 7(b).
However, while �L exhibits a dependence on the friction
strength κ , this is by construction not the case for �scl (see
Fig. 8) if D0 ∝ 1/T (gmin) is chosen. Instead for D0 ∝ κ we
find a decreasing rate with decreasing κ with substantial
deviations, however, for growing κ > 1 (see Fig. 8). Note that
for the parameters chosen in Fig. 8 one has Vb/�ω1 ≈ 12
(� = 0.1688) or ≈18 (� = 0.1125) levels in the well (Vb is
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FIG. 8. Semiclassical rate for interwell transitions via quantum
activation �scl according to (23) with D0 = 1/T (gmin ) (purple and
blue) and D0 = κ (orange and turquoise) for � = 0.1688 and � =
0.1125 together with the numerically obtained switching rates �L =
|Re{λ1,2}| at � = 0.1688 (red crosses) and at � = 0.1125 (green
crosses) versus the friction constant κ at f = 0.8.

the well depth and ω1 the frequency near the well bottom). The
diagonalization of the full Lindbladian according to Sec. IV is
limited to values of the friction with κ > 0.9. Nonetheless,
the dominating exponential in �L is captured by the simple
semiclassical expression �scl, while a more refined description
is required for the prefactor. This must also include the impact
of the period-1 oscillator located around Q = P = 0 and the
dynamics close to barrier energies.

VII. QUANTUM ACTIVATION VERSUS
QUANTUM TUNNELING

The question whether switching between the wells happens
via quantum activation only or to which extent direct low-
energy quantum tunneling between the wells (ground state
tunneling between period-3 orbits) may play a role, has re-
cently been addressed in [36]. Here we recall the main results
to keep the line of reasoning self-contained. Accordingly, we
consider also the dominant exponential factor for coherent
tunneling from one well to the others (corresponding to the
maximal level splitting between adjacent energy levels of ĝ).
In a semiclassical limit, the latter is given by ∝e−2Stun/�, where
up to corrections of order �, the action at a given quasienergy
g < gsaddle reads

Stun(g) =
∫ −Q1/2

Q1

Im{P(Q)}dQ. (25)

Note that since the integration contour includes not only
areas, where g < g(Q, P), the momentum carries apart from
imaginary also real parts. Accordingly, the full action has also
a real part that induces a phase dependence of the energy level
splittings, for details see [35].

Now the probability density at a given g for times short
compared to interwell processes but long compared to local
relaxation is ∼e−R(g)/�, where R(g) monotonously increases
with g from R(gmin) = 0. Tunneling can now happen from
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FIG. 9. Condition for quantum activation: The tunneling time
|τ (g)| exceeds the slope of the action R(g) for all energies g at f =
0.66 (gmin = −3.55, gsaddle = 0.22) so that the condition is always
fulfilled. Consequently, the relaxation dynamics towards a steady
state is dominated by quantum activation.

the bottom of the well or at a higher quasienergy g. If the
product e−2Stun(g)/� e−R(g)/� monotonously grows with g, this
implies that the system has the tendency to tunnel towards
increasing g → gsaddle, and eventually will go over the barrier.
This phenomenon has been termed quantum activation. The
condition for quantum activation is thus

2∂gStun(g) + ∂gR(g) < 0 for gmin � g � gsaddle. (26)

Since the derivative of the tunnel action provides the (dimen-
sionless) tunneling time

τ (g) ≡ ∂gStun(g) = Im
∫

dQ

∂Pg(Q, P)
, (27)

the above condition can also be written as ∂gR(g) < 2|τ (g)|
with τ (g) < 0 in the respective energy range. As Fig. 9
reveals, this condition is always fulfilled so that we can
conclude that the relaxation dynamics towards a steady state
with rate �L, as for example seen in Fig. 3, occurs dominantly
via quantum activation.

In essence, the picture that emerges from these and the
previous sections is the following: Classically, the switch-
ing between period-3 states occurs via thermally activated
processes, where a trajectory diffuses up in energy until
it approaches the saddle points, from where it switches to
another period-3 state via the period-1 oscillator as an inter-
mediate state (for a detailed discussion see also [36]). Quan-
tum mechanically, for sufficiently large friction, the system
diffusively climbs up the quasienergy ladder within a period-3
well until it approaches the energy range around the saddle
point energy gsaddle. In this energy range, direct tunneling
through the quasienergy barrier towards one of the adjacent
period-3 states occurs. The period-1 oscillator loses its role
as an intermediate state since tunneling between period-3 and
period-1 states is less likely for energetic reasons. However, it
is still an open question on how in detail the tunneling between
the period-3 states near the saddle points happens, a problem
that we intend to consider elsewhere.
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FIG. 10. (a)–(d) Steady state Wigner density ρ
(0)
W (Q, P) of ||ν0〉〉; (e)–(h) Wigner density ρ

