
PHYSICAL REVIEW B 101, 054424 (2020)

Magnon damping in the zigzag phase of the Kitaev-Heisenberg-� model on a honeycomb lattice
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We calculate magnon dispersions and damping in the Kitaev-Heisenberg model with an off-diagonal exchange
� and isotropic third-nearest-neighbor interact ion J3 on a honeycomb lattice. This model is relevant to a
description of the magnetic properties of iridium oxides α-Li2IrO3 and Na2IrO3, and Ru-based materials such
as α-RuCl3. We use an unconventional parametrization of the spin-wave expansion, in which each Holstein-
Primakoff boson is represented by two conjugate Hermitian operators. This approach gives us an advantage
over the conventional one in identifying parameter regimes where calculations can be performed analytically.
Focusing on the parameter regime with the zigzag spin pattern in the ground state that is consistent with
experiments, we demonstrate that one such region is � = K > 0, where K is the Kitaev coupling. Within our
approach, we are able to obtain explicit analytical expressions for magnon energies and eigenstates and go
beyond the standard linear spin-wave theory approximation by calculating magnon damping and demonstrating
its role in the dynamical structure factor. We show that the magnon damping effects in both Born and
self-consistent approximations are very significant, underscoring the importance of nonlinear magnon coupling
in interpreting broad features in the neutron-scattering spectra.
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I. INTRODUCTION

Magnetic materials that combine electronic correlations
with strong spin-orbit coupling attract significant interest as
a promising source of topological Mott insulators, exotic spin
liquids, and unusual magnetically ordered states [1]. Due to
the crystal field effects, strongly entangled spin and orbital
degrees of freedom generically result in the low-energy ef-
fective pseudospin models with bond-dependent anisotropic-
exchange interactions [1–6]. In the last decade, a consider-
able theoretical and experimental effort has been devoted to
bringing about a physical realization of the Kitaev spin liquid
with fractionalized excitations [7–21], originally proposed for
the tricoordinated honeycomb lattice with bond-dependent
Ising-like interactions [22]. Other studies of the anisotropic-
exchange models have revealed a multitude of unconventional
ordered states [7,23–29], order-by-disorder effects [30–32],
and non-Kitaev spin-liquid states [33–39] in various lattice
geometries.

Strong Kitaev-like bond-dependent couplings between ef-
fective pseudospins-1/2 have been identified in iridium ox-
ides, such as α-Li2IrO3 and Na2IrO3, α-RuCl3, and other
materials [40–48]. In these systems, magnetic ions form the
two-dimensional honeycomb lattices stacked along the [111]
direction. The magnetic ions in the honeycomb layers are
surrounded by an octahedral environment of ligands, which
provide exchange pathways facilitating direction-dependent
couplings between the pseudospins. Importantly, a realistic
modeling of these compounds necessitates significant cou-
plings beyond the Kitaev-like ones, such as the isotropic
Heisenberg and off-diagonal exchange interactions that are

allowed by the lattice symmetry [5–7,40]. In the theoretical
modeling and in real materials, these couplings appear to be
disruptive to the spin-liquid state of the pure Kitaev model
in favor of the states that are magnetically ordered, leaving a
concrete realization of such a spin liquid state elusive as of
yet [6].

One school of thought advocates a “proximate” spin-liquid
scenario for α-RuCl3 and similar systems [49,50]. In a nut-
shell, while the ground state of a material may be magnetically
ordered, its excitation spectrum is largely associated with
a quantum-disordered spin-liquid state that is nearby in the
phase diagram. This logic seemed to be strongly supported by
an observation of the broad features in the neutron-scattering
dynamical structure factor of α-RuCl3. At first glance, these
features are hard to reconcile with a response of a magneti-
cally ordered state, which typically yields sharp peaks associ-
ated with magnon excitations. One concern for the proximate
spin liquid scenario is that it is necessarily restricted to a close
vicinity of the pure Kitaev phases, which occupy a small frac-
tion of the phase diagram of the general anisotropic-exchange
model, according to the numerical estimates [51–54].

A different scenario for the broad features in the spectrum
of α-RuCl3 has been put forward in Ref. [55], where it was
suggested that the single-magnon excitations at higher ener-
gies are short-lived due to strong coupling to, and decay into,
the two-magnon continua of the lower-energy magnons. This
scenario was also argued to be applicable to a vastly wider
regions of the parameter space of the anisotropic-exchange
model—roughly speaking, to the entire phase diagram except
where the off-diagonal exchange terms are artificially sup-
pressed [55].
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The scenario of Ref. [55] has advocated the importance
of the anharmonic couplings in the spin-wave Hamiltonian,
which in turn lead to the broad features in the magnon
spectrum. Such broadening effects are well documented, the-
oretically and experimentally, in several representatives of the
ordered magnets that include some iconic frustrated magnets,
such as triangular- and kagome-lattice ones [56–62], collinear
and noncollinear antiferromagnets in external field [63–69],
spin-phonon coupled systems [70], ferromagnets [71,72], and
others [73–79]. In many of them, the noncollinearity of the
ordered states, whether due to geometric frustration or field-
induced, was crucial for the anharmonic terms to occur [73].
The persistence of such terms in the collinear states of the
anisotropic-exchange magnets is due to the omnipresent off-
diagonal couplings that make such anharmonic terms virtually
unavoidable, regardless of the region of the phase diagram
and the type of magnetic order assumed by the ground state
[55,80].

