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We study the thermodynamics of the delta-chain with competing ferro- and antiferromagnetic interactions
in an external magnetic field which generalizes the field-free case studied previously. This model plays an
important role for the recently synthesized compound Fe10Gd10, which is nearly quantum critical, as well as for
the new kagome fluoride Cs2LiTi3F12. The classical version of the model is solved exactly and explicit analytical
results for the low-temperature thermodynamics are obtained. The s-spin quantum model is studied using exact
diagonalization and finite-temperature Lanczos techniques. Particular attention is focused on the magnetization
and the susceptibility. The magnetization of the classical model in the ferromagnetic part of the phase diagram
defines the universal scaling function which is valid for the quantum model. The dependence of the susceptibility
on the spin quantum number s at the critical point between the ferro- and ferrimagnetic phases is studied and the
relation to Fe10Gd10 is discussed.
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I. INTRODUCTION

Low-dimensional quantum magnets on geometrically frus-
trated lattices have been extensively studied in recent years
[1–3]. One of the interesting classes of such systems includes
lattices consisting of triangles. A typical example of these
objects is the delta or the sawtooth chain, i.e., a Heisenberg
model defined on a linear chain of triangles, as shown in
Fig. 1. The Hamiltonian of this model has the form

Ĥ=J1

∑
σi · (Si + Si+1) + J2

∑
Si · Si+1−H

∑
(σ z

i + Sz
i ),
(1)

where σi and Si are the apical and the basal spins, corre-
spondingly, H is the external magnetic field, and J1 and J2 are
apical-basal and basal-basal interactions. A direct interaction
between the apical spins is absent.

The quantum s = 1
2 delta-chain with antiferromagnetic

(AF) exchange interactions J1 and J2 (J1, J2 > 0) has been
studied extensively and it exhibits a variety of peculiar prop-
erties [4–10]. At the same time, the s = 1

2 delta-chain with
ferromagnetic J1 and antiferromagnetic J2 interaction (F-AF
delta-chain) is very interesting as well and has unusual proper-
ties depending on the frustration parameter α = J2

|J1| [11–14].
In particular, the ground state of this model is ferromagnetic
for α < 1

2 and it is believed [11] that it is ferrimagnetic for
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α > 1
2 . The critical point α = 1

2 is the transition point between
these two ground-state phases. The ground-state properties of
the model in this point are highly nontrivial. For example, the
s = 1

2 F-AF delta-chain studied in Ref. [13] has a class of
localized magnon bound states which form a macroscopically
degenerate ground-state manifold hosting already half of the
maximum total entropy N ln 2. The s = 1

2 F-AF delta-chain is
a minimal model for a description of real compounds, in par-
ticular malonate-bridged copper complexes [11,12,15,16], as
well as the new kagome fluoride Cs2LiTi3F12, which, besides
spin chains, hosts delta-chains as magnetic subsystems [17].

The s = 1
2 F-AF model can be extended to the delta-chain

composed of two types of spins (σi, Si) characterized by the
spin quantum numbers Sa and Sb of the apical and basal spins,
respectively. The ground state of this model is ferromagnetic
(F) for α < αc and noncollinear ferrimagnetic for α > αc,
where αc = Sa/2Sb. For Sa = Sb, the critical point is at αc =
1
2 . The ground state of the model with any quantum numbers
Sa and Sb in the critical point αc consists of the exact same
multimagnon states as for the s = 1

2 model and has similar
macroscopic degeneracy [13].

An additional motivation for the study of the
(Sa, Sb) F-AF delta-chain is the existence of a recently
synthesized mixed 3d/4 f cyclic coordination cluster,
[Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10]20MeCN (i.e.,
Fe10Gd10)[18,19], with the ground-state spin S = 60. This
cluster consists of 10 + 10 alternating gadolinium (S = 7

2 )
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FIG. 1. The delta-chain model.

and iron (S = 5
2 ) ions and its spin arrangement corresponds

to the delta-chain with Gd and Fe ions as the apical and
basal spins, correspondingly. This molecule is a finite-size
realization of the F-AF delta-chain with J1 = −2.0 and
J2 = 1.3 K and Sa = 7

2 and Sb = 5
2 . The frustration parameter

α = 0.65 is very close to the critical value αc = 0.7. Because
the spin quantum numbers for Fe and Gd ions are rather large,
it seems that the classical approximation for the (Sa, Sb) F-AF
delta-chain is justified.

In our preceding work [20], we studied both classical and
quantum versions of the F-AF delta-chain at zero magnetic
field. It was shown that the classical model provides a rea-
sonable description of the thermodynamics of Fe10Gd10 down
to moderate temperatures and some properties of the quantum
spin delta-chain are correctly described by the classical model.
For example, the main features of the zero-field susceptibility
χ of the quantum spin delta-chain are reproduced by the
classical model.

However, the results of the paper [20] are related to the
zero-field case. The experimental data for Fe10Gd10 presented
in Ref. [18] demonstrate that there is a strong influence of a
magnetic field on the low-temperature thermodynamics. That
is related to the massively degenerate manifold of localized
magnon states having different total magnetization. The Zee-
man term will partly lift this degeneracy, and in this way
influence the low-energy spectrum substantially. Therefore, it
is interesting to consider the thermodynamic behavior of the
classical delta-chain in a magnetic field. In this paper, we will
study the classical delta-chain in the external magnetic field.
This model is more complicated in comparison with that for
H = 0. Nevertheless, it can be solved exactly and the analyt-
ical results for the low-temperature properties are explicitly
obtained. We calculate the magnetization curve M(H ) and
the susceptibility and compare them with the results for the
quantum model. For example, we can quantitatively explain
the experimental result related to a maximum of MT/H vs T
for Fe10Gd10.