(3,c)
W (Q, P) of ||ν3〉〉c for various driving

strengths f = 0.27, f = 0.47, f = 0.6, f = 0.67 [from (a) to (d) and (e) to (h)] at n̄ = 0, κ = 1.5, and � = 0.1688, where fc ≈ 0.63
[cf. Fig. 5(a)]. ρ

(0)
W (Q, P) makes a transition from a localized state (ground state) around Q = P = 0 for small driving to a delocalized

distribution predominantly localized in the wells Qm, Pm, m = 1, 2, 3 corresponding to classical period-3 fixed points. ρ
(3,c)
W (Q, P) exhibits

the complementary behavior.

VIII. DISSIPATIVE INDUCED PHASE TRANSITION

So far we have discussed the timescales for relaxation
towards the steady state and its dependence on the driving
strength. Now we turn to the steady state itself to explore
to what extent the emergence of multiple steady state orbits
at a critical driving in the classical regime yields signatures
in the quantum realm. As we discussed in Sec. IV, near the
critical driving fc, a new timescale appears that is associated
with interwell processes. This coincides with a fundamental
change in the nature of the steady state from a localized to a
delocalized one. We recall that for finite � the transition is
smeared out due to fluctuations.

To analyze this changeover in more detail, we come back
to the eigenvectors ||ν0〉〉 and ||ν3〉〉 corresponding to the
steady state density ρss ≡ ρ (0) and to the eigendensity ρ (3),
respectively. While the former is asymptotically approached
for long times, the latter includes those populations in Fock
space contained in the full time-dependent density that survive

the longest. It turns out that the above transition leaves direct
signatures in the Wigner and the Fock state representations
of these two densities. As already mentioned above, the
associated eigenvectors are not orthogonal. Consequently, in
order to distill that part of ||ν3〉〉 that has no overlap with ||ν0〉〉,
we consider

||ν3〉〉c = N3(||ν3〉〉 − 〈〈ν0|| ||ν3〉〉 ||ν0〉〉) (28)

with normalization N3. Of course ||ν3〉〉c is also an eigenvector
of L with eigenvalue λ3.

Then the corresponding density ρ (3)
c provides information

about those populations in Fock space, complementary to
those in ρ (0), that disappear with the least negative eigenvalue
λ3 during the relaxation process of the full density matrix
ρ(t ) (the densities associated with λ1,2 carry off-diagonal
elements only). One has to keep in mind though that it is not
directly related to a physical density, but rather serves here as a
diagnostic tool to analyze the (approximate) phase transition.
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FIG. 11. Fock state representation of the steady state density 〈n|ρ (3,c)|m〉 corresponding to the eigenvector ||ν3〉〉c orthogonal to the steady
state for f = 0.27, f = 0.47, f = 0.6, f = 0.67 [from (a) to (d)] and κ = 1.5, � = 0.1688. The density has a dominant contribution in the
first excited Fock state for small driving which turns into a dominant contribution in the ground state for strong driving.
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FIG. 12. The overlap |〈〈ν0||||ν3〉〉| for κ = 1.5, � = 0.1688
(blue line) exhibits a maximum followed by a sharp drop to almost
zero when ||ν3〉〉 becomes least unstable (|λ3| has a minimum); it
sharply increases again with growing driving. Most of this behavior
results from the components of the eigenvectors ||ν0〉〉 and ||ν3〉〉 in
the subspace spanned by the two lowest lying Fock states {|0〉, |1〉}
(|〈〈ν0,r ||||ν3,r〉〉|, black line).

Figure 10 illustrates how the corresponding Wigner den-
sities evolve with increasing driving. While the steady state
displays the expected transition from localized to delocalized
(from strong overlap with the oscillator ground state at Q =
P = 0 to strong overlap with those around Qm, Pm; m > 0),
the density ρ (3)

c shows the opposite behavior, from delocalized
to localized. Accordingly, the period-1 oscillator at the origin
turns from a stationary into a transient state, while period-3
oscillators are associated with steady states beyond the critical
driving fc ≈ 0.63.