It turned out that an explicit calculation of the magnon
decay rates in the zigzag phase of the general Kitaev-
Heisenberg-� model is a challenging problem. Thus, in
Ref. [55], the authors have estimated the effects of magnon
broadening in α-RuCl3 using a simplified form of the anhar-
monic coupling, which will be referred to as the “constant
matrix element approximation” in this work. In spite of this
approximation, the results of Ref. [55] have shown a rather re-
markable similarity to the experimentally observed features in
the neutron-scattering dynamical structure factor of α-RuCl3

and to the numerical exact diagonalization results in small
clusters.

The present work advances the study of Ref. [55] in several
directions. We are able to find a parameter space for which cal-
culations of magnon damping can be performed microscop-
ically, without the simplifying approximations of Ref. [55].
For that, we use an unconventional formulation of the spin-
wave theory (SWT) that is based on the parametrization of
each Holstein-Primakoff boson in terms of two conjugate
Hermitian operators. The Hermitian field parametrization is
noteworthy in its own right as it proved to be useful for classi-
fying different types of quantum fluctuations in certain classes
of magnetically ordered systems [81–85]. This approach gives
clear criteria that allow us to identify relations between
parameters of the anisotropic-exchange model that permit
a rigorous analytic solution for the magnon eigenenergies,
eigenfunctions, and matrix elements for the calculation of the
damping. One such relation that defines a nontrivial line in the
parameter space is �=K >0, where K is the Kitaev coupling
and � is the off-diagonal exchange. Although various special
symmetry relations have been previously identified in the
parameter space of the Kitaev-Heisenberg-� model [9], the
line �=K along which magnon spectrum can be calculated
analytically by solving biquadratic equations has not been
noticed before.

We focus on the regime �=K >0 with an additional third-
nearest-neighbor Heisenberg interaction J3, which is often in-
voked in the description of real materials [40,55]. The J3 term
stabilizes the zigzag-ordered ground state for the considered
model in a wide parameter space that includes part of the �=
K line. This ground state is also consistent with experiments
in a broad sense, as it is found in several materials of interest

[6,7,86]. While our choice of parameters is not the same as
is typically used to describe α-RuCl3 [40,55], it allows us to
confirm in a quantitative manner the validity of the claims
that were put forward in Ref. [55]. Specifically, it gives us
an opportunity to demonstrate that strong anharmonicities in
the magnon description indeed persist throughout the phase
diagram of the general anisotropic-exchange model.

We go beyond the standard linear SWT approximation by
obtaining explicit expressions for the anharmonic terms and
by using them to calculate magnon damping. The damping
is calculated in the leading-order Born approximation, which
inevitably contains van Hove singularities of the two-magnon
continuum [73]. To regularize them and to go beyond the Born
approximation, we use the self-consistent approach based on
the solution of the imaginary part of the Dyson’s equation,
referred to as the iDE approach, see Refs. [57,68,71]. For the
representative values of the model parameters, the magnon
damping in both Born and self-consistent iDE approxima-
tions is significant, leading to characteristic broad features
in the dynamical structure factor. This quantitative result of
the present work confirms the assertion of Ref. [55] that
in the anisotropic-exchange model, anharmonic interactions
can lead to large decay rates such that some of the magnon
branches cease to be well-defined quasiparticles. These re-
sults underscore the importance of taking into account the
nonlinear magnon coupling in interpreting broad features in
the neutron-scattering spectra for the general anisotropic-
exchange model. For example, the continuum of excitations
far from the low-energy region could potentially be described
and is a good test-bed for a two-dimensional extension of the
recently emerged approaches to this problem in one dimen-
sion, such as in Refs. [87–90] or [91–93].

In addition, having performed the decay rate calculations
using explicit analytical expressions for the matrix elements of
the magnon couplings, we are also able to verify the validity
of the constant matrix element approximation of Ref. [55],
in which the momentum dependence of such magnon ver-
tices was neglected. While the momentum dependencies of
the Born-approximation damping differ rather significantly
between these approaches, the agreement becomes more
quantitative within the self-consistent iDE approximation, in
agreement with the logic of Ref. [55]. Still, there are clear
differences near certain high-symmetry points where magnon
decays are suppressed by the symmetry requirements, or en-
hanced due to matrix elements. These features are lost within
the constant matrix element approximation of Ref. [55]. We
also note that the order-of-magnitude estimates of Ref. [55]
have likely provided a lower bound on the damping rates
of magnons in α-RuCl3, and the actual effect of broaden-
ing for their model parameters may have been even more
significant.