For simplicity and to avoid cumbersome formulas, we will
consider the spin-s delta-chain, i.e., the model with Sa =
Sb = s. (The extension of results for the case Sa �= Sb can
be obtained straightforwardly.) We note that the frustration
parameter α = 0.65 for the Fe10Gd10 molecule with Sa =
7
2 , Sb = 5

2 corresponds to α � 0.45 for the model with Sa =
Sb = 3, and it is expected that the behavior of the two models
for these frustration parameters is very similar. In accordance
with the adopted simplification, we will further consider the
F-AF delta-chain with s = 3 and α = 0.45 as a model for the
Fe10Gd10 molecule.

The paper is organized as follows. In Sec. II A, we describe
the ground state of the classical model (2) in different regions
of the frustration parameter α including the critical value α =
1
2 . The partition function and the magnetization are calculated
in Sec. II B. In Sec. II C, explicit analytical results in the
low-temperature limit are presented for different regions of
the parameter α and the scaling law for α � 1

2 is established.
In Sec. III, the quantum effects at low temperatures will
be studied by a combination of full exact diagonalization
(ED) using Schulenburg’s SPINPACK code [21] and the finite-
temperature Lanczos (FTL) technique [22,23]. We compare
the magnetization of the classical and the quantum models and
estimate finite-size effects.

II. CLASSICAL SPIN �-CHAIN IN A MAGNETIC FIELD

To obtain the classical version of Hamiltonian (1), we set
σi = s�ni and Si = s�ni, where �ni is the unit vector at the ith site.
Taking the limit of infinite s, we arrive at the Hamiltonian of
the classical delta-chain,

H = −
N∑

i=1

�ni · �ni+1 + α

N/2∑
i=1

�n2i−1 · �n2i+1 − h
N∑

i=1

nz
i , (2)

where N is the number of spins. In Eq. (2), we take the apical-
basal interaction as −1 and the basal-basal interaction as α.

In this section, we use the normalized magnetic field and
temperature,

h = H/s, (3)

t = T/s2, (4)

and the corresponding inverse temperature β = 1/t to present
the thermodynamic properties of model (2).

A. Ground state

We start our study of model (2) from the determination
of the ground state. For this aim, it is useful to represent
Hamiltonian (2) as a sum over triangle Hamiltonians,

H =
N/2∑
i=1

H�(i), (5)

where the Hamiltonian of the ith triangle has the form

H�(i) = −�n2i−1 · �n2i − �n2i · �n2i+1 + α�n2i−1 · �n2i+1

− �h · (
1
2 �n2i−1 + �n2i + 1

2 �n2i+1
)
. (6)

To determine the ground state of model (5), we need to find
the spin configuration on each triangle which minimizes the
classical energy. It turns out that the lowest spin configuration
on a triangle is different in the regions α � 1

2 and α > 1
2 . For

α � 1
2 , the ground state is the trivial ferromagnetic one with

all spins on each triangle pointing in the same direction. The
global spin configuration of the whole system in this case is
obviously ferromagnetic as well.

For α > 1
2 , the lowest classical energy on each triangle is

given by a noncollinear ferrimagnetic configuration, where all
spins of triangle �n1, �n2, �n3 lie in the same plane and spin �n2

assumes an equal angle θ0 with spins �n1 and �n3. The global
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FIG. 2. The ferrimagnetic ground state of the classical delta-chain.

ground state without magnetic field of the whole system for
α > 1

2 is macroscopically degenerate [24]. The magnetic field
lifts this degeneracy and stabilizes the ferrimagnetic configu-
ration where all apical spins are directed along the magnetic
field and the basal spins are inclined by an equal angle θ0 to the
right and to the left of the field direction, as shown in Fig. 2.
Therefore,

�h · �n2 = h, (7)

�n1 · �n2 = �n2 · �n3 = cos θ0, (8)

�n1 · �n3 = cos (2θ0), (9)

cos θ0 = 2 + h

4α
. (10)

The magnetization of the ground state in the ferrimagnetic
region is

Mgs = 2α + 1

4α
+ h

8α
(11)

for h < hsat, where the saturated field in the ground state is
defined by condition θ0 = 0:

hsat = 4α − 2. (12)

B. Partition function

The partition function Z of model (2) is

Z =
(

N∏
i=1

∫
d�ni

)
exp (−βH). (13)

In our previous paper [20], we used local coordinate systems
associated with the ith spin, which substantially simplified
calculations. For the system in a magnetic field, this trick does
not work. Therefore, we follow a common transfer-matrix
method which reduces the calculation of the partition func-
tion in one-dimensional (1D) systems to an integral equation
[25,26]. In our case, this integral equation is written for one
triangle and has the form∫

e−βH�(1)ψi(�n1)d�n2d�n1 = λiψi(�n3). (14)

The eigenvalues λi define the partition function as

Z =
∑

λ
N/2
i . (15)

In the thermodynamic limit N → ∞, only the largest eigen-
value λ0 survives,

Z → λ
N/2
0 . (16)

Selecting the terms containing the apical spin �n2 in the Hamil-
tonian of one triangle (6),

H�(1) = −�n2 · (�n1 + �n3 + �h) + α�n1 · �n3 − 1
2
�h · (�n1 + �n3),

(17)
we can explicitly integrate the integral equation (14) over the
apical spin �n2,∫

d�n2 exp[β�n2 · (�n1 + �n3 + �h)] = sinh(βha)

βha
, (18)

where ha is the effective magnetic field acting on the apical
spin �n2,

ha =
√

(�n1 + �n3 + �h)2. (19)

Then, the integral equation (14) becomes∫
R(�n1, �n3)ψi(�n1)d�n1 = λiψi(�n3), (20)

with the kernel depending on the basal spins only,

R(�n1, �n3) = sinh (βha)

βha
exp

[
−βα�n1 · �n3 + 1

2
β�h · (�n1 + �n3)

]
.

(21)
Equation (20) implies that the calculation of the thermody-
namics of the delta-chain is reduced to the thermodynamics of
the basal spin chain with a special form of interactions, which
depend on the temperature.

