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Quantum robustness of fracton phases
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The quantum robustness of fracton phases is investigated by studying the influence of quantum fluctuations on
the X-Cube model and Haah’s code, which realize a type-I and type-II fracton phase, respectively. To this end,
a finite uniform magnetic field is applied to induce quantum fluctuations in the fracton phase, resulting in zero-
temperature phase transitions between fracton phases and polarized phases. Using high-order series expansions
and a variational approach, all phase transitions are classified as strongly first order, which turns out to be a
consequence of the (partial) immobility of fracton excitations. Indeed, single fractons as well as few-fracton
composites can hardly lower their excitation energy by delocalization due to the intriguing properties of fracton
phases, as demonstrated in this work explicitly in terms of fracton quasiparticles.
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I. INTRODUCTION

Intrinsic topological order is a prominent and attractive
theme in modern physics due to its fascinating physical
properties [1–3]. Indeed, quantum phases possessing topolog-
ical order display long-range entangled ground states and a
ground-state degeneracy depending on the real-space topol-
ogy. Elementary excitations in two dimensions are so-called
anyons [4,5] having a generalized particle statistics distinct
from conventional bosons and fermions. Although anyonic
point particles are forbidden in three spatial dimensions ac-
cording to the spin-statistics theorem, the concept of fractional
statistics can be generalized to spatially extended objects like
membrane excitations in three dimensions (3D) [6–8].

The quantum robustness against local decoherence renders
intrinsic topological order attractive for future quantum tech-
nologies. Anyonic excitations are at the heart of topological
quantum computation [9,10], while Kitaev has suggested to
use the topologically protected ground-state degeneracy for
quantum memories [9]. Unfortunately, two-dimensional topo-
logical stabilizer codes like Kitaev’s toric code are fragile
against thermal fluctuations and it is therefore mandatory to
consider topological quantum memories in (at least) three
spatial dimensions [11–13]. The physical origin of the thermal
fragility in two-dimensional stabilizer codes is the finite-
energy barrier between different topological ground states,
e.g., the toric code becomes thermally stable only for dimen-
sions larger than three [14]. The recently discovered fracton
phases reach beyond such topological codes [15–37] and
have interesting crosslinks to other domains in physics like
elasticity [38–43], localization [15,44,45], gravity [46–48],
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Majorana fermions [49,50], and deconfined quantum critical-
ity [51].

The three-dimensional fracton codes display fully local-
ized elementary excitations, so-called fractons, in a trans-
lationally invariant system and a subextensive ground-state
degeneracy as a function of system size. Fracton order can be
grouped in two types. In type-I fracton phases, topologically
nontrivial composites of fractons are able to move in lower-
dimensional subspaces of the system in real space, while for
type-II fracton phases any topologically nontrivial assembly
of fractons remains localized under any local perturbations.
The most prominent representatives of fracton order are the
X-Cube model (type I) [21,52] and Haah’s code (type II) [17].
However, the type-I fracton order in the X-Cube model is
still thermally fragile due to the existence of stringlike logical
operators resulting in a finite-energy barrier between ground
states [14,17]. This is different for Haah’s code, where any
stringlike logical operator is absent. As a consequence, the
energy barrier becomes macroscopic scaling logarithmically
with the system size leading to a partial protection against
thermal fluctuations [18].

Apart from understanding the effect of thermal fluctuations
on fracton codes, it is important and interesting to investigate
the breakdown of fracton topological order at zero tempera-
ture. For the more conventional topological models like the
toric code, color codes, or string-net models, very rich phase
diagrams with quantum critical behavior have been found
when adding perturbations like an external magnetic field
[8,53–65]. This is widely unexplored for three-dimensional
fracton order, which is the main motivation for this work.
We want to understand the impact of the intriguing properties
of fracton excitations on the quantum critical breakdown of
fracton order and we concentrate on potential differences
between type-I and type-II fracton order. On general grounds
one would expect that type-I fracton phases are more likely
to display second-order quantum phase transitions compared
to type-II fracton phases due to the enhanced mobility of
composite fracton excitations. Here, we study the quantum
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robustness of the X-Cube model and Haah’s code by adding
an external uniform magnetic field. The application of high-
order series expansions about the low- and high-field limits
allows to quantitatively locate the phase transitions between
the fracton and polarized phases. All the phase transitions
are found to be strongly first order, which is confirmed by
variational calculations and is in agreement with quantum
Monte Carlo (QMC) simulations for the X-Cube in a field
[66]. The first-order nature of the phase transitions can be
understood in terms of the (partial) immobility of fracton
excitations, which is reflected in the properties of fracton
quasiparticles.

The paper is organized as follows: In Sec. II the physical
properties of the X-Cube model and Haah’s code are dis-
cussed. Then, both fracton codes in a magnetic field and their
exact dualities are investigated in Sec. III. Technical details
about the methods are presented in Sec. IV. The ground-state
phase diagrams of the fracton models in a uniform magnetic
field are discussed in Sec. V, while the properties of fracton
quasiparticles are explored in Sec. VI. A conclusion follows
in Sec. VII.

II. FRACTON MODELS

In this section we review the known physical properties of
Haah’s code and the X-Cube model. These are then used to
study the effects of additional magnetic fields which are the
central focus of this work investigated in the later sections.

A. Haah’s code

Haah’s code is defined on the cubic lattice where two
distinct spin- 1

2 degrees of freedom σ and μ are placed on each
vertex. The Hamiltonian of Haah’s code [17] is given as

ĤHaah = −J
∑

c

(Âc + B̂c), (1)

with

Âc ≡ μz
jμ

z
kσ

z
l μz
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nσ z
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z
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B̂c ≡ σ x
i μx

i μ
x
jμ

x
kσ

x
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mσ x
n σ x

p .

Here, we labeled the sites of each cube c as indicated in Fig. 1.
The operators σα

i (μα
i ) with α ∈ {x, y, z} are the conventional

Pauli matrices acting on the σ spin (μ spin) on site i. We
consider J > 0 without loss of generality.

Haah’s code is a stabilizer code, i.e., it is a sum of commut-
ing operators:

[Âc, B̂c′ ] = [Âc, Âc′ ] = [B̂c, B̂c′ ] = 0 ∀ c, c′ (2)

and

Â2
c = B̂2

c = 1 ∀ c. (3)

The eigenvalues ac = ±1 of the operators Âc and bc = ±1 of
the operators B̂c are therefore conserved quantities, which is
essential for the exact solvability of Haah’s code.

1. Ground states

Ground states of Haah’s code are characterized by
ac = bc = +1 for all c and have energy E0 = −2JNc with Nc
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FIG. 1. Illustration of the Âc and B̂c operators that define Haah’s
code. The cube on the left shows the chosen labeling of the sites of
cube c and the chosen coordinate system used in this work. Two spins
1
2 called σ and μ are located on each vertex of the lattice. The cube
in the middle illustrates the action of Âc on the spins of cube c. Here,
IZ represents the tensor product 1 ⊗ μz, where the operator on the
left acts on the σ spin and the operator on the right on the μ spin.
Analogously, the right cube illustrates the action of B̂c on the spins
of cube c.

the number of cubes, which equals the number of sites N . In
each unit cell of the cubic lattice we have two spin- 1

2 degrees
of freedom, each with a two-dimensional Hilbert space and
two operators each with two-dimensional eigenspace. If all
eigenvalues ac and bc can be chosen independently, which is
the case for open boundary conditions, one can construct the
ground state |0〉 uniquely using projectors as

|0〉 =
∏

c

(
1 + Âc

2

)(
1 + B̂c

2

)
|⇑〉, (4)

where |⇑〉 ≡ |⇑〉σ |⇑〉μ denotes the fully polarized state of σ

and μ spins pointing without loss of generality in z direction.
Since the operators Âc and B̂c are rather complicated, it is
not easy to visualize this ground state in the same fashion as
the analogously constructed ground state of the toric code in
terms of a loop soup. Nevertheless, it can be useful to think
of a fractal soup for Haah’s code, i.e., the ground state can be
seen as an infinite equal-weight superposition of spin product
states in the thermodynamic limit resulting from the action of
any combination of operators Âc and B̂c on the fully polarized
state |⇑〉.

For periodic boundary conditions of an L × L × L cubic
lattice, one finds at least one constraint for each type of
operators, i.e., the product of all operators Âc (B̂c) equals the
identity. The reason for this is that each σ z

i and μz
i (σ x

i and μx
i )

appears four times in the product of all operators Âc (B̂c). One
can therefore determine the eigenvalue of a single operator
Âc (B̂c) by the eigenvalues of all the other operators of the
same type: ∏

c

Âc = 1 ⇒ Âc =
∏

c′,c′ 
=c

Âc′ , (5)

∏
c

B̂c = 1 ⇒ B̂c =
∏

c′,c′ 
=c

B̂c′ . (6)

As a consequence, one cannot fix all 2Nc spin degrees of
freedom because the eigenvectors of the operators span only
an eigenspace of dimension 2Nc − 2 in total. Hence, the lower
bound for the ground-state degeneracy of Haah’s code is
22 = 4 in this case. An upper bound for the ground-state de-
generacy of Haah’s code is given by 24L corresponding to 4L
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encoded qubits because there might exist further constraints
depending on the specific L under consideration [17].

2. Excitations

The elementary excitations of Haah’s code are called
fractons. Each fracton corresponds either to an eigenvalue
ac = −1 (a fracton) or bc = −1 (b fracton) located at the
center of cube c with excitation energy 2J above E0. Haah’s
code has therefore a ladder spectrum, i.e., the total energy
of any state depends only on the total number of fractons,
determined by the set of all eigenvalues ac and bc. One can
then write the Hamiltonian of Haah’s code as

ĤHaah

J
= −2Nc + 2Q̂Haah, (7)

where we have introduced the fracton counting operator
Q̂Haah. We stress that the creation of n fractons with 1 � n � 3
is impossible by any operator with local support. Neverthe-
less, in such cases physical n-fracton wave functions, which
belong to different superselection sectors of the Hilbert space
compared to the ground state, can be defined via projectors.
As an example, we state explicitly the one-fracton states using
open boundary conditions in the thermodynamic limit:

∣∣1(a)
c

〉 = 1 − Âc

2

∏
c′,c 
=c′

(
1 + Âc′

2

)(
1 + B̂c′

2

)
|⇒〉, (8)

∣∣1(b)
c

〉 = 1 − B̂c

2

∏
c′,c 
=c′

(
1 + Âc′

2

)(
1 + B̂c′

2

)
|⇑〉, (9)

where the product of projectors amounts to a global operator.
The generalization to n-fracton states with n > 1 is straight-
forward. The lowest number of fractons, which can be created
locally, is four. This is achieved by acting with σα

i or μα
i with

α ∈ {x, z} on the ground state |0〉 so that either four a or four
b fractons are created, respectively.