The same behavior can be more precisely detected in the
Fock state representation, see Fig. 11. Below fc the distribu-
tion to ρ (3)

c occupies predominantly the first excited state of
the oscillator at Q = P = 0, i.e., ρ (3)

c ∼ |1〉〈1|, while beyond
fc the ground state dominates, i.e., ρ (3)

c ∼ |0〉〈0|, and the
excited state is absent. At that value of the driving, where this
transition happens, i.e., fc, we find empirically that |λ3| takes
its minimal value [see Fig. 5(a)]. This resembles behavior
such as the closing of energy gaps and the emergence of
slow modes that can be observed in phase transitions. For the
ranges of parameters explored here, particularly small �, and
κ > 1, this coincides with a minimum in |λ3|. This still holds
for � ∼ O(1) and stronger friction. Outside of these domains,
one observes a shift of the critical driving towards smaller
values (not shown).

In terms of the original (nonorthogonal) eigenvectors,
somewhat below the critical driving strength the overlap
|〈〈ν0||||ν3〉〉| (see Fig. 12 blue line) exhibits a maximum
followed by a sharp drop to almost zero when ||ν3〉〉 becomes
least unstable (|λ3| has a minimum); it sharply increases again
with growing driving. Most of this behavior results indeed
from the components of the eigenvectors ||ν0〉〉 and ||ν3〉〉 in
the subspace spanned by the two lowest lying Fock states
{|0〉, |1〉}, i.e., ||ν0,r〉〉, ||ν3,r〉〉, see Fig. 12 black line.
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FIG. 13. Critical driving fc (blue line) located at the minimum
of the eigenvalue |λ3| with changing � (κ = 1.5 and n̄ = 0).
For decreasing � the systems turns into the semiclassical regime
and approaches the classical threshold fc,cl ≈ 0.49 for � → 0.
min(|Re(λ3)|) (green line) decreases as � goes to zero.

How the location of the minimum of |λ3| changes with the
driving f and the quantum scale � is depicted in Fig. 13. For
� → 0, one approaches the classical threshold fc,cl ≈ 0.49
(cf. Fig. 1), where the classical limit cannot be fully resolved
(cf. Fig. 13). With growing impact of quantum fluctuations
fc(�) increases. Figure 13 also shows how min(|Re(λ3)|)
diminishes as the quantum fluctuations � go to zero and the
gap closes.

One unique feature of periodically driven oscillators lies in
the fact that they allow exploring dissipative phase transitions
in steady state within setups which are easily tunable by
the parameters of the external drive. In our situation, the
corresponding parameter space is the two-dimensional space
(δω, F0). In order to characterize in this space the domains
of localized and delocalized steady states, respectively, and
thus to provide predictions for experimental realizations,
one has to work with dimensionless quantities where the
scaling does not include δω, as we have done so far. Ac-
cordingly, we here switch to another scaling and consider
physical parameters. Figure 14 displays the corresponding
phase diagram of the quantum system in the parameter space
([ωF − 3ω0]/ω0, F0/ω

2
0 ). The green/blue solid line separates

for vanishing/finite temperature the domain, where the steady
state is localized (left area), from the domain, where it is
delocalized with most of the weight sitting in the three well
regions of the quasienergy surface (right area). Apparently,
tuning [ωF − 3ω0]/ω0 for fixed driving F0/ω

2
0, one finds

ranges for the driving, where a reentrant behavior can be
seen: One starts at a given F0/ω

2
0 for low detuning from a

localized state that turns into a delocalized one for growing
[ωF − 3ω0]/ω0, but ends again in a localized state for large
detunings. In comparison we show the classical situation at
T = 0, where the reentrant property is absent (black line).

IX. CONCLUSION

In this work we studied quantum-noise induced switching
between stable states of an oscillator that displays stationary
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FIG. 14. Phase diagram (detuning versus driving amplitude) of a
dissipative quantum oscillator driven by three times its fundamental
frequency. The black line separates the classical regions of single
(left) and multiple (right) solutions. Quantum mechanically, the
green (n̄ = 0)/blue (n̄ = 0.1) line separates the domain, where the
steady state is localized around the origin of the QP plane (left) from
the domain, where it is localized with dominant contributions around
classical period-3 fixed points (right). In comparison to the classical
prediction for the bifurcation line in the absence of noise which
separates the regime of period-1 orbits from the one of period-3
orbits, the quantum system exhibits ranges with a reentrant behav-
ior when increasing the detuning for fixed driving. Parameters are
γ /ω0 = 0.01, αq2