Now we choose the coordinate system so that the magnetic
field is directed along the Z axis. Then, �h = (0, 0, h), and unit
vectors �n have components (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
thus

�n1 · �n3 = cos θ1 cos θ3 + sin θ1 sin θ3 cos (ϕ1 − ϕ3), (22)

and the effective magnetic field (19) is

ha =
√

2 + h2 + 2�n1 · �n3 + 2h(cos θ1 + cos θ3) . (23)

Now we notice that the kernel R in Eq. (21) contains the
azimuthal angles ϕ1, ϕ3 only as a difference (ϕ1 − ϕ3). Then
we substitute, for the eigenfunctions,

ψi(�n j ) = eimϕ j φm,i(θ j ), (24)

and, in terms of x j = cos θ j , the integral equation (20) be-
comes ∫ 1

−1
Km(x1, x3)φm,i(x1)dx1 = λm,iφm,i(x3), (25)

with the symmetric kernel defined by an integral over ϕ =
(ϕ1 − ϕ3):

Km(x1, x3) =
∫ 2π

0

dϕ

4π
eimϕR13(ϕ, x1, x3). (26)

The largest eigenvalue is always given by m = 0. The states
with m > 0 become relevant in the calculations of transverse
correlation functions [25], which we do not consider here.
Therefore, below we put m = 0.

Thus, the thermodynamics of the delta-chain in the mag-
netic field (2) is reduced to the integral equation (25) over
one variable, which can easily be calculated numerically. The
numerical results of Eq. (25) will be discussed in the next
sections.
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C. Classical �-chain in a magnetic field at low temperature

In general, Eq. (25) completely describes the thermody-
namics of the spin delta-chain in a magnetic field (2). How-
ever, in this section, we focus on the low-temperature limit,
where explicit analytical results for the magnetization curve
are possible.

At t → 0, the integration in Eq. (20) can be carried out
using the saddle-point method. For this aim, we need to
expand the kernel R in Eq. (21) near its maximum. At first
we notice that the effective magnetic field on the apical spin
in the ground state is

hgs = 2 + h, α � 1

2
,

(27)

hgs = 1

α
+ 1 + 2α

2α
h, α >

1

2
.

As follows from Eq. (27), hgs is of the order of unity, except
for the case α → ∞ and h = 0, which is not considered
here. Therefore, in the low-temperature limit, βha � 1 and
one can neglect the second term in sinh (βha). Similarly, the
denominator in Eq. (21) can be substituted by its ground-state
value, so that the kernel R in the saddle-point approach is
approximated as

R ≈ exp (−βH13)

2βhgs
, (28)

where

H13 = −ha + α�n1 · �n3 − 1
2
�h · (�n1 + �n3). (29)

This implies that in the low-t limit, the behavior of the
delta-chain system is described by the special form of the
Hamiltonian acting on the basal chain only,

Heff = −
∑ √

2 + 2�n2i−1 · �n2i+1 + 2h
(
nz

2i−1 + nz
2i+1

) + h2

+α
∑

�n2i−1 · �n2i+1 − h
∑

nz
2i−1. (30)

The integral equation (20) with the approximate expression
for kernel (28) has the form∫

exp (−βH13)

2βhgs
ψ (�n1)d�n1 = λψ (�n3). (31)

The saddle point of Eq. (31) corresponds to the ground state
of the local Hamiltonian H13. Since the ground state of H13

is different in the regions α � 1
2 and α > 1

2 , it is necessary to
study these cases separately.

1. Ferromagnetic region and critical point α � 1
2

The low-temperature thermodynamics of the classical fer-
romagnetic chain (α = 0) in the magnetic field was calculated
in Ref. [27] by taking the continuum limit of the model. It was
shown that the problem is mapped to the quantum rotator in
the gravitational field g = h/t2:(

1

2
L̂2 − gnz

)
ψ (�n) = μψ (�n). (32)

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(y) 

y 

FIG. 3. Scaling function f (y) given by Eq. (36).

The normalized magnetization is given by the scaling function
M(t, h) = φ(g), where φ(g) is determined from the ground-
state energy μ0 of Eq. (32) by the relation [27]

φ(g) = −dμ0

dg
. (33)

The expansion of the function φ(g) for small and large g as
well as the numerical calculation of φ(g) were obtained in
Ref. [27]. It was shown in Ref. [28] that the function φ(g)
is well described by the approximate equation

g = φ(g) − 1

4
+ 1

4[1 − φ(g)]2
. (34)

It turns out (see the Appendix) that the low-temperature
thermodynamics of the classical delta-chain given by Eq. (2)
is also described by the quantum rotator in the gravitational
field, which has the specific form

g = h

2t3/2
f (y), (35)

where

f (y) =
[

e−y2

√
π [1 + erf(y)]

+ y

]−1

(36)

is the scaling function of the scaling parameter,

y = 2α − 1√
t

. (37)

Equation (36) represents the analytical expression for the
scaling function f (y) shown in Fig. 3. This function defines
the magnetization curve and the zero-field susceptibility,

χ (t, α) = 1

3t3/2
f (y). (38)

The behavior of the scaling function f (y) defines two regions
with different types of thermodynamics. The first region cor-
responds to the limit y → −∞, where the scaling function
f (y) tends to the asymptotic f (y) = −2y and the gravitational
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FIG. 4. Magnetization curve obtained by numerical solution of
the integral equation (25) and plotted as a function of the scaled
magnetic field g (35) for α = 0.2 (dotted line) and α = 0.5 (dashed
line) and t = 0.1 in comparison with the scaling function φ(g) (solid
line) representing the exact result in the t → 0 limit.

field g is

g = 1 − 2α

t2
h. (39)

This region is limited by the condition (1 − 2α) � √
t and

extends up to the pure ferromagnetic case α = 0. Therefore,
we name this region the “ferromagnetic” regime. The thermo-
dynamics in the ferromagnetic regime is similar to that for the
ferromagnetic chain. In particular, the zero-field susceptibility
behaves as χ ∼ t−2.