3. Symmetries and fractal character

The most useful symmetry of Haah’s code is that any B̂c

operator can be mapped to the corresponding Âc operator
by three steps: (i) lattice inversion with the center of a cube
as center of inversion, (ii) renaming σ to μ and vice versa,
and (iii) rotating the Hilbert space such that Pauli matrices
x → z and z → −x. Obviously, with a similar sequence of
operations, one can perform the inverse transformation from
Âc to B̂c [67]. This symmetry is very useful as it allows
in many cases to investigate just one of the operator types
while the properties of the other one can be deduced directly.
Additionally, Haah’s code has a threefold rotational symmetry
around the (1, 1, 1)T axis. Note that none of these symmetries
were required in Haah’s construction of the model [17].

Haah’s code is realizing type-II fracton order, i.e., the
elementary fracton excitations are immobile and are located
at the corners of fractal operators. This can be illustrated by
the action of a B̂c operator on the σ and μ spins. In Fig. 2, one
can see that the operators B̂c act nontrivially on sites forming
a Sierpinski tetrahedron with a self-similar character for both
types of spin. Therefore, B̂c is a fractal operator. The same is
true for the Âc operators by symmetry.

FIG. 2. Illustration of the fractal character of the operators B̂c in
Haah’s code. The action of a single B̂c operator on the σ spins can
geometrically be illustrated as a tetrahedron. This is shown on the
left side. The figure in the center illustrates the action of a single B̂c

operator on the μ spins, again, forming a tetrahedron. The fractal
character can be seen when putting four tetrahedrons together. These
form a larger version of the same tetrahedron in a self-similar way,
which is shown on the right. The same is true for the Âc operators by
symmetry.

B. X-Cube

The X-Cube model, as introduced in [21], is defined on a
cubic lattice (for generalization, see Refs. [68,69]), where a
single spin- 1

2 degree of freedom is placed on every edge. The
Hamiltonian of the model reads as

ĤX-Cube = −J
∑

c

Âc − J
∑
s,κ

B̂(κ )
s , (10)

where B̂(κ )
s is the product of four σ z Pauli matrices acting

on the four spins closest to the vertex s in the κ plane with
κ ∈ {xy, xz, yz}. In contrast, Âc is the product of 12 σ x op-
erators acting on the 12 spins on the edges of cube c. Both
operator types constituting the X-Cube model are illustrated in
Fig. 3. In the following we denote again the number of cubes
by Nc, which equals the number of vertices. One therefore has
Nc operators Âc, 3Nc operators B̂(κ )

s , and 3Nc spin- 1
2 degrees of

freedom. All Âc and B̂(κ )
s mutually commute and square to the

identity; hence, their eigenvalues ac and b(κ )
s equal ±1. As for

Haah’s code, these operators are stabilizer operators [67].

1. Ground states

Ground states correspond to all states with eigenvalues
ac = b(κ )

s = +1 for all c, s, and κ . The ground-state energy is
given by E0 = −4NcJ . The number of ground states depends
on the geometry and the topology of the system in real space
[23,68]. For open boundary conditions, the ground state is
unique and can be written as

|0〉X-Cube =
∏
s,κ

(
1 + B̂(κ )

s

2

) ∏
c

(
1 + Âc

2

)
|⇑〉

=
∏

c

(
1 + Âc

2

)
|⇑〉, (11)

where |⇑〉 is the fully polarized state in z direction being
trivially an eigenstate of all B̂(κ )

s operators with eigenval-
ues b(κ )

s = +1. The state |0〉X-Cube corresponds to an infinite
equal-amplitude superposition of spin product states in the
thermodynamic limit resulting from the action of an arbitrary
combination of cube operators on the fully polarized state |⇑〉.
This state can therefore be visualized as a generalized loop
soup of flipped spins on rectangular prisms [70].
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FIG. 3. The spin- 1
2 degrees of freedom of the X-Cube model

are located on the edges of a cubic lattice and are illustrated
as filled circles. The Âc operator is the product of the 12 σ x

operators acting on the 12 edges of the cube c. The three types
of B̂(κ )

s operators are given by B̂(xy)
s = σ z

(ν,2)σ
z
(ν,1)σ

z
(ν−ex ,1)σ

z
(ν−ey,2),

B̂(xz)
s =σ z

(ν,3)σ
z
(ν,1)σ

z
(ν−ex ,1)σ

z
(ν−ez ,3), and B̂(yz)

s =σ z
(ν,2)σ

z
(ν,3)σ

z
(ν−ez ,3)σ

z
(ν−ey,2).

The ground state can alternatively be written

|0〉X-Cube =
∏
s,κ

(
1 + B̂(κ )

s

2

)∏
c

(
1 + Âc

2

)
|⇒〉

=
∏
s,κ

(
1 + B̂(κ )

s

2

)
|⇒〉, (12)

where the product runs over all vertices s and orientations
κ and |⇒〉 is the fully polarized state in x direction. Again,
the state |0〉X-Cube corresponds to an infinite equal-amplitude
superposition of spin product states in the thermodynamic
limit resulting from the action of an arbitrary combination of
B̂(κ )

s operators on the fully polarized state |⇒〉.
For periodic boundary conditions of an L × L × L cluster

(3-torus), the ground-state degeneracy is 26L−3 [23,67]. The
ground states are indistinguishable by local measurements and
thus the model is topologically ordered [67]. The operators
which distinguish these ground states are nonlocal loop op-
erators, which we discuss after introducing the elementary
excitations of the X-Cube model in the next paragraph.

2. Excitations

Excitations in the X-Cube model correspond either to an
eigenvalue ac = −1 or b(κ )

s = −1 with excitation energy 2J
above E0. Therefore, the X-Cube model has also a ladder
spectrum since the total energy of any state is proportional to
the total number of negative eigenvalues. One can thus express

FIG. 4. From top left to bottom right: first a fractonic four-cube
excitation is created by acting with one σ z operator. The action of σ z

operators is indicated by red lines. In the following, a planon hops to
the right by the action of a σ z operator on the adjacent link. Then,
by acting with several such Pauli operators on adjacent links the
membrane is extended. In the end, one of the edges of the membrane
is moved around the corner.

the Hamiltonian of the X-Cube model as

ĤX-Cube

J
= −4Nc + 2Q̂X-Cube, (13)

where we have introduced the counting operator Q̂X-Cube of
negative eigenvalues. In the following, we discuss the phys-
ical properties of cube excitations with ac = −1 and vertex
excitations with b(κ )

s = −1 separately.
Cube excitations. The simplest way to create, to move, and

to annihilate cube excitations is by acting with σ z operators
[21], e.g.,

σ z
(ν,n) |0〉X-Cube = σ z

(ν,n)

∏
c

(
1 + Âc

2

)
|⇑〉 (14)

creates the excited state with four-cube excitations

∏
c 
�(ν,n)

(
1 + Âc

2

) ∏
c′�(ν,n)

(
1 − Âc′

2

)
|⇑〉, (15)

where c′ are the four cubes with ac′ = −1 containing the site
(ν, n). In a similar way, kinetic processes of cube excitations
can result from the action of σ z operators on excited states
by an appropriate flipping of ac eigenvalues. Note that the
kinetics of cube excitations takes place on the (dual) cubic
lattice constituted by the centers of the cubes. As expected for
a fracton phase, a single cube excitation is a fracton, i.e., it is
immobile in the sense that it cannot be moved without creating
additional cube excitations [21]. If two cube excitations share
one Cartesian coordinate in terms of the dual lattice, then these
aligned two-cube excitations are mobile in a two-dimensional
plane, and are thus called planons. The configurations of
four-cube excitations, which originate from a local action
of a single σ z operator, are constrained to combinations of
rectangular membranes [21,44,70] as illustrated in Fig. 4.

A single rectangular membrane of four-cube excitations
in the yz plane can be created by acting with the membrane
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FIG. 5. The rhombs correspond to b(κ )
s = −1 where the orien-

tation κ corresponds to the orientation of the rhombs. The green
lines symbolize the action of σ x operators in order to move these
excitations. From top left to bottom right: first two lineons (each
corresponding to a two-vertex excitation) are created as nearest
neighbors in y direction by acting with one σ x operator. By acting
with a straight string of σ x operators on the adjacent links in the
same direction, one of the two lineons is moved to the right without
creating any further excitations (upper right figure). In contrast, an
additional lineon excitation is always created at a finite-energy cost
when moving a lineon around a corner (bottom left figure) demon-
strating the restricted one-dimensional mobility of lineon excitations.
However, a pair of parallel lineons has a two-dimensional mobility
since the pair is allowed to move around corners without exciting
additional excitations (bottom right).

operator

M̂x,d
ν =

∏
μx = 0

μy ∈ [0, dy]
μz ∈ [0, dz]

σ z
(ν+μ,1) (16)

on the ground state. The notation Mx,d
ν is explained as follows:

The lower index ν specifies the reference point, the first
upper index x the direction orthogonal to the membrane, and
d = (0, dy, dz ) gives the extension of the membrane in the yz
plane. This membrane forms a rectangular structure with four
fractonic cube excitations at the corners as illustrated in Fig. 4.
It is notable that it is not possible to create a single excitation
or a planon from the vacuum. In fact, the minimum amount of
created cube excitations from the ground state is four.