Lastly, while the zigzag phase within the full anisotropic-
exchange model on the honeycomb lattice generally requires a
four-sublattice description, we have found that the same logic
that yields the reduction of the eigenvalue problem to solving
biquadratic equations along the �=K line also allows us to
reformulate the problem in the two-sublattice language. For
that alternative formulation, we were able to derive a fully
analytic form of the Bogoliubov eigenvalues, see Appendix B.
For some points along the same �=K line, a conventional
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SWT approach can be used, with the details of it to be
published elsewhere [94].

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and basic notations and present the
classical phase diagram of the model in several projections.
In Sec. III, we discuss the classical zigzag ground state and
derive an effective interacting boson model describing fluctu-
ations around this ground state using the Holstein-Primakoff
transformation [95]. In Sec. IV, we use an unconventional
parametrization of the magnon operators in terms of Hermi-
tian operators to show that on the special line in parameter
space � = K the magnon dispersions can be calculated ana-
lytically by solving simple biquadratic equations. In Sec. V,
we compute the magnon damping on the special line � =
K in the Born and self-consistent iDE approximations. We
also compare our results to the approximate approach of
[55]. In Sec. VI, we calculate and plot the corresponding
dynamical structure factor and the neutron scattering intensity.
In Sec. VII, we summarize our main results and present our
conclusions. To make this work self-contained, we have added
four appendices. In Appendix A, we review the conventional
algorithm for constructing multiflavor Bogoliubov transfor-
mations [96,97]. In Appendix B, we discuss some details
of the two-sublattice approach, and in Appendix C we give
additional technical details about the calculation of magnon
damping in the zigzag state. Finally, in Appendix D, we
provide additional numerical results for the magnon damping
and the dynamic structure factor for different parameters of
the Kitaev-Heisenberg-� model.

II. MODEL

A realistic spin model for the iridium oxides, α-RuCl3,
and other materials containing all relevant nearest-neighbor
couplings allowed by symmetry is given by the following
effective spin Hamiltonian [6,12]:

H = J
∑
〈i j〉

Si · S j + K
∑

α

∑
〈i j〉α

Sα
i Sα

j

+
∑
αβγ

�α
βγ

∑
〈i j〉α

Sβ
i Sγ

j −
∑

i

h · Si, (1)

where the Si are (pseudo)spin S = 1/2 operators localized
at the sites Ri of a honeycomb lattice, 〈i j〉 enumerates all
distinct pairs of the nearest-neighbor sites Ri and R j of the
lattice, and the labels α, β, γ ∈ {x, y, z} numerate the three
link vectors dx, dy, and dz which connect a given lattice site
to its nearest neighbors, as shown in Fig. 1. The second term
in the right-hand side of Eq. (1) is the nearest-neighbor Kitaev
interaction. In this term 〈i j〉α enumerates all distinct pairs of
the nearest neighbors whose distance vector Ri − R j is par-
allel to dα , and Sα

i = eα · Si, α = x, y, z are the components
of the spin operators in the laboratory frame, with Cartesian
basis vectors {ex, ey, ez} ≡ {x̂, ŷ, ẑ} shown in the right part of
Fig. 1. The third term on the right-hand side of Eq. (1) is
the symmetric off-diagonal exchange interaction, which arises
from spin-orbit coupling of the underlying electronic model.
The nonzero matrix elements of the tensor �α

βγ are

�x
yz = �x

zy = �y
zx = �y

xz = �z
xy = �z

yx = �. (2)

d

d

A B

d

dz

y

x

1

e2

e

x

y

z

dx

dy

zd

e1

a2

a1

FIG. 1. (Left) The honeycomb lattice can be divided into two
triangular sublattices labeled A and B with the nearest-neighbor
distance d . The underlying Bravais lattice has two sites per unit
cell. We choose a basis {e1, e2, e3} such that e1 is parallel to the
horizontal links and e3 (which is the [111] direction or the underlying
cubic lattice and is not shown in the figure) is perpendicular to
the plane of the lattice. Nearest neighbors are connected by the
vectors dz = de1, dx = d[− 1

2 e1 +
√

3
2 ê2] and dy = d[− 1

2 e1 −
√

3
2 e2].

We use the same color coding as Ref. [12]. A possible choice for the
primitive vectors is a1 = dz − dx = d[ 3

2 e1 −
√

3
2 e2] and a2 = dz −

dy = d[ 3
2 e1 +

√
3

2 e2]. Note that dx + dy + dz = 0, a1 + a2 = 3dz =
3de1, and a2 − a1 = dx − dy = √

3de2. (Right) In the materials of
interest, the honeycomb lattice lies in the plane perpendicular to the
[111] direction. The link vectors dx , dy, and dz connecting nearest
neighbors of the honeycomb lattice are parallel to the diagonals of
the faces of the cube marked by dashed lines. We use the same
color coding as in the left figure. The labeling of the link vectors
corresponds to the spin components in the Kitaev interaction.

Finally, the last term in Eq. (1) is the Zeeman-interaction,
where the gyromagnetic tensor is assumed to be diagonal and
we have absorbed the values of its diagonal elements into
the definition of the components of dimensionless