The second region is located near the critical point α = 1
2

and is restricted by the condition |1 − 2α| � √
t (|y| � 1). In

this “critical point” region, one can take the limit f (0) = √
π

and the gravitational field becomes

g =
√

π

2t3/2
h. (40)

The thermodynamics in this region is governed by the critical
point. In particular, the zero-field susceptibility behaves as
χ ∼ t−3/2. The crossover between these two regimes takes
place at the value y � −1, or t � t0 = (1 − 2α)2.

If we study the low-t thermodynamics of the classical �-
chain for some fixed value of α (not far from the transition
point), the above two regimes will manifest as follows. The
ferromagnetic regime taking place at very low temperatures
t � t0 will gradually be replaced by the critical point regime
for t � t0 (but still t � 1).

The scaling function φ(g) describes the magnetization in
t → 0 limits. However, the comparison of the exact numerical
solution of Eq. (25) for α = 0.2 and α = 0.5 with the scaling
function given by Eq. (34) shows a good agreement of both
results even for t = 0.1, as shown in Fig. 4.

The comparison of the classical with the experimental
magnetization curves for Fe10Gd10 is shown in Fig. 5. We find
a reasonable agreement. The slight differences between the
theoretical and the experimental curves can be attributed to

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

experiment T=2K

experiment T=4K

classical T=2K

classical T=4K

FIG. 5. Magnetization curve obtained by numerical solution of
the integral equation (25) for α = 0.45 in comparison with the
experimental data for Fe10Gd10 for T = 2 and T = 4 K. The real
magnetic field B is converted to the normalized h by the equation
h = gμBB/JskB and the normalized temperature relates to the real
temperature by t = T/Js(s + 1), with s = 3 and J = 2 K [18].

quantum effects and to different apical and basal spins present
in Fe10Gd10.

2. Ferrimagnetic region α > 1
2

In the ferrimagnetic region, the neighboring basal spin
vectors form an angle 2θ0 in the ground state, as shown in
Fig. 2. In the vicinity of the transition point (α − 1

2 ) � 1, the
angle θ0 � 1 [Eq. (10)], so that the ground state is close to
the ferromagnetic one. In this case, the approach developed
in the previous section remains valid. This means that on
the ferrimagnetic side of the transition point (and close to
it), the magnetization curve is given by the same scaling
function φ(g), with g defined by Eq. (35). The behavior of the
scaling function f (y) for y > 0 exhibits two low-t regimes.
The critical point regime discussed in the previous section
extends to the ferrimagnetic region and is restricted by the
condition (2α − 1) � √

t (y � 1). In the limit y � 1, the
scaling function behaves as f (y) ∼ 1/y, which means that for
very low temperature t � (2α − 1)2, the system is in the fer-
rimagnetic regime with different thermodynamic exponents.
In particular, the temperature dependence of the susceptibility
in this case is χ ∼ t−1.

We stress that the above scaling approach is valid in the
vicinity of the transition point only, where θ0 � 1. Far from
the transition point, the angle θ0 is no longer small, and in
order to describe the low-temperature thermodynamics, one
needs to expand the local Hamiltonian near the ferrimag-
netic ground-state configuration described by Eq. (10). The
magnetization curve in the ferrimagnetic ground state (11)
and for several small values of t for α = 1 is shown in
Fig. 6. As can be seen, the magnetization curves approach
the ground-state curve with decreasing t . According to Fig. 6,
the magnetization curves have three different scales in the
magnetic field which should be studied separately: h � t ,
t < h < hsat, and h � hsat.
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FIG. 6. Magnetization curves for α = 1 and several temperatures
t = 0.03 (dashed line), t = 0.1 (dot-dashed line), and t = 0.2 (dotted
line), obtained by numerical solution of the integral equation (25).
The ground-state magnetization curve (11) is shown by a solid line.

For very low magnetic field h � t , the ground-state spin
configurations can be described in terms of finite-step random
walk on the unit sphere in a weak gravitational field [20].
The magnetization in this case increases linearly with the
magnetic field and the zero-field susceptibility was calculated
in Ref. [20]:

M = χh, (41)

χ = 1

6t

2α + 1

2α − 1
. (42)

Then, for higher magnetic field t < h < hsat, the magnetiza-
tion approaches its ground-state value (11), and the integral
equation (31) can be solved using the saddle-point approxi-
mation. For this aim, we introduce small deviations δ1, δ3, ε

from the ferrimagnetic ground state (10):

cos θ1 = cos θ0 + δ1, cos θ3 = cos θ0 + δ3, ϕ = π + ε.

(43)

The leading terms of the expansion of the local Hamiltonian
in δ1, δ3, ε are

H13 = Egs1 + A1
(
δ2

1 + δ2
3

) + 2B1δ1δ3 + C1ε
2, (44)

where

Egs1 = − (2 + h)2

8α
− h − α, (45)

A1 = 8α3(2αh + h + 2) − α(h + 2)2

[16α2 − (h + 2)2](2αh + h + 2)
, (46)

B1 = A1 − αh(2α + 1)(h + 2)2

[16α2 − (h + 2)2](2αh + h + 2)
, (47)

C1 = h(2α + 1)[16α2 − (h + 2)2]

32α(2αh + h + 2)
. (48)
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FIG. 7. Magnetization curves for α = 1 and t = 0.1 obtained
by numerical solution of the integral equation (25) (solid line) and
approximate equations (41), (49), and (55) in the corresponding
regions (dashed lines).