Vertex excitations. The vertex excitations correspond to
b(κ )

s = −1 [67]. The easiest way to manipulate them is by
acting with σ x on suitable links [21]. Note that the different
orientations κ are important as only b(κ )

s eigenvalues, where
the link carrying the site (ν, n) is parallel to the κ plane,
are changed by σ x

(ν,n). Due to the fact that the operators
B̂(κ )

s obey the local constraint
∏

κ B̂(κ )
s = 1 [71,72] at each

s, the energetically lowest excitation corresponds to a pair of
negative b(κ )

s at the same vertex s. This two-particle excitation
is called lineon, as it can only move on a one-dimensional
line [21,70]. The action of σ x

(ν,n) on the ground state creates
two lineons as there are exactly four B̂(κ )

s that do not commute

with σ x
ν,n. Kinetic processes such as the hopping of lineons, as

illustrated in Fig. 5, can be understood as σ x flipping b(κ )
s in

an appropriate way.
In order to describe these excitations mathematically, we

introduce line operators L̂να∈[k1,k2]
(i, j) with α ∈ {x, y, z} and the

unit cell as depicted in Fig. 3. For a line operator in z direction,
one has specifically

L̂νz∈[k1,k2]
(i, j) =

∏
νz∈[k1,k2]

σ x
(ν,3). (17)

The direction of the line is indicated by the first letter in the
upper index (here νz). The lower indices (i, j) refer to the two
coordinate directions orthogonal to the one specified in the
upper index and state the position in the lattice in alphabetical
order; here, the first index specifies the discrete νx coordinate
i and the second index specifies the discrete νy coordinate j.

The line operator L̂να∈[k1,k2]
(i, j) with α ∈ {x, y, z} acting on the

ground state therefore creates one lineon excitation at vertex
(i, j, k1) and another one at (i, j, k2) that both can move in
α direction. When a product of line operators with different
orientations α is formed such that they share an end point, one
has to distinguish two situations: In case of two line operators
with two distinct orientations α1 and α2, the two lineons at
the corner fuse to a single lineon �α3 which is mobile in the
α3 direction with α3 
= α1,2 (see Fig. 6). In contrast, the local
fusion of three different lineons annihilates all three of them
[24,70]. Technically, this can be expressed in the following
local fusion rules [24,70]:

�α1 × �α2 = �α3 for α1,2 
= α3, α1 
= α2; (18)

�α1 × �α2 × �α3 = 1 for α1,2 
= α3, α1 
= α2; (19)

�α1 × �α2 = 1 for α1 = α2 (20)

at one vertex s. Note that the third line represents the fact that
two lineons of equal orientation annihilate each other.

FIG. 6. Construction of a wireframe operator. In the figure on
the top left, a pair of lineons moves around a corner. This creates
two additional excitations. These can be annihilated by a further
σ x operator as depicted on the top right. On the bottom left, these
excitations move back to the left. Then, they annihilate with the
initial excitations. On the bottom right, no excitations are left and
the wireframe operator as a product of σ x operators is visible.
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FIG. 7. Illustration of the winding of a planon around a lineon
with flavor x in the xy plane (left). On the right, this process is
depicted by projecting on the xy plane, thus the only visible parts of
the planon loop are the red links where σ z operators have acted on.
The lineon is located at the end of a string of σ x operators (depicted
in green). The string and the loop share a single spin, here depicted
as red-green dashed string at the bottom. The commutation relation
of Pauli operators results in an additional minus sign as phase for the
wave function showing the semionic statistics of planon and lineon
excitations.

Interestingly, for pairs of lineons with the same orientation
α sharing one Cartesian coordinate νβ with β 
= α, it is
possible to move in the two-dimensional plane orthogonal to β

as a consequence of the fusion rules. In this way, it is possible
to construct self-annihilating loops called wireframe operators
as illustrated in Fig. 6.

Generalized mutual exchange statistics. After this dis-
cussion of excitations, we want to discuss the anyonic ex-
change statistics present in the fractonic X-Cube model. An
intuitive way to understand the quasiparticle statistics is to
write the necessary looplike and stringlike operators repre-
senting the winding of quasiparticles around each other in
terms of Pauli operators. Then, one commutes these Pauli
operators until the respective loop operator acts trivially on
the ground state. As a consequence, an overall sign change
of the wave function might result due to the commutation
relations. Alternatively, one makes use of the fact that con-
tractible wireframe operators are products of Âc operators,
and contractible membrane loop operators are products of
appropriately oriented B̂(κ )

s operators in a single plane or in
a stack of planes: The generalized mutual statistics becomes
directly visible, as one excitation inside the loop results in
changing a single sign in the product. The loop operator
therefore gives a minus sign for any odd number of enclosed
excitations.

To be concrete, a contractible planon loop without an
enclosed excitation acts trivially on the ground state as this
loop can be written as a product of B(κ )

s stabilizers. In contrast,
a planon loop around a lineon excitation effectively measures
modulo 2 the appropriately oriented B̂(κ )

s excitations inside
the planon loop as illustrated in Fig. 7 [23]. Appropriately
oriented means that the links of the membrane loop are in the
same plane as the B̂(κ )

s excitations. Analogously, a wireframe
operator can be written as a product of Âc operators, and
thus measures the parity of the Âc excitations inside the
wireframe.

Overall, in contrast to Haah’s code, the X-Cube model fea-
tures nontrivial mutual exchange statistics, e.g., this manifests
itself in the mutual semionic exchange statistics of planons
and lineons.

3. Logical operators

Similar to the toric code, the ground-state degeneracy can
be understood in terms of noncontractible loop operators. In
principle, two types of such logical loop operators exist: one
corresponds to a lineon pair, of which one lineon is wound
around the torus, and annihilates with the other lineon; the
other logical operator corresponds to the same process with
two planons [23]. However, pairs of noncontractible loops are
not all independent since, for every noncontractible planon
loop, one can find a noncontractible lineon loop, such that
their commutator is nonzero. Hence, it is sufficient to count
the independent noncontractible lineon loops [23]. In our
notation, a noncontractible lineon loop operator in the xy
plane is written as

L̂νz∈[0,L]
(i, j) =

∏
νz∈[0,L]

σ x
((i, j,νz ),3), (21)

where L is the circumference of the 3-torus. A noncontractible
tube of Âc operators can be written as a product of four such
noncontractible lineon loop operators [69]:∏

c∈tube

Âc = L̂νz∈[0,L]
(i, j) L̂νz∈[0,L]

(i+1, j) L̂νz∈[0,L]
(i, j+1) L̂νz∈[0,L]

(i+1, j+1). (22)

Using a product of such tubes with a rectangular base leads
to the following prism with corners at (i, j), (i + n, j),
(i, j + m), and (i + n, j + m):∏

c∈prism

Âc = L̂νz∈[0,L]
(i, j) L̂νz∈[0,L]

(i+n, j) L̂νz∈[0,L]
(i, j+m) L̂νz∈[0,L]

(i+n, j+m), (23)

where n, m ∈ Z, n ∈ [1, L], m ∈ [1, L]. This means that the
operators involved in the product on the right side of Eq. (23)
can not all be contained in our complete set of commuting
operators of stabilizers and logical operators: From three
noncontractible lineon loop operators and the product of all
operators Âc in the prism we can construct the loop operator

L̂νz∈[0,L]
(i+n, j+m) =

∏
c∈prism

ÂcL̂νz∈[0,L]
(i, j) L̂νz∈[0,L]

(i+n, j) L̂νz∈[0,L]
(i, j+m) . (24)

Hence, from the product of the operators passing through
(0,0), (0, m), and (0, n) we get the operator passing through
(n, m) and we find L + L − 1 independent logical operators
passing through the xy plane. For all three different kinds of
planes this reasoning arrives at 6L − 3 independent operators
in total. We have not shown that we have indeed found all
the logical operators. However, counting independent planon
loops [24] or applying a rigorous procedure using algebraic
geometry (for odd L) [21] yields the same result.

III. FRACTON MODELS IN A FIELD

Haah’s code and the X-Cube model, as introduced in the
last section, are exactly solvable codes having a ground state
with nontrivial topological fracton order, which is certainly
robust under small local perturbations. However, it is an
interesting question how the fracton order breaks down at
zero temperature, when strong enough competing terms are
added to these models. Furthermore, we want to investigate
whether the two types of fracton order behave differently in
this case. In order to answer these questions, we add a uniform
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magnetic field representing one of the simplest perturbations
which ultimately causes a phase transition between the fracton
phase at small fields and a topologically trivial polarized phase
stabilized at large magnetic fields. Here, we study exactly this
kind of phase transition as well as the physical properties of
fracton excitations in the fracton phase for the case of Haah’s
code and the X-Cube model in a uniform magnetic field. Fur-
thermore, we present several exact dualities of fracton codes
in specific field directions to isospectral models. These dual
models are on the one hand useful for practical calculations
and, on the other hand, interesting on their own. We stress
that all presented results for ground-state energies as well as
excitation energies are directly valid for these dual models.

A. Haah’s code in a homogeneous magnetic field

The Hamiltonian of Haah’s code in the presence of a
homogeneous magnetic field pointing in an arbitrary direction
reads as

Ĥh
Haah = −J

∑
c

Âc − J
∑

c

B̂c −
∑

i

(hσ · σ i + hμ · μi ),

(25)
where hσ ≡ (hσ

x , hσ
y , hσ

z ), hμ ≡ (hμ
x , hμ

y , hμ
z ),

σ i ≡ (σ x
i , σ

y
i , σ z

i ), and μi ≡ (μx
i , μ

y
i , μ

z
i ) are vectors

representing all possible field directions. From now on,
we will call hσ the σ -type field and hμ the μ-type field.

The two limiting cases for Haah’s code in a homoge-
neous magnetic field are the low- and the high-field limits.
In the low-field limit J  |hσ |, |hμ| the system is in the
fracton phase as described in Sec. II A. In the opposite case
J � |hσ |, |hμ| the system realizes a topologically trivial po-
larized phase. In between, there must be a quantum phase
transition which we investigate for certain field directions.

In the two-type parallel case, hσ = hμ 
= 0 and they point
in x or z direction, where both directions yield the same
physics due to the equivalence of operators Âc and B̂c. Here,
we set hσ = hμ = (hx, 0, 0):

Ĥ2 type,‖
Haah = −J

∑
c

(Âc + B̂c) − hx

∑
i

(
σ x

i + μx
i

)
. (26)

It is then possible to introduce pseudospins 1
2 with Pauli

matrices τc located at the center of cubes c so that the diagonal
entries of τ z

c correspond to ac = ±1. Setting bc = +1 for all c
in order to focus on the relevant low-energy sector, one obtains
the following dual formulation as single-type transverse-field
fractal Ising model [21]

Ĥ2 type,‖,dual
Haah = −JNc − J

∑
c

τ z
c − hx

∑
tetrahedra

a = (a1, a2, a3, a4 )

τ x
a1

τ x
a2

τ x
a3

τ x
a4

− hx

∑
tetrahedra

b = (b1, b2, b3, b4 )

τ x
b1

τ x
b2

τ x
b3

τ x
b4

, (27)

where the sums run over the two sets of tetrahedra as illus-
trated in Fig. 8, left and center. Note that all our results dis-
cussed below are therefore also valid for the dual transverse-
field fractal Ising model.