0/ω
2
0 = 0.0015 with the new quantum parameter

q2
0 = h̄/(2Mω0) = 1/2. The red point corresponds to the transition

point in Fig. 1 ( fc,cl = 0.49).

period-3 vibrations. The oscillator’s quasienergy consists of
three localized wells in phase space when a sufficiently strong
driving is applied. Starting initially from a locally relaxed
state in one of the wells in phase space, transitions to the
other wells occur via quantum activation rather than through
quantum tunneling. The relaxation dynamics is characterized
by a single timescale that separates interwell from intrawell
processes. A standard semiclassical treatment does not fully
capture the complexity of the dynamics and, thus, can at
best yield the order of magnitude for this timescale. It also
reveals a breaking of detailed balance for all temperatures
down to T = 0. The appearance of a timescale separation is
associated with an approximate closing of the gap between
the lowest lying eigenvalues for the relaxation of populations
and in turn a dissipation-induced transition in the nature of
the stationary state from being localized to being delocalized.
In contrast to the classical situation, this phase transition
exhibits a reentrant behavior in the parameter space of the
external drive (amplitude, frequency). These findings may
further stimulate ongoing experimental investigations based
on superconducting circuits.
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APPENDIX: CLASSICAL NONLINEAR OSCILLATOR

1. Bifurcation diagram

We start with q = Ãe
iωF t

3 + Ã∗e− iωF t
3 = A cos( ωF

3 t + ϕ) for
a transformation of Eq. (1) to a rotating frame with ωF ≈
3ω0 and Ã = Ã′ + iÃ′′ = Aeiϕ . This leads to the following
equation:

Ã = F0

2iω0
Ã∗2 1( − δω

i + 2γ + 3α
iω0

|Ã|2) (A1)

that provides the amplitude as function of the three param-
eters F0, α, δω. Scaling the amplitude A = 2

√
|Ã|2 with the

parameter C = √
8ω0δω/(3α) and F0 = f 3

√
24ω0αδω as in

the main text, one obtains the dimensionless amplitudes

A2

C2
= 9

8
f 2 + 1

8
± 1

8
[(9 f 2 + 1)2 − 4κ2 − 1]1/2, (A2)

with κ = γ /δω. Multiple orbits coexist and the expression
under the square root is positive for driving f > fc,cl with

fc,cl = 1
3 (

√
4κ2 + 1 − 1)1/2. (A3)

2. Stability analysis

For a stability analysis a small deviation δÃ is included for
the amplitude

Ã = Ãst + δÃ, Ã∗ = Ã∗
st + δÃ∗ (A4)

in Eq. (A1). The stability is determined by the eigenvalues of
the matrix of the set of equations

(
δ ˙̃A

δ ˙̃A∗

)
=

(
δω
2i − γ − 3α

iω0
|Ã|2 F0

2iω0
Ã∗

st − 3α
2iω0

Ã2
st

− F0
2iω0

Ãst + 3α
2iω0

Ã∗2
st − δω

2i − γ + 3α
iω0

|Ã|2
)

×
(

δÃ

δÃ∗

)
. (A5)

3. Experimental realization

Classically we investigate numerically different types of
driving to find a transition between period-1 and period-3
solutions that could possibly be realized experimentally. One
possibility uses a small linear drive until the system equili-
brates at time tequ and then turns on a parametric drive to
achieve a transition. The equation of motion results as

q̈ + 2γ q̇ + ω2
0q + αq3 = F2 cos(ωF,2t ) + Fq2 cos(ωFt ),

(A6)
with ωF,2 = ωF

3 ≈ ω0. Alternatively it is also possible to use
ωF,2 = ωF ≈ 3ω0 when turning on F at time tequ.
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Another easier method is to use only a linear drive and
ωF ≈ 3ω0 so that

q̈ + 2γ q̇ + ω2
0q + αq3 = F2 cos(ωFt ). (A7)

We make an ansatz q = q(0) + q(1) with the leading order
(linear) solution

q(0) = F2 cos(ωFt )

ω2
0 − ω2

F

≈ −F2 cos(ωF2t )

8ω2
0

. (A8)

Plugging this solution into the above equation of motion and
keeping only leading terms yields Eq. (1) of the main text, i.e.,

q̈(1) + 2γ q̇(1) + ω2
0q(1) + αq(1)3

= −3αq(1)2
q(0) = F0q(1)2

cos(ωFt ), (A9)

with the drive parameter

F0 = 3α

8ω2
0

F2. (A10)
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