The solution of the integral equation (31) in this case is

λ = exp

(
−Egs1

t

)
πt2

hgs

√
A1C1 + C1

√
A2

1 − B2
1

. (49)

The magnetization is given by the relation

M = t
∂ ln λ

∂h
. (50)

Finally, when the magnetic field is higher than the satu-
ration one, h > hsat, the ground state becomes ferromagnetic
and the magnetization only slightly differs from its fully
saturated value. This means that the angles θ1 and θ3 are small
and the expansion of the local Hamiltonian becomes

H13 = Egs2 + A2
(
θ2

1 + θ2
3

) + 2B2θ1θ3 cos ϕ, (51)

Egs2 = −2 + α − 2h, (52)

B2 = 1

2

(
α − 1

2 + h

)
, (53)

A2 = B2 + h − hsat

4
. (54)

In this case, after some algebra, the solution of the integral
equation (31) yields the partition function

λ = 1

8A2

t2

2 + h
exp

(
−Egs2

t

)(
1 + B2

2

4A2
2

)
. (55)

As shown in Fig. 7 for α = 1, Eqs. (41), (49), (50), and (55)
perfectly describe the magnetization curve in the correspond-
ing regions of the magnetic field.

III. QUANTUM EFFECTS

In the preceding section, we presented results for the
classical delta-chain in the magnetic field. Since the classical
model corresponds to the limit s → ∞, a natural question
arises about the relation of the classical results to those of
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the quantum spin-s model (1). In this respect, it is important
to mention Ref. [27], where it was conjectured that the mag-
netization curves of the quantum and classical ferromagnetic
chain coincide in the low-temperature limit and are described
by a universal function φ(gF ), given by Eq. (33), of the scaling
variable gF ,

gF = s3H

T 2
. (56)

In this section, we will use the nonrenormalized temperature
T = ts2 and the magnetic field H = sh. As the ferromagnetic
chain corresponds to the particular case α = 0 of our model,
the problem of “universality” of the classical results for α >

0 will be the focus of our attention. Additional motivation
to study the quantum effects to the classical results is that
Fe10Gd10 is described by the quantum model with relatively
high, but nevertheless finite, spin values. For the analysis of
the magnetic properties of the quantum spin model, we in-
vestigate finite chains imposing periodic boundary conditions
using the numerical exact diagonalization (ED) [21] and the
finite-temperature Lanczos (FTL) technique [22,23].

A. Transition point

We start our analysis from the transition point α = 1
2 . The

spin- 1
2 case of quantum model (1) at the transition point was

studied in detail in Ref. [13]. It was shown that this model has
many very specific properties: a flat one-magnon spectrum,
localized one-magnon states and multimagnon complexes, a
macroscopic degeneracy of the ground state and a residual
entropy, exponentially low-lying excitations, and a multiscale
structure of the energy spectrum [14]. It turns out that all of
these specific properties of the spin- 1

2 model carry over to
the models with higher values of spin with some inessential
modifications, which we will briefly describe below.

The ground state of the quantum delta-chain with any value
of s at the critical point α = 1

2 consists of exact multimagnon
bound states, exactly like the s = 1

2 model and the number of
the ground states, Bk

N/2, for fixed value Sz = Smax − k, Smax =
sN , is [13]

Bk
N/2 = Ck

N/2, 0 � k � N

4
, 2Smax − N

4
< k � 2Smax,

Bk
N/2 = CN/4

N/2 ,
N

4
+ 1 � k � 2Smax − N

4
,

where Cn
m = m!

n!(m−n)! is the binomial coefficient.
The contribution to the partition function from only these

degenerate ground states is

ZGS =
∑

k

Bk
N/2 exp

[
(Smax − k)H

T

]
. (57)

Using a saddle-point approximation to the estimate of
Eq. (57), we obtain the corresponding normalized magneti-
zation in the form

MGS = 1 − 1

2s[1 + exp(H/T )]
. (58)

0
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S 

FIG. 8. Magnetization curves M(H/s) for the quantum models
with s = 1

2 (N = 36), s = 1, 3
2 (N = 16), and s = 2, 5

2 , 3 (N = 12)
(solid lines) at the transition point α = 1

2 for T/s(s + 1) = 0.1. The
magnetization curve of the classical model for α = 1

2 and t = 0.1 is
shown by the dashed line.

As follows from Eq. (58), the magnetization at the critical
point for H → 0 is

MGS = 1 − 1

4s
, (59)

and it changes from MGS = 1
2 for s = 1

2 to MGS = 1 for the
classical limit s → ∞.

According to Eq. (59), the magnetization MGS is finite for
H → 0, which would clearly contradict the statement that
long-range order cannot exist in one-dimensional systems at
T > 0. For the correct description of M(H, T ), it is thus
necessary to take into account the full spectrum of the model.
Unfortunately, such analytical calculation is impossible, and
we therefore carried out ED and FTL calculations of M(H, T )
for different values of s and N . The corresponding results
together with that for the classical model are shown in Fig. 8.
As can be seen in Fig. 8, the behaviors of the classical and
quantum model are very different. This implies that there is no
universality at the critical point. At the same time, there is one
interesting point related to the behavior of the magnetization
at low magnetic field. It was shown in Ref. [13] that the
magnetization of the s = 1

2 delta-chain is M ∼ H/T γ with an
exponent γ = 1.09. On the other hand, in the classical model
(s → ∞), γ = 3

2 according to Eq. (38). Therefore, it can be
expected that the exponent γ is a function of s. To clarify
this point, we have calculated the zero-field susceptibility χ

for different s and N . The dependencies χ (T ) are shown in
Fig. 9 as a log-log plot of 3χT/s(s + 1) vs T/s(s + 1). The
solid lines denote, from bottom to top, s = 1

2 (N = 36), s = 1
(N = 16), and s = 3

2 , 2, 5
2 , 3 with N = 12. The classical curve

is shown by a dashed line. As can be seen in Fig. 9, all
curves tends to 1 in the high-temperature limit, which is in
accord with the high-T behavior of the susceptibility χ =
s(s + 1)/3T . Then, for lower temperature, all curves diverge
from each other and, in a definite intermediate-temperature
region, the curves have linear behavior with different slope,
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FIG. 9. Log-log plot for the dependence of 3χT/s(s + 1) on the
normalized temperature T/s(s + 1) for the classical (dashed line)
and quantum spin-s (solid lines) delta-chain calculated at the critical
point α = 0.5.