In the two-type orthogonal case, hσ and
hμ are both nonzero, but one of them points in the x

FIG. 8. The figures on the left and in the center
illustrate the action of

∑
tetrahedra,a=(a1,a2,a3,a4 ) τ

x
a1

τ x
a2

τ x
a3

τ x
a4

and∑
tetrahedra,b=(b1,b2,b3,b4 ) τ

x
b1

τ x
b2

τ x
b3

τ x
b4

on the pseudospins on the dual
cubic lattice. The figure on the right shows the action of a B̂c

operator on the σ spins in the original formulation of Haah’s code
(the operator is depicted as B̂(σ )

c ). Note that the action of a B̂c

operator on the σ spins and the action of a σ x operator on the τ

pseudospins are identical up to an inversion about the center of the
cube. As these two actions correspond to the perturbation of the
high- and low-field limits in the single-type case, respectively, this
case is self-dual.

direction and the other in the z direction. Here, we choose
hσ = (0, 0, hσ

z ) and hμ = (hμ
x , 0, 0) so that Eq. (25) can be

split into two independent parts ĤA,μ and ĤB,σ with

ĤA,μ = −J
∑

c

Âc − hμ
x

∑
i

μx
i , (28)

ĤB,σ = −J
∑

c

B̂c − hσ
z

∑
i

σ z
i (29)

and [ĤA,μ, ĤB,σ ] = 0. The two-type orthogonal case there-
fore reduces to the two independent parts ĤA,μ and ĤB,σ ,
which we call single-type cases as the field terms only depend
on one type of spin operators. Below, we show that both
single-type cases each possess an exact self-duality.

In the single-type case where hσ or hμ is zero and the other
field points in the x or z direction, note that both field direc-
tions feature exactly the same physics due to the duality of Âc

and B̂c operators. We consider specifically hσ = (hσ
x , 0, 0) and

hμ = 0 so that the B̂c operators remain conserved quantities
and the Hamiltonian reads as

Ĥsingle
Haah = −J

∑
c

Âc − J
∑

c

B̂c − hσ
x

∑
i

σ x
i . (30)

As in the two-type parallel case, the eigenvalues bc remain
conserved quantities and the introduction of the same kind of
pseudospins 1

2 yields the single-type transverse-field fractal
Ising model [21]

Ĥsingle,dual
Haah = −JNc − J

∑
c

τ z
c

− hσ
x

∑
tetrahedra

a = (a1, a2, a3, a4 )

τ x
a1

τ x
a2

τ x
a3

τ x
a4

, (31)

where the second sum runs over the four sites aj of a tetrahe-
dron as illustrated in Fig. 8, left. As a consequence, the lattice
topology corresponds to a Sierpinski lattice having a fractal
dimension. Keeping in mind that the μ spins do not play any
role for this specific single-type field, one observes that the
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action of the Âc operators in Eq. (30) on the σ spins is identical
to the four-spin interaction in Eq. (31). As a consequence,
Haah’s code in a single-type field in x direction as well as
its dual single-type transverse-field fractal Ising model are
self-dual, e.g., one has for the ground-state energy per cube
as a function of interaction strengths J and hσ

x the relation
ε(J, hσ

x ) = ε(hσ
x , J ).

B. X-Cube model in a homogeneous magnetic field

The Hamiltonian of the X-Cube model in the presence of a
homogeneous magnetic field pointing in an arbitrary direction
reads as

Ĥ = −J
∑

c

Âc − J
∑
s,κ

B̂(κ )
s −

∑
i

(h · σ̂ i ),

where h ≡ (hx, hy, hz ) and σ i ≡ (σ x
i , σ

y
i , σ z

i ). Again, a quan-
tum phase transition must occur between the fracton low-field
limit with J  |h| and the high-field limit with J � |h|,
where the system is in a trivial polarized phase.

In this work we concentrate on the two specific single-
field directions (hx, 0, 0) and (0, 0, hz ), which have also been
investigated by recent QMC simulations [66] finding first-
order phase transitions between the fracton and the polarized
phase. Here, either the operators Âc or the operators B̂(κ )

s
trivially commute with the field term, i.e., the corresponding
eigenvalues remain conserved quantities at any field strength.
As a consequence, a field in x or z direction modifies only
the eigenvalues b(κ )

s or ac, respectively. Furthermore, for these
two cases it is possible to find the following duality transfor-
mations to isospectral models.

First, we consider the dual model of the X-Cube model in a
magnetic field (0, 0, hz ). In this case, the eigenvalues b(κ )

s are
conserved quantities so that the Hilbert space decouples into
independent sectors. The relevant low-energy physics takes
place in the sector with b(κ )

s = +1 for all s and κ (see Ref. [21]
for the general mapping to a generalized gauge theory in all
sectors). It is then possible to introduce pseudospins 1

2 located
at the center of cubes c and onto which Pauli matrices τc act
so that τ z

c has diagonal entries corresponding to ac = ±1. The
bare X-Cube model is then mapped to an effective field term.
In contrast, the local action of the z field on the pseudospins is
to flip four pseudospins forming a local plaquette. Altogether,
one obtains [21,67,73] as dual model a transverse-field pla-
quette Ising model

Ĥz,dual
X-Cube = −3JNc − J

∑
c

τ z
c

− hz

∑
c

∑
(α,β )

τ x
c τ x

c+eα
τ x

c+eβ
τ x

c+eα+eβ
, (32)

where the second sum runs over the tuples
(α, β ) ∈ {(x, y), (x, z), (y, z)}. Note that the conditions
b(κ )

s = +1 for all s and κ represent constraints on the
allowed states of the Hilbert space in the dual pseudospin
formulation. Furthermore, the model has an important
subsystem symmetry: flipping τ x → −τ x in any plane of the
cubic lattice leaves the model invariant [74].

For the case of the X-Cube model in a field in x direction,
it is also possible to formulate a dual description, which
is, however, more involved. Here, the eigenvalues ac are

conserved quantities so that again decoupled Hilbert space
sectors exist. The relevant low-energy physics takes place in
the sector with ac = +1 for all c, which we focus on in the
following. Keeping in mind the local constraint

∏
κ B̂(κ )

s = 1,
the local Hilbert space at each vertex s is four dimensional,
consisting of the vacuum configuration b(κ )

s = +1 for all κ

and the three types α ∈ {x, y, z} of lineon excitations lα . We
therefore introduce hard-core boson creation (annihilation)
operators t†

α,s (tα,s) creating (annihilating) a lineon with flavor
α on site s. In contrast to the case of a field in z direction,
the relevant pseudospin degrees of freedom are rather dimer
states like singlet and triplet operators in valence bond solids.
The dual Hamiltonian can then be written as

Hx,dual
X-Cube = −(4NsJ/3) − 2J

∑
s,α=x,y,z

t†
α,stα,s

− hx

∑
α = x, y, z

〈s, s′〉α

[(t†
α,s + t†

β,stγ ,s + H.c.)

⊗ (t†
α,s′ + t†

β,s′tγ ,s′ + H.c.)], (33)

where α, β, γ are always cyclic and 〈s, s′〉α denotes nearest
neighbors in α direction. To the best of our knowledge, this
model has not been presented and studied before. It also
possesses a subsystem symmetry in the form of the parity∏

s∈plane,κ‖plane B̂(κ )
s = 1 of the b(κ )

s for each plane. This sym-
metry is, however, not obvious in the dual formulation since
it is related to the orientation of the operators B̂(κ )

s in real
space. The restricted mobility of a lineon can then be seen
as a consequence of this parity conservation.

IV. METHODS

In order to study the quantum robustness of fracton models
in a magnetic field as introduced in Sec. III, we apply the
method of perturbative continuous unitary transformations
(pCUT) and variational calculations. The latter technique
gives qualitative insights to the ground-state phase diagrams.
The phase transitions are then located quantitatively by high-
order series expansions of the ground-state energy using the
pCUT method. Furthermore, this method is used to calculate
the single-fracton and multifracton excitation energies within
the fracton phase at finite fields. In the following, we give the
relevant technical information for both approaches.

A. pCUT method

We perform high-order series expansions for both fracton
models in a field. Technically, these high-order linked-cluster
expansions can be gained with the help of pCUT [75,76],
whose generic aspects are described in the following.

One can always rewrite any lattice Hamiltonian Ĥ exactly
as

Ĥ = Ĥ0 +
∑

j

λ jV̂ ( j), (34)

where the λ j are the perturbative parameters and the un-
perturbed part Ĥ0 is diagonal in appropriate supersites. For
the conventional high-field expansion we use single spins
as supersites, while for the low-field expansion inside the
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fracton phase, pseudospins 1
2 referring to the eigenvalues of

the stabilizer operators are the relevant degrees of freedom. In
both cases, one can express Ĥ0 in appropriate units as

Ĥ0 = E0 + Q̂, (35)

where E0 denotes a constant and Q̂ is an operator counting the
local excitations. This decomposition of Ĥ0 is always possible
since the local spectra of the supersites is equidistant in all
considered cases.

Supersites interact via the perturbation V̂ ≡ ∑
j λ jV̂ ( j).

For the high- and low-field expansions, several supersites are
linked simultaneously by the perturbation. As a consequence
of Eq. (35), one can rewrite Eq. (34) as

Ĥ = Ĥ0 +
N∑

n=−N

T̂n, (36)

so that [Q̂, T̂n] = nT̂n. Physically, the operator
T̂n ≡ ∑

j λ j T̂
( j)

n corresponds to all processes where the

change of energy quanta with respect to Ĥ0 is exactly n.
The maximal (finite) change in energy quanta is called ±N .
For Haah’s code in a field, N = 4 holds for all low- and
high-field expansions performed except for the two-type
parallel high-field case where N = 8. For the X-Cube model
in a field, both low-field expansions in λx ≡ hx/J and
λz ≡ hz/J as well as the high-field expansion in λ̃x ≡ 1/λx

also feature N = 4, while N = 12 for the high-field expansion
in λ̃z ≡ 1/λz. Note, however, that in all considered cases all
n are even, which reduces the complexity of the pCUT
calculation.

In the pCUT method, Hamiltonian (36) is mapped model
independently up to high orders in the perturbations to an
effective Hamiltonian Ĥeff with [Ĥeff , Q̂] = 0. The general
structure of Ĥeff is then a weighted sum of operator prod-
ucts T̂n1 . . . T̂nk in perturbation theory of order k. The block-
diagonal Ĥeff conserves the number of quasiparticles (qp).
This represents a major simplification of the quantum many-
body problem since one can treat each quasiparticle block sep-
arately, corresponding to a few-body problem. For example,
the 0qp block is given by a single matrix element representing
the ground-state energy in all considered cases. Physically,
the quasiparticles in the fracton phase correspond to dressed
fractons (or composites of fractons), while the elementary
quasiparticles of the polarized phase are conventional dressed
spin-flip excitations.

The more demanding part of the pCUT method is model
dependent and corresponds to a normal ordering of Ĥeff for
which the explicit processes have to be specified. This can be
either done via a full graph decomposition in linked graphs us-
ing the linked-cluster theorem and an appropriate embedding
scheme afterwards [77] or by calculations on large enough
finite clusters, which include all relevant virtual processes.

Next, we discuss the specific pCUT implementation for
both fracton codes in a field and detail how we extrapolate
the obtained series.

1. pCUT for Haah’s code in a field

All pCUT calculations for Haah’s code in a field are
performed on sufficiently large clusters. This allows to deter-

mine the ground-state energy per cube εlf (εhf ) up to order
6 in λ ≡ |h|/J (λ̃ ≡ 1/λ) for the low-field fracton (high-field
polarized) phase.

Furthermore, for the low-field fracton phase, pCUT calcu-
lations in the one-, two-, and four-fracton sectors have been
conducted up to order 6 in λ except for the four-fracton sector
in the two-type parallel case where order 4 has been achieved.
Here, the restricted mobility of fractons is advantageous for
the pCUT calculation since the number of kinetic processes
as well as interactions between fractons is highly reduced.
Indeed, a single fracton is not allowed to move at all so that
the dispersion is completely flat in momentum space and is
solely characterized by a local hopping amplitude, which can
be calculated as a high-order series expansion in λ yielding
directly the one-fracton gap �

1qp
lf .

For the two- and four-fracton sectors we find several states
connected via nonzero transition probability amplitudes in
a given perturbative order. To find all contributing states,
we start from an initial state |K, α = 0〉, where K is the
center-of-mass momentum and α is an arbitrary but fixed
enumeration of contributing states. As we evaluate Ĥeff in
position space, we apply a Fourier transformation to |K, α〉
before applying the effective Hamiltonian. This application
results in new states |Rβ, β〉 of a potentially different multi-
particle configuration with a different center of mass Rβ and
a pCUT coefficient Cβ . Finally, we recover a representation
in momentum space by a second Fourier transform, where
we get an additional factor of exp(iK�Rβ ) to account for
the difference of the centers of mass �Rβ = R − Rβ . More
formally,

Ĥeff |K, α〉 = 1√
N

∑
R

e−iKRĤeff |R, α〉

= 1√
N

∑
R

e−iKR
∑

β

Cβ |Rβ, β〉

=
∑

β

Cβ · e−iK�Rβ |K, β〉.

We iterate this for all new states |K, β〉 from the previous step
until no new states are found. Due to the fractal character of
operators in Haah’s code, we end up with a finite number
of states and hence a finite-dimensional matrix in a given
perturbative order. Additionally, for the two-fracton sector in
both single- and two-type cases, we do not find a hopping of
any qp. Hence, the dispersion in these cases is flat.

Finally, we want to extrapolate the gap of the lowest mode
of each case up to the critical point to discuss the nature of the
phase transition. In order to do so, we have to find expressions
of the gaps in terms of series in λ. In the single-type case, we
find two contributing states for both the two- and four-fracton
sectors. Hence, we can analytically diagonalize the resulting
2 × 2 matrices and expand all expressions in a Taylor series.
For the two-type parallel case, we have larger matrices such
that an analytical diagonalization is not possible. In these
cases we diagonalized the matrix numerically for λ � 1. In
this regime, the lowest contributing order dominates and we
can make a line fit to the double-logarithmic plot of the data.
The slope of such a line fit is the exponent of the lowest
contributing order and the y intersect is the logarithm of its
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coefficient. As a next step, we subtract the best line fit from
the numerical data and repeat the steps described before. In
that way, we can fit a series order by order with very high
accuracy. In order to reduce the effect of numerical noise, we
used a multiprecision library with up to 1000 digits in machine
precision. Note that this is possible because all numbers in the
original matrices are rational or integer numbers.

2. pCUT for the X-Cube in a field

The pCUT calculations for the ground-state energy per link
have been calculated via a full-graph decomposition in both
phases. This allows to determine the ground-state energy per
site εLF (εHF) up to order 8 in λx (λ̃x) and order 6 (8) in λz

(λ̃z). In the low-field (high-field) expansion, this corresponds
to a total number of 133 (29) of contributing distinct graphs
for λx (λ̃x). For the low-field expansion in λz, no graph de-
composition has been used, while for the high-field expansion
in λ̃z 31 graphs contribute due to a double-touch property.

Furthermore, we have calculated the fracton excitation
energy of a single cube excitation with ac = −1 (1qp) up
to order 6 in λz. This excitation is strictly local and the
local hopping element does directly correspond to the one-
fracton gap �fracton. Let us stress again that a single fracton
with b(κ )

s = −1 is not allowed due to the local constraint∏
κ B̂(κ )

s = 1.
In the 2qp sector, the dispersion ωα

lineon(k) of α lineons with
α ∈ {x, y, z} and the dispersion ω

β

planon(k) of β planons with
β ∈ {xy, xz, yz} and k = (kx, ky, kz ) have been determined up
to order 10 in λx and order 7 in λz, respectively. This was
achieved by determining the associated hopping amplitudes
on sufficiently large clusters and diagonalizing the effective
one-particle hopping Hamiltonian by an appropriate Fourier
transformation.

As discussed above, lineon excitations are only allowed
to hop in one dimension. The dispersion of an α lineon
therefore only depends on kα and is flat in the other two
momentum directions. Moreover, by symmetry, one has
ωx

lineon(kx, ky, kz ) = ω
y
lineon(ky, kx, kz ) = ωz

lineon(kz, ky, kx ). The
gap �lineon of the α lineon is always located at kα = 0.

The planon excitation is allowed to hop in two-dimensional
planes. The dispersion of the β planon therefore only
depends symmetrically on two momenta and is flat in
the third momentum component. The following relations
hold by symmetry: ω

xy
planon(kx, ky, kz ) = ωxz

planon(kx, kz, ky) =
ω

yz
planon(kz, ky, kx ). The gap �planon of the β planon is always

located at zero β components of the momentum.

3. Extrapolation

Padé and Dlog-Padé extrapolation schemes are standard
methods in the field of series expansions as they allow
for an evaluation of the series beyond their original radius
of convergence [78]. Padé extrapolation is generally used
for extrapolating ground-state energies [79], especially when
critical fluctuations are absent as in the case of first-order
phase transitions found for the perturbed fracton codes studied
in this work. We therefore locate the phase-transition point
and investigate the convergence of (multi)fracton excitations
energies via Padé extrapolations. To this end, the perturbation

series

F (λ) =
r∑

m=0

cmλm = c0 + c1λ + c2λ
2 + . . . crλ

r, (37)

with λ ∈ R and cm ∈ R is interpreted as a Taylor expansion of
the Padé extrapolant

GL/M (λ) = p0 + p1λ + p2λ
2 + · · · + pLλL

1 + q1λ + q2λ2 + · · · + qMλM
. (38)

Comparing the Taylor expansion of GL/M (λ) about λ = 0
with the original series F (λ), one obtains a linear system
of equations that can be solved for a given parameter set
(L, M ) with L, M ∈ N fulfilling the condition L + M = r for
an extrapolation in order r. Typically, the extrapolations with
|L − M| being small give the best results. Extrapolations with
unphysical singularities need to be sorted out, as well as
defective Padé extrapolants that have a singularity at the same
point in the numerator and denominator which effectively
cancels out.

A first-order phase transition is located at the critical value
λc for which εlf = εhf . This can be determined by using
several nondefective Padé extrapolants (L, M ) with L, M � 2
and maximal order r from the low- and high-field expansions.
In the later sections we show the mean and standard deviation
of λc obtained by all combinations of (nondefective) low- and
high-field Padé extrapolants. The sample standard deviation
serves as an uncertainty measure of the extrapolation and does
not represent a numerical error bar. The same criteria are
applied to the extrapolations of the fracton excitation energies.

B. Variational approach

Another approach to approximately locate the quantum
phase transition between the fracton and the polarized phases
is to use a variational ansatz which contains both limits
exactly. In the past, this has been exploited successfully for
two- and three-dimensional topological codes in a magnetic
field in Refs. [63] and [8], respectively.

For both fracton codes in a field, the ground state in the
high-field limit is the state where all spins are polarized in the
direction of the magnetic field. We denote this state with |h〉.
The ground state in the low-field limit is the topological state
with fracton order that can be written using projectors as in
Eqs. (4) and (11). For now we will write the ground state as

|0〉 =
∏

s

(
1 + Âs

2

) ∏
p

(
1 + B̂p

2

)
|h〉,

where the operators Âs and B̂p are either the operators Âc and
B̂c for Haah’s code or Âc and B̂(κ )

s (with
∏

p = ∏
s

∏
κ ) for the

X-Cube model. This definition is valid provided that |h〉 is not
orthogonal to the ground state.

The idea of the variational ansatz introduced in [63] is to
define a state |α, β〉 that can be tuned between the exact low-
and high-field ground states using two variational parameters
α and β. This variational state reads as

|α, β〉 = N (α, β )
∏

s

(1 + αÂs)
∏

p

(1 + βB̂p)|h〉, (39)
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where N (α, β ) is a normalization factor depending on α

and β. Setting α = β = 0 yields the polarized state |h〉 and
α = β = 1 results in the fracton state |0〉.