which implies a power-law dependence,

χ = r(s)/T γ (s). (60)

This means that the low-field behavior of the magnetization
is M ∼ H/T γ (s). The dependence of the critical exponent on
spin value γ (s) is shown in Fig. 10 and it can be seen that
γ → 3

2 in the classical limit s � 1. When further decreasing
T/s(s + 1) for all solid curves, the sloping part in Fig. 9 is
followed by a flat part related to finite-size effects. At T → 0,
the solid curves tend to the values determined by the contri-
butions of the degenerate ground states. These contributions
for finite delta-chains can be found by the calculations of the
zero-field susceptibility per spin using Eq. (57), which results
in

χ = cN (s)N

T
, (61)

1

1.1

1.2

1.3

1.4

1.5

0 1 2 3 4 5

1/s2 

FIG. 10. Dependence of the critical exponent γ on the spin
value s. The dashed line represents the approximate expression γ =
3s2+2.6
2s2+2.6

.

where cN (s) = 1
2 (s − 1

4 )2 for N � 1. We suppose that both
Eqs. (60) and (61) for χ (T ) are described by a single finite-
size scaling function, which has the form [13]

χ (T ) = T −γ F (cN (s)NT γ−1). (62)

For small x, the function F (x) gives (61) and, in the
thermodynamic limit N → ∞, the scaling function tends to
the value r(s) in accord with Eq. (60). The crossover between
these two types of susceptibility behavior occurs at x � 1,
which defines the crossover temperature T ∗ ∼ N−1/(γ−1). At
T < T ∗, finite-size effects are essential and χ is given by
Eq. (61). The crossover temperature T ∗ increases with s and
the region of finite-size behavior of χ increases.

B. Ferromagnetic phase

As was noted in the beginning of this section, in the special
case α = 0, the magnetization curves of both quantum and
classical delta-chain models coincide in the low-temperature
limit. According to the scaling hypothesis [27], the normal-
ized magnetization M for the infinite chain is expressed at
T → 0 and H

T → 0 [but with fixed gF (56)] as M(T, h) =
φ(gF ) and the function φ(gF ) is obtained by calculating the
eigenspectrum of the quantum rotator Hamiltonian (32) in the
gravitational field gF . As noted in Ref. [27], the hypothesis of
universality originates in the universal behavior of the spin-
wave excitations above the ferromagnetic ground state in both
quantum and classical models. Similarly to the case α = 0,
one can expect that such universality remains in the ferromag-
netic part of the ground-state phase diagram (α < 1

2 ), with gF

in Eq. (56) being replaced by

gF = (1 − 2α)s3H

T 2
, (63)

in accordance with Eq. (39) for the classical model.
The universality for α < 1

2 is partly confirmed by the fact
that the leading terms of the zero-field susceptibility at T →
0 for the classical model and that obtained using modified
spin-wave theory [29] for the quantum model coincide [20].
Unfortunately, modified spin-wave theory is restricted to zero
magnetic field, and it cannot confirm the universality of the
magnetization curve.

However, the extension of the hypothesis of universality
for the case α �= 0, and especially for α close to the transi-
tion point α = 1

2 , needs some comments. As shown in the
preceding section, the scaling parameter g in the classical
model has two different forms, given by Eqs. (39) and (40), for
T � T0 and T � T0, respectively, where T0 = (1 − 2α)2s2 is
the temperature of the crossover. For T � T0, this parameter
takes the form (63), while for T � T0, it corresponds to that
for the transition point regime, where the behavior of the
classical and quantum models is very different. Therefore, one
can expect that there is identical universality of the classical
and quantum models in the low-temperature region T � T0

only.
The quantum models also have different low-temperature

regimes when α is close to the transition point. As an example,
we show in Fig. 11 the dependence of the susceptibility for
the s = 1

2 delta-chain and α = 0.45 with N = 32 and N =
36 obtained by FTL calculations, where for convenience we
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FIG. 11. Susceptibility times temperature, χT , in dependence
on T for α = 0.45 obtained numerically by FTL for s = 1/2 and
N = 32 (dotted line), N = 36 (thick solid line). The classical curve
is shown by the dashed line. The thin solid line describes low-T
asymptotic χ = (1 − 2α)/24T 2.

represent this dependence as a log-log plot of T χ (T ). At first,
we note that the curves with N = 32 and N = 36 perfectly
coincide for T > 0.003, which means that they correctly
describe the thermodynamic limit in this region. In the high-
temperature limit, the curves tend to a constant, which implies
the correct asymptotic χ (T ) = 1/(4T ). In the temperature
range 0.1 � T � 3, the slope of the curve is very close to that
obtained for s = 1

2 at the transition point [13]: χ (T ) ∼ T −γ

with γ = 1.09. Therefore, we refer this region to the critical
point regime.

For temperatures lower than the critical point region, the
slope of the curves increases and, after some crossover region,
the quantum curves approach the classical curve, as shown in
Fig. 11 by a dashed line. We name the region where the quan-
tum curves are close to the classical one, 0.003 � T � 0.02,
the “ferromagnetic” one. Though the slope of the curves in
this region corresponds to γ ∼ 1.7 instead of a ferromagnetic
γ = 2, we see that all curves converge to the ferromagnetic
low-T asymptotic χ = (1 − 2α)/24T 2, shown by the thin
solid line in Fig. 11. For T < 0.003, the quantum curves for
N = 32 and N = 36 diverge from each other and both from
the classical curve, establishing the “finite-size effect” region
with nonthermodynamic behavior. Looking at Fig. 11, it is
natural to assume that the quantum curve corresponding to
very long chains would go further into the lower-T region
close to the classical curve and both asymptotically approach
the thin solid line, i.e., the ferromagnetic law χ = (1 −
2α)/24T 2. This means that for the infinite delta-chain, the
ferromagnetic region exists up to T = 0. Unfortunately, for
α �= 0, the quantum models can be studied only by numerical
calculations of finite delta-chains, which, due to finite-size
effects, complicates the study of the low-temperature region.