The variational energy E (α, β ) can then be calculated as a
function of α and β by evaluating

E (α, β ) = 〈α, β| Ĥ|α, β〉.
Finally, minimizing E (α, β ) with respect to α and β for dif-
ferent magnetic fields h allows to determine an approximate
variational phase diagram.

V. PHASE DIAGRAMS

In this section we locate quantitatively the phase transi-
tion between the fracton order and the polarized phase by
comparing the low- and high-field expansions of the ground-
state energy per site for both fracton codes in a field. The
phase-transition point corresponds to the crossing point of
both expansions, which are found to be very well converged
up to the crossing on each side of the transition signaling
a (strong) first-order phase transition in all studied cases in
agreement with our variational calculations as well as with
QMC simulations for the X-Cube model in a field [66].
This finding is further strongly supported by the energetic
properties of (multi)fracton excitations in the fracton phase
presented in Sec. VI.

A. Haah’s code in a field

In the following, we determine the ground-state phase
diagram for Haah’s code in a field for the single- and two-type
cases.

1. Single-type case

As a reference point, we start with the single-type case by
choosing hσ = (hσ

x , 0, 0) and hμ = 0 as discussed in Sec. III.
Consequently, the B̂c operators remain conserved quantities
and we assume bc = +1 for all c, which is the relevant sector
to study the ground-state phase diagram. Here, we know the
phase transition point λx,c ≡ (hσ

x /J )c = 1 exactly due to the
self-duality ε(J, hσ

x ) = ε(hσ
x , J ) as demonstrated in Sec. III.

This case is therefore perfectly suited to gauge our results.
Concerning the series expansion, the self-duality implies

that the high-field expansion εhf(λ̃) can be obtained by taking
the low-field expansion εlf(λ) and interchanging λx = hσ

x /J
by λ̃x ≡ λ−1

x . We checked that this holds for our expansion up
to order 6 using the pCUT method. The ground-state energy
per cube in the low-field expansion for the single-type case
reads as

εlf + J

J
= −1 − 1

8
λ2

x − 3

512
λ4

x − 559

491520
λ6

x, (40)

while the corresponding series for the high-field expansion is

εhf + J

hσ
x

= −1 − 1

8
λ̃2

x − 3

512
λ̃4

x − 559

491520
λ̃6

x . (41)

Here, we have put the contribution −J
∑

c Âc = −JNc to the
energy on the left side so that the self-duality becomes appar-
ent. The pCUT results are shown in Fig. 9 together with our
results using the variational ansatz introduced in Sec. IV B.
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FIG. 9. Ground-state energy per site ε/J of Haah’s code in the
single-type case as a function of λx = hσ

x /J obtained by pCUT (solid
lines) and from the variational ansatz (dashed lines). The high- and
low-field expansions for pCUT intersect exactly at λ

pCUT
x,c = 1 due to

the self-duality. The variational phase transition is located at λvar
x,c ≈

0.844. The variational phase-transition point is at smaller values of
λx since the variational energy of the fracton phase does not depend
on the magnetic field.

Obviously, the level crossing of the low- and high-field ex-
pansions is exactly at λx,c = 1 due to the self-duality. Further,
we see that the series expansion is well converged up to the
phase transition point and the kink implies a first-order phase
transition. The pCUT approach appears therefore to be well
suited to locate first-order phase transitions quantitatively for
three-dimensional perturbed fracton phases. The first-order
nature of the phase transition is also found by the variational
calculation, which, however, does not respect the self-duality
and a first-order phase transition at λx,c ≈ 0.844 is detected.

2. Two-type parallel case

In the two-type parallel case we choose
hσ = hμ = (hx, 0, 0) as introduced int Sec. III so that
the single parameter λx ≡ hx/J can be tuned. Again, the B̂c

operators remain conserved quantities. The corresponding
conserved eigenvalues bc are set to one for all c since
these fracton excitations are static and play no role for the
low-energy physics. In contrast to the single-type case, the
location of the phase transition between the fracton and the
polarized phase is not known exactly.

As in the single-type case, we have determined the low-
and high-field expansions of the ground-state energy per cube
up to order 6 using the pCUT method. The obtained series are
given by

εlf + J

J
= −1 − 1

4
λ2

x − 7

192
λ4

x − 18907

983040
λ6

x (42)

and

εhf + J

h
= −2 − 1

16
λ̃2

x − 19

57344
λ̃4

x

− 373 249

13 872 660 480
λ̃6

x . (43)
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FIG. 10. Ground-state energy per site ε/J of Haah’s code in
the two-type parallel case as a function of λx = hx/J obtained
by pCUT (solid lines) and from the variational ansatz (dashed
lines). The high- and low-field expansions for pCUT intersect at
λpCUT

x,c = 0.456 ± 0.006. The uncertainty represents the standard de-
viation of the energies at which the relevant Padé extrapolants of the
low- and high-field expansions εlf and εhf intersect. The variational
phase transition point is located at λc,var ≈ 0.422.

The pCUT and variational results for the two-type par-
allel case are shown in Fig. 10. Again, the series ex-
pansions are well converged up to the phase-transition
point and a Padé analysis locates the phase transition at
λ

pCUT
x,c = 0.456 ± 0.006 with rather small uncertainty. The

variational calculation detects the phase transition at slightly
smaller values λvar

x,c ≈ 0.422. The nature of the phase transition
is found to be strongly first order with both approaches. This
can be interpreted as the fracton phase being less robust in
the two-type parallel case compared to the single-type case
since there are more fluctuations in the fracton phase and less
fluctuations per spin in the polarized phase due to the two
types of fields.

3. Two-type orthogonal case

In the two-type orthogonal case we choose hσ = (0, 0, hσ
z )

and hμ = (hμ
x , 0, 0) and we introduce the two parameters

λz ≡ hσ
z /J and λx ≡ hμ

x /J . As described in Sec. III, Haah’s
code in this field configuration can be split into two inde-
pendent Hamiltonians ĤA,μ and ĤB,σ with [HA,μ,HB,σ ] = 0.
This case therefore reduces to two single-type cases which
can be treated independently. Furthermore, ĤA,μ and ĤB,σ

are self-dual which implies a first-order phase transition at
λα,c = 1 with α ∈ {x, z}. The exact two-dimensional ground-
state phase diagram of the two-type orthogonal case is dis-
played in Fig. 11 as a function of λx and λz. It contains
four distinct phases since each subsystem can be either in a
polarized or in a fracton phase.

B. X-Cube model in a field

We now turn to the X-Cube model in a field and investigate
its ground-state phase diagram for the two single-field cases
using series expansions and the variational approach. In both

0.0

1.0

0.0 1.0 λx

λz

μ-fracton phase
σ-fracton phase

μ-fracton phase
σ-polarized phase

μ-polarized phase
σ-fracton phase

μ-polarized phase
σ-polarized phase

FIG. 11. The exact ground-state phase diagram of Haah’s code
in the two-type orthogonal case as a function of λx and λz.

cases, no exact information on the phase transition is known,
but we compare to QMC simulations [66].

1. Single x field

We set h = (hx, 0, 0) and use the parameter λx = hx/J .
The eigenvalues ac of the Âc operators remain conserved
quantities and the low-energy physics takes place in the sector
with ac = +1 for all c. In this sector, the model is dual to the
hard-core-boson model of Eq. (33) as described in Sec. III.

Using the pCUT approach, we reached order 8 in the low-
and high-field expansions for the ground-state energy per link
ε. The explicit expression for the low-field expansion reads as

εlf + J/3

J
= −1 − λ2

x

8
− 11λ4

x

1536
− 349λ6

x

221184
− 902473λ8

x

1698693120
,

(44)

while the high-field expansion in terms of λ̃x ≡ 1/λx is given
by

εhf + J/3

hx
= −1 − 1

8
λ̃2

x − 1

32
λ̃3

x − 11

1536
λ̃4

x − 55

18432
λ̃5

x

− 733

442368
λ̃6

x − 9403

10616832
λ̃7

x

− 2605817

5096079360
λ̃8

x . (45)

Note that in this series also odd orders appear due to the local
constraint

∏
κ B(κ )

s = 1, e.g., the action of three distinct B(κ )
s

at vertex s gives a finite contribution in perturbation theory
of order 3 for the ground-state energy. The order-by-order
comparison of these two series is shown in the upper panel
of Fig. 12. Obviously, the bare series are well converged up to
the crossing at λ

pCUTbare
x,c = 0.9226 in order 8. A Padé analysis

yields almost the same value λ
pCUT
x,c = 0.9196 ± 0.0012. This

value quantitatively agrees with the result λQMC
x,c ≈ 0.922 from

QMC simulations [66] (see also lower panel of Fig. 12).
In contrast, the variational calculation yields a lower critical
value λvar

x,c = 0.844 in a similar fashion as our variational
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FIG. 12. The ground-state energy ε/J of the X-Cube model per
link as a function of the parameter λx . Upper panel: different bare
series of the low-field (darker lines) and high-field (lighter lines)
expansions in orders 4, 6, and 8. Lower panel: comparison of the
order-8 bare series from the low- and high-field expansions with the
variational energy (dashed line) and the QMC data (black circles)
from Ref. [66]. The vertical solid line in both panels indicates the
phase-transition point λpCUT

x,c = 0.9196 ± 0.0012 according to the
Padé analysis of the pCUT results. Insets represent zooms close
to λx,c.

results for Haah’s code in a field. All approaches result in a
phase transition which is strongly first order.

2. Single z field

Next, we consider h = (0, 0, hz ) and use the parameter
λz = hz/J . In this case, the eigenvalues b(κ )

s of the B̂(κ )
s op-

erators are conserved and the low-energy physics takes place
in the sector with b(κ )

s = +1 for all s and κ . In this sector, the
model is dual to the transverse-field plaquette Ising model of
Eq. (32) as described in Sec. III.

We reached order 6 (8) in the low-field (high-field) expan-
sion for the ground-state energy per link ε using the pCUT
approach. The series from the low-field expansion is

εlf + J

J
= −1

3
− 1

8
λ2

z − 113

1536
λ4

z − 21427

163840
λ6

z , (46)
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FIG. 13. The ground-state energy ε/J of the X-Cube model per
link as a function of λz. Upper panel: different bare series of the low-
field (darker lines) and high-field (lighter lines) expansions in orders
4, 6, and 8. Lower panel: comparison of the order 6 (8) bare series
from the low-field (high-field) expansion with the variational energy
(dashed line) and the QMC data (black circles) from Ref. [66]. The
vertical solid line in both panels indicates the phase-transition point
λpCUT

z,c = 0.293 64 ± 0.000 17 according to the Padé analysis of the
pCUT results. Insets represent zooms close to λz,c.

whereas the high-field expansion reads as

εhf + J

hz
= −1 − 1

72
λ̃2

z − 17

228096
λ̃4

z − 2307925

1653327396864
λ̃6

z

− 3488211785451004153

88061074183163574484992000
λ̃8

z . (47)

The order-by-order comparison of these two series is
shown in the upper panel of Fig. 13. The bare series are
again well converged and a Padé analysis yields the value
λ

pCUT
z,c = 0.293 64 ± 0.000 17 with a very tiny uncertainty.

This value is also in quantitative agreement with the result
from QMC simulations [66] λQMC

z,c ≈ 0.293 (see also lower
panel of Fig. 13). The variational calculation yields a slightly
lower critical value λvar

z,c = 0.281 which can be explained
consistently to all the cases before. Again, all approaches
signal a strong first-order phase transition.
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FIG. 14. Relevant excitation energies of the one-, two-, and four-
fracton sectors in the fracton phase of Haah’s code for the single-type
case as a function of λx = hx

J . Shown are bare series in order 6 in λx

for all sectors.

VI. FRACTON QUASIPARTICLES

In the last section we have seen that both fracton phases
break down via first-order phase transitions in all consid-
ered field directions. In a next step, we study the energetic
properties of the excitations in the fracton phases at finite
fields. We find that all considered excitations including single-
fracton and multifracton excitations remain gapped until the
phase transition confirming the first-order nature of the phase
transition.

A. Haah’s code in a field

In the following, we discuss the excitation energies in
the single-, two-, and four-fracton sectors using the pCUT
method. We start with the single-type case and turn to the
two-type parallel case afterward. The two-type orthogonal
case is not discussed separately since it is equivalent to two
independent single-type cases.

1. Single-type case

The single-type case corresponds to the field configuration
hσ = (hσ

x , 0, 0) and hμ = 0. As already demonstrated and
exploited before, the B̂c operators still commute with the
Hamiltonian and excitations with bc = −1 do not play a role
for the low-energy physics. Furthermore, the phase-transition
point λx,c ≡ (hσ

x /J )c = 1 is known exactly due to the self-
duality.

Consequently, the relevant low-energy excitations in the
fracton phase relate to eigenvalues ac = −1 of the Âc op-
erators and we focus on the one-, two-, and four-fracton
sectors, which we analyzed up to order 6 in λx = hx/J . The
corresponding bare series of these sectors are illustrated in
Fig. 14. Clearly, none of these bare series become zero for
λ � λx,c, analyzed in detail below. Note that the correspond-
ing bare series of spin-flip excitations of the high-field po-
larized phase can be obtained due to the self-duality by
interchanging J and hx in the series of the fracton phase.
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FIG. 15. Bare series as well as Padé extrapolants of the one-
fracton gap �

1qp
lf /J as a function of λx for the single-type case of

Haah’s code. The vertical solid line indicates the exactly known
phase-transition point λx,c = 1.

A single fracton is not allowed to hop due to the magnetic
field, but it can reduce its energy by vacuum fluctuations. Its
dispersion relation is then obviously flat and the momentum-
independent one-fracton gap is given by

�
1qp
lf

J
= 2 − 1

2
λ2

x − 5

128
λ4

x − 775

73728
λ6

x, (48)

which is displayed in Fig. 15. It can be clearly seen that
the one-fracton gap is very well converged up to the phase-
transition point.

The effective Hamiltonian of a two-particle sector is typ-
ically harder to diagonalize since the relative distance of the
two particles (here fractons corresponding to two cubes with
ac = −1) can be arbitrary so that a Hamiltonian acting on an
infinite-dimensional Hilbert space remains to be treated even
if the total momentum is conserved. However, the situation is
different for Haah’s code in a field since the individual frac-
tons are not allowed to hop at all. As a consequence, most two-
fracton configurations remain decoupled from all the other
two-fracton states in a given perturbative order and the pCUT
method directly gives a single series for the excitation energy
of these two-fracton states. Only certain two-fracton configu-
rations having fractons close to each other can be coupled by
the magnetic field yielding still a finite-dimensional problem
in the form of a finite Hamiltonian matrix (see Fig. 16 for
an illustration of the most relevant unperturbed two-fracton
states at small fields for the low-energy physics in the two-
fracton sector). The diagonalization of these matrices gives
binding and antibinding eigenstates with respect to the energy
of two independent fractons. The series for the two-fracton
configuration with the highest binding energy representing the
two-fracton gap reads as

�
2qp
lf

J
= 4 − λx − 5

8
λ2

x + 3

32
λ3

x − 241

1536
λ4

x

+ 1553

36864
λ5

x − 558043

8847360
λ6

x . (49)
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FIG. 16. Illustration of the most relevant unperturbed two-
fracton states at small fields for the low-energy physics in the two-
fracton sector of Haah’s code. A cube c colored in blue indicates that
its eigenvalue is ac = +1 and hence represents a fracton excitation.
For the single-type case, an σ x operator acting on the spin at the right
red vertex changes the state shown in the center into the state shown
at the right. Hence, we have a hopping element between these states
in first-order perturbation. Additionally, for the two-type parallel
case, a μx acting on the left red spin changes the state depicted in
the center to the one depicted on the left.

Bare series as well as Padé extrapolants of the two-fracton
gap �

2qp
lf are shown in Fig. 17. Clearly, this quantity is well

converged, yielding a finite two-fracton gap �
2qp
lf,c/J ≈ 2.3 at

the phase-transition point λx,c = 1.
In contrast to the one- and two-fracton sectors, there ex-

ist certain topologically trivial fracton configurations in the
four-fracton sector which are able to hop. The largest four-
fracton hopping element at small fields starts in second-order
perturbation theory in λx for a local four-fracton configuration
(see Fig. 18). Here, we have calculated the four-fracton con-
tribution up to order 6 in λx, which is connected to this four-
fracton configuration. Interestingly, there is only a single four-
fracton configuration which has a finite transition amplitude to
this configuration in sixth-order perturbation theory (see also
Sec. IV A 1). The resulting Hamiltonian matrix is therefore a
2 × 2 matrix in momentum space. The resulting low-energy
branch ω4qp(k) of the four-fracton excitation is shown for
different values of λx in Fig. 19 along a high-symmetry path
in the three-dimensional Brillouin zone using the bare order-6
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FIG. 17. Bare series as well as Padé extrapolants of the two-
fracton gap �

2qp
lf /J as a function of λx for the single-type case of

Haah’s code. The vertical solid line indicates the exactly known
phase-transition point λx,c = 1.

FIG. 18. Illustration of the most relevant unperturbed four-
fracton states at small fields for the low-energy physics in the four-
fracton sector of Haah’s code. A cube c colored in blue indicates
that its eigenvalue ac = −1 and hence represents a fracton excitation.
Left: the action of a σ x operator at the red vertex on the bare
fracton ground state creates the four-fracton state depicted on the left.
This four-fracton configuration can hop in second-order perturbation
theory and is therefore most relevant for the low-energy physics in
the four-fracton sector. Right: an operator μx acting on the spin at
the red vertex creates the state shown on the right. Again, this state is
mobile. Furthermore, the left and the right configurations can interact
with each other in the two-type parallel case.

series. Overall, the dispersion develops only slowly a finite
bandwidth as a function of λx, which is a consequence of the
restricted mobility of individual fracton excitations. However,
the gap �

4qp
lf in this sector is clearly located at zero wave

vector.
Here, we can obtain an exact series for the four-fracton gap

due to the analytic expressions for the eigenvalues of the 2 × 2
Hamiltonian matrix. The resulting series reads as

�
4qp
lf

J
= 8 − 11

4
λ2

x − 939

256
λ4

x + 5357083

294912
λ6

x . (50)

The gap is plotted in Fig. 20. The bare series for this
quantity is alternating so that the convergence is limited to
rather small values of λx. Additionally, the only two available
Padé extrapolants are not very well converged close to the
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FIG. 19. Dispersion ω4qp(k)/J of the lowest mode of the four-
fracton sector of Haah’s code in the single-type case for different λx .
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FIG. 20. Bare series as well as Padé extrapolants of the four-
fracton gap �

4qp
lf /J at k = (0, 0, 0) as a function of λx for the single-

type case of Haah’s code. The vertical solid line indicates the exactly
known phase-transition point λx,c = 1.

phase-transition point. Nevertheless, all extrapolants yield a
finite gap �

4qp
lf > 2 at λx,c = 1.

2. Two-type parallel case

The two-type parallel case corresponds to
hσ = hμ = (hx, 0, 0) and we analyze the energetic properties
of excitations in the fracton phase as a function of the
parameter λx ≡ hx/J . As in the single-type case, the
eigenvalues bc of B̂c operators are conserved quantities
and the associated excitations with bc = −1 do not play a role
for the low-energy physics. The phase transition is located at
λ

pCUT
x,c ≡ (hx/J )c = 0.456 ± 0.006 according to the pCUT

analysis of the ground-state energy in Sec. V A.
The relevant low-energy excitations in the fracton phase

are therefore again eigenvalues ac = −1 of the Âc operators.
We calculated the series up to order 6 in λx in the one- and
two-fracton sectors while we reached order 4 in the four-
fracton sector. The corresponding bare series of these sectors
are illustrated in Fig. 21. Clearly, none of these bare series
becomes zero for λ � λ

pCUT
x,c , which we analyze next.

A single fracton is strictly immobile also in the two-type
parallel case, but it can again reduce its energy by vacuum
fluctuations. The one-fracton gap reads as

�
1qp
lf

J
= 2 − λ2

x − 57

128
λ4

x − 10297

24576
λ6

x . (51)

Bare series as well as Padé extrapolants of �
1qp
lf are shown

in Fig. 22, which look similar to the one-fracton gap in the
single-type case.