The magnetization curves in the ferromagnetic temperature
region for the s = 1

2 model with N = 36 and for α = 0.45
obtained by numerical FTL calculations are shown in Fig. 12
as a function of the ferromagnetically scaled field gF (63). In
Fig. 12, we also show the scaling function φ(g). As can be
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0.8

1

0 1 2 3 4 5 6
 

FIG. 12. Magnetization curve for α = 0.45 obtained numerically
by FTL for s = 1/2, N = 36 and three different temperatures located
in the ferromagnetic region of Fig. 11: T = 0.004 (dash-dotted line),
T = 0.0075 (short-dashed line), and T = 0.015 (long-dashed line).
The data are plotted as a function of the scaled magnetic field gF

(63). The exact universal magnetization curve φ(gF ) is shown by the
solid line.

seen, the quantum magnetization curves tend to the scaling
function as the temperature decreases. However, the differ-
ence between these curves and φ(g) is rather appreciable. The
point is that the function φ(g) represents the leading term
in the low-temperature expansion of the magnetization. The
temperatures corresponding to the magnetization of the s = 1

2
model in Fig. 12 are about T0. At such a temperature, the next
terms in the low-temperature expansion of the magnetization
are of the same order as the leading term. This appreciable
difference of the initial slope of the quantum magnetization
curve and φ(g) can also be seen in Fig. 11: in the ferro-
magnetic region, the values χ (T ) for the quantum curve are
approximately two times larger than that for the asymptotic
line corresponding to the initial slope of φ(g). The comparison
of the classical and asymptotic lines in Fig. 11 shows that the
difference would become ∼10% for T � 0.0005, but, in order
to avoid the finite-size effects at such low temperatures, one
needs to calculate very long chains.

In the finite-size region, the correlation length ξ = (1 −
2α)s2/T is much larger than the system size accessible in
exact diagonalization (ED) (N ∼ 24) or FTL (N ∼ 36) cal-
culations (especially for α close to 1

2 ). In this region, the
finite-size effects are essential and the scaling function for the
magnetization depends on two parameters φ(gF , q) [27], with

q = (1 − 2α)s2

T N
. (64)

At T → 0 and q � 1, the function φ(g, q) is given by the
Langevin equation

M = φ(gF , q) = coth(x) − 1

x
, (65)

with

x = gF

q
= NsH

T
. (66)
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FIG. 13. Comparison of quantum (solid lines) and classical
(dashed line) dependencies MT/H (s + 1) vs T/s(s + 1) calculated
for α = 0.45 and h = 0.1. The curves with spin s = 1

2 , 1, 3
2 , 2, 5

2 , 3
are arranged in order from bottom to top.

The magnetization calculated for the quantum delta-chain at
α = 0.45 with s = 1

2 and N = 36 agrees well with Eq. (65).
The numerical calculations of the magnetization of the

quantum s = 1
2 model for temperatures T � T0 show signif-

icant difference from the classical scaling function φ(g) (we
note that the above statement is restricted by low tempera-
ture, T < 1, where the scaling arguments can be applied).
Therefore, we conclude that the magnetization for 0 � α < 1

2
is a universal function for both the quantum and classical
delta-chain only in the ferromagnetic regime (T � T0).

As discussed in Secs. I and II C 1, the classical approxima-
tion for the F-AF delta-chain is justified for Fe10Gd10because
the spin quantum numbers for Fe and Gd ions are rather
large. The characteristic feature related to the susceptibility
of Fe10Gd10 is a maximum in the temperature dependence
of the quantity MT/H in a fixed magnetic field. The cal-
culation of this quantity for the classical model shows good
agreement with the experimental data. In particular, the max-
imum (MT/H )max ∼ 720 cm3 K/mol is reached at Tmax ∼
4 K in comparison with the experimental data (MT/H )max ∼
745 cm3 K/mol reached at Tmax ∼ 3 K. The temperature de-
pendence of MT/H for quantum models with different values
of spin s is shown in Fig. 13 together with that for the classical
model. As can be seen in Fig. 13, the dependencies MT/H
approach the classical curve as s increases.

C. Ferrimagnetic phase

The ground state of the classical model is ferrimagnetic at
α > 1

2 . As we noted before, in Ref. [11], it was stated that a
ferrimagnetic ground-state phase is also realized for the s = 1

2
quantum delta-chain. At the same time, the behavior of the
magnetization curve of the classical and quantum models is
very different, as shown in Fig. 14 for α = 1. It is possible
to state with certainty that there is no universality in this
phase. At present, not much is known about the ground-state
phase of the quantum models with s > 1

2 and this problem
needs further study. One interesting point is the dependence
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=1 
T=0.1S(S+1) 

FIG. 14. Comparison of the magnetization curves M(H/s) for
the classical (thick solid line) and quantum models with s =
1/2, N = 36 (dashed line), s = 1, N = 16 (dash-dotted line), and
s = 3, N = 12 (dotted line) in the ferrimagnetic region α = 1 for
T/s(s + 1) = 0.1. The ground-state magnetization curve of the clas-
sical model (11) is shown by the thin solid line.

of the magnetization behavior on s. As shown in Fig. 14,
the magnetization curves rapidly approach the classical one
when s increases. It can be expected that the magnetization of
the quantum model in the limit s � 1 will coincide with the
classical curve.

Another interesting problem is the limit α � 1, where
the antiferromagnetic basal chain is weakly connected to the
apical spins. In this limit, the behavior of the system can
be qualitatively different for integer and half-integer basal
spins due to the Haldane gap in the spectrum of the basal
subsystem. In this respect, one should be cautious because
the replacement of basal spin s = 7

2 to s = 3 would lead to
qualitatively wrong results. However, this problem is beyond
the scope of this paper because the experimental value of
α = 0.45 is very far from the limit α � 1.

IV. SUMMARY

In this paper, we have studied the delta-chain with com-
peting ferro- and antiferromagnetic interactions J1 and J2 in
the external magnetic field. At α = J2/|J1| = 1/2, this model
belongs to the class of flat-band models exhibiting a massively
degenerated ground state leading to a residual entropy. Since
a magnetic field partially lifts the degeneracy, the influence
of the field on the low-temperature physics is tremendous.
Interestingly, there is a finite-size realization of the model,
namely, the magnetic molecule Fe10Gd10, which has J1 and
J2 close to the flat-band point. In the present study, for the
classical model, exact results for the thermodynamics are
obtained. It is shown that the calculation of the magnetization
for α � 1

2 in the limit T → 0 and H
T → 0 reduces to the

solution of the Schrödinger equation for the quantum rotator
in the gravitational field g, which depends on the temperature.
The low-temperature region of the classical model consists
of two regions T � T0 and T � T0 [T0 ∼ (1 − 2α)2s2] with
different type of g(T ) dependence. The magnetization for
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T � T0 is a universal function of the scaling parameter g,
which is valid for both the classical and quantum models. In
particular, the susceptibility behaves as χ ∼ T −2. For T �
T0, the behavior of the magnetization and the susceptibility
is the same as in the critical point α = 1

2 and it is different
for the classical and the quantum models. In this case, the
susceptibility of the classical model behaves as χ ∼ T −3/2,
while χ ∼ T −γ with γ = 1.09 for the quantum s = 1

2 model.
Generally, the value of the exponent γ depends on s and it
tends to the classical value γ = 3

2 when s increases.
We compare the obtained results with the experimental

data for Fe10Gd10, which is a finite-size realization of the
considered model with α � 0.45. We show that the mag-
netization M(H ) of both the classical and quantum models
with s = 3 agrees well with the experimental magnetization
curves measured at T = 2 and T = 4 K. We also discuss
the maximum in the temperature dependence of the quantity
MT/H at fixed magnetic field and show that it agrees very
well with the experimentally observed one.

APPENDIX

In the ferromagnetic region α < 1
2 including the vicinity

of the critical point α = 1
2 at low t , nearest-neighbor spins �n1

and �n3 are almost parallel. In the pure ferromagnetic case α =
0, the angle between the neighboring spin vectors is of the
order of t1/2 and the magnetic field scales as h ∼ t2 [27]. As
was pointed out in Ref. [20], near the critical point the critical
properties change so that the angle between the neighboring
spin vectors is of the order of t1/4 and, as will be shown below,
the magnetic field scales as h ∼ t3/2 in the low-t limit. Using
these facts, we expand the effective magnetic field acting on
the apical spin as

ha ≈ 2− 1
2 (1 − �n1 · �n3)− 1

16 (1 − �n1 · �n3)2 + 1
2
�h · (�n1 + �n3).

(A1)
This results in the following effective local Hamiltonian (29):

H13=
(

1
2 − α

)
(1 − �n1 · �n3)+ 1

16 (1 − �n1 · �n3)2−�h · (�n1+�n3).
(A2)

Though the second term in Eq. (A2) is of the second order in
the small parameter (1 − �n1 · �n3), it becomes relevant in the
vicinity of the critical point when the factor ( 1

2 − α) at the
first-order term is small.

Next, we can simplify Eq. (31) by substituting hgs = 2
from Eq. (27), and expanding the exponent with the magnetic
field term (βh � 1),

exp
[
βh

(
nz

1 + nz
3

)] ≈ 1 + βh
(
nz

1 + nz
3

) ≈ 1 + 2βhnz
3, (A3)

which transforms Eq. (31) into the form

(
1 + 2βhnz

3

) ∫
e−βH( �m)ψ (�n3 + �m)d �m = 4βλψ (�n3), (A4)

where

H( �m) = 1 − 2α

4
�m2 + 1

64
( �m2)2, (A5)

and

�m = �n1 − �n3 (A6)

is a small vector of length | �m| ∼ t1/4, which can be considered
as a 2D vector (m1, m2) in the plane perpendicular to the spin
vector �n3.

Now we expand the function ψ in Eq. (A4) to the second
order in �m:

ψ (�n + �m) = ψ (�n) + mi
∂ψ (�n)

∂ni
+ 1

2
mimj

∂2ψ (�n)

∂ni∂n j
, (A7)

where derivatives are taken along two orthogonal directions in
the plane perpendicular to the spin vector �n.

The Hamiltonian (A5) is a function of �m2. Therefore,
linear terms in mi and terms ∼m1m2 in Eq. (A7) vanish after
integration over �m in the integral equation (A4). As a result,
the integral equation (A4) becomes

(1 + 2βhnz )ψ (�n)
∫

e−βH( �m)d �m + 1

4

∂2ψ

∂n2
i

∫
e−βH( �m) �m2d �m

= 4βλψ (�n), (A8)

where we omit the next-order terms ∼βh �m2. Now we notice
that

∂2

∂n2
1

+ ∂2

∂n2
2

= −L̂2 (A9)

is simply the angular momentum operator. Therefore, we
come to the Schrödinger equation for the quantum rotator in
the gravitational field,(

1
2 L̂2 − gnz

)
ψ (�n) = μψ (�n), (A10)

where the gravitational field

g = A

B
βh (A11)

depends on the Hamiltonian H( �m) via the integrals A and B:

A =
∫

e−βH( �m)d �m,

B = 1

4

∫
e−βH( �m) �m2d �m, (A12)

and the partition function λ is given by the lowest eigenvalue
μ0 by the equation

λ = A − 2Bμ0

4β
. (A13)

Calculating A and B in Eq. (A12) for H( �m) given by Eq. (A5),
we have

g = h

2t3/2
f (y), (A14)

where

f (y) =
[

e−y2

√
π [1 + erf(y)]

+ y

]−1

(A15)

is the scaling function of the scaling parameter

y = 2α − 1√
t

. (A16)
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