Similarly to the single-type case, the two-fracton sec-
tor decouples into sets of effective Hamiltonians in finite-
dimensional Hilbert spaces which can be solved easily by
matrix diagonalization. The diagonalization of these Hamilto-
nian matrices gives binding and antibinding eigenstates with
respect to the energy of two independent fractons. The series
for the two-fracton configuration with the highest binding
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FIG. 21. Relevant excitation energies of the one-, two-, and four-
fracton sectors in the fracton phase of Haah’s code for the two-type
parallel case as a function of λx = hx/J . Shown are bare series in
order 6 in λx for the one- and two-fracton sectors while order 4 is
displayed for the four-fracton sector.

energy representing the two-fracton gap reads as

�
2qp
lf

J
= 4 − 1.414213562373095 λx − 1.5 λ2

x

− 0.198873782208717 λ3
x − 1.005533854166667 λ4

x

− 0.279436078242340 λ5
x

− 1.185076113100405 λ6
x . (52)

Bare series as well as Padé extrapolants of �
2qp
lf are shown

in Fig. 23 yielding a well-converged finite two-fracton gap
�

2qp
lf,c/J ≈ 3 at the phase transition λ

pCUT
x,c = 0.456 ± 0.006.

The resulting dispersion ω4qp(k) of the lowest four-fracton
excitation is shown for different values of λx in Fig. 24 along
a high-symmetry path in the three-dimensional Brillouin zone
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FIG. 22. Bare series as well as Padé extrapolants of the one-
fracton gap �

1qp
lf /J as a function of λx for the two-type parallel case

of Haah’s code. The vertical solid line indicates the phase-transition
point λpCUT

x,c = 0.456.
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FIG. 23. Bare series as well as Padé extrapolants of the two-
fracton gap �

2qp
lf /J as a function of λx for the two-type parallel case

of Haah’s code. The vertical solid line indicates the phase-transition
point λpCUT

x,c = 0.456.

using the bare order-6 series. The dominant effect of λx is to
lower the overall energy for all k, which mainly originates
from the local quantum fluctuations of the involved individual
fractons. Moreover, the gap �

4qp
lf in this sector is located again

at zero wave vector. The Hamiltonian matrix for all connected
states is a 77 × 77 matrix that we diagonalized numerically.
To regain a series, we made a sequence of fits for each order
as before, yielding

�
4qp
lf

J
= 8 − 3.026151005915648λx

− 4.805118904820233λ2
x − 0.127432688836401λ3

x

− 2.546990725837421λ4
x . (53)

The fit errors were significantly lower than the machine pre-
cision, but we restrict ourselves to the displayed accuracy for
practical reasons.
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FIG. 24. Dispersion ω4qp(k)/J of the lowest mode in the four-
fracton sector for the two-type parallel case of Haah’s code along
a high-symmetry path in the three-dimensional Brillouin zone for
different fixed λx using the bare order-6 series.
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FIG. 25. Bare series as well as Padé extrapolants of the four-
fracton gap �

4qp
lf /J at k = (0, 0, 0) as a function of λx for the two-

type parallel case of Haah’s code. The vertical solid line indicates the
phase-transition point λpCUT

x,c = 0.456.

An analysis of this gap is plotted in Fig. 25. In contrast to
the single-type case, the convergence of the bare series as well
as of the Padé extrapolants is better although the maximum
order is only four. Clearly, the four-fracton gap remains finite
up to the phase-transition point.

B. X-Cube in a field

In the last subsection for Haah’s code in a field we have
seen that no gap of single-fracton or multifracton excitations
in the fracton phase closes before the detected ground-state
level crossings in Sec. V A. The first-order nature of the
phase transitions is therefore confirmed for all considered
field configurations. Physically, this can be traced back to the
immobility of all topologically nontrivial excitations of type-
II fracton phases like Haah’s code. Now, we investigate the
relevant excitation gaps for the X-Cube model in a field, which
is qualitatively different, since in type-I fracton phases com-
posites of fractons are allowed to move in lower-dimensional
submanifolds of the whole system.

1. Single x field

We start by considering the effect of a field in x direction
parametrized by h = (hx, 0, 0) on the excitations of the frac-
ton phase. Since the eigenvalues ac of the Âc operators remain
conserved, the relevant low-energy excitations correspond to
fracton excitations with b(κ )

s = −1. Keeping in mind the local
constraint

∏
κ B̂(κ )

s = 1, a single b(κ )
s = −1 does not exist and

the elementary excitation is given by a lineon excitation. This
is also reflected by dual description (33) given in Sec. III. The
lineon corresponds to a pair of b(κ )

s = b(κ ′ )
s = −1 at vertex s

with κ 
= κ ′ and can only move along the Cartesian direction
corresponding to the cut of the planes κ and κ ′.

All three types of lineons are energetically degenerate;
in the following, we consider a lineon able to move in x
direction. We calculated all hopping elements in x direction
up to order 10 in λx using the pCUT approach. Applying a
Fourier transformation yields the lineon dispersion ωx

lineon(k),
which is only dependent on kx but flat in the ky-kz planes. This
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FIG. 26. Dispersion ωx
lineon(k)/J of the x-type lineon excitation

of the X-Cube model in a single x field as a function of kx for different
values of λx using the bare pCUT series of order 10.

dispersion is plotted in Fig. 26 for different values of λx using
the bare pCUT series. The lineon gap �lineon is located at the
momenta kgap = (0, ky, kz ) and its pCUT series reads as

�lineon

J
= 4 − 2λx − 1

2
λ2

x + 1

8
λ3

x − 53

192
λ4

x

+ 973

4608
λ5

x − 34273

110592
λ6

x + 1177037

3538944
λ7

x

− 1133315183

2548039680
λ8

x + 368493295324181

684913065984000
λ9

x

− 263340353497788689

143831743856640000
λ10

x . (54)

Bare series as well as Padé extrapolants of the lineon gap
are shown in Fig. 27. Although the bare series is alternating,
the Padé extrapolants are well converged up to the phase
transition at λ

pCUT
x,c = 0.9196 ± 0.0012 implying a finite gap
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FIG. 27. Bare series (solid lines) as well as Padé extrapolants
(dashed lines) of the lineon gap �lineon/J of the X-Cube model in
a x field as a function of λx . The vertical solid line indicates the
phase-transition point at λpCUT

x,c = 0.9196 ± 0.0012 obtained from the
pCUT analysis of the ground-state energy.

1

1.2

1.4

1.6

1.8

2

2.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

λpCUT
z,c

Δ
fr

ac
to

n
/J

λz = hz/J

O6
O4

Pade

FIG. 28. Bare series (solid lines) as well as Padé extrapolants
(dashed lines) of the one-fracton gap �fracton/J of the X-Cube model
in a z field. The vertical solid line indicates the phase transition at
λpCUT

z,c = 0.293 64 ± 0.000 17 obtained from the pCUT analysis of
the ground-state energy.

at the phase transition in agreement with the first-order phase
transition found in Sec. V B and the QMC simulations in
Ref. [66].

2. Single z field

Next, we focus on how a field in z direction parametrized
by h = (0, 0, hz ) affects the excitations of the fracton phase.
Since in this case the eigenvalues b(κ )

s of the B̂(κ )
s operators are

conserved and lineon excitations remain static at finite fields,
the relevant low-energy excitations are fracton excitations
with ac = −1.

A single fracton with ac = −1 does not hop despite of
the magnetic field, but it can reduce its energy by vacuum
fluctuations like single fractons in the perturbed Haah’s code.
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FIG. 29. Dispersion of the planon excitation ω
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planon(k)/J of the

X-Cube model in a z field along a high-symmetry path in the
Brillouin zone for different values of λz using the bare order-7 pCUT
series.
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FIG. 30. Bare series (solid lines) as well as Padé extrapolants
(dashed lines) of the planon gap �planon/J as a function of λz for the
z-field case of the X-Cube model. As before, the vertical solid line
indicates the phase-transition point λpCUT

z,c = 0.293 64 ± 0.000 17 ob-
tained from the pCUT analysis of the ground-state energy.

The momentum-independent one-fracton gap is then given by

�fracton

J
= 2 − 3

2
λ2

z − 465

128
λ4

z − 478181

36864
λ6

z , (55)

which is illustrated in Fig. 28 including Padé extrapolants.
The relevant mobile low-energy excitation is the planon which
corresponds to two cubes with ac = −1 sharing a Cartesian
coordinate so that the planon can move in the two-dimensional
plane orthogonal to this direction. Planons in the three dif-
ferent kinds of planes xy, xz, and yz have identical physical
properties. In the following, we focus on the xy planon whose
dispersion relation ω

xy
planon(k)/J for different values of λz using

the bare order-7 series is displayed in Fig. 29. The gap �planon

of the xy planon is located at momenta k = (0, 0, kz ) and its
series expansion up to order 7 reads as

�planon

J
= 4 − 4λz − 3λ2

z − 17

8
λ3

z − 1151

192
λ4

z − 37165

9216
λ5

z

− 2591423

122880
λ6

z − 6264944713

530841600
λ7

z . (56)

Bare series as well as Padé extrapolants of the planon gap
are shown in Fig. 30. Both the bare monotonic series (56)
as well as the Padé extrapolants are well converged until
the phase-transition point λ

pCUT
z,c = 0.293 64 ± 0.000 17. So,

although the planon is allowed to move in a two-dimensional
subspace (in contrast to the lineon), the planon gap remains
finite at the phase transition in agreement with the first-order
phase transition found in Sec. V B and the QMC simulations
in Ref. [66].

VII. CONCLUSIONS

In this work, we have investigated the quantum robustness
of type-I and type-II fracton phases by considering the exactly
solvable Haah’s code and the X-Cube model in magnetic
fields. The latter introduce quantum fluctuations leading to
the breakdown of the fracton phases at certain field strengths
via quantum phase transitions to the topologically trivial
polarized phase.

We have located the zero-temperature phase transitions
quantitatively in all considered cases by performing low- and
high-field series expansions for the ground-state energy. For
the X-Cube model in a field, our results agree with QMC sim-
ulations [66]. Furthermore, all phase transitions are classified
as strongly first order, which can be deduced from the kink in
the ground-state energy as well as from the excitation energies
of fracton quasiparticles. The excitation energies for single
and composites of fracton quasiparticles have been calculated
as high-order series expansions showing that all energy gaps
remain finite in the whole fracton phases. Physically, there-
fore, the (partial) immobility of fracton quasiparticles hinders
the occurrence of second-order phase transitions out of fracton
phases. In conclusion, it should be investigated whether the
defining properties of fracton codes exclude quantum critical
behavior in general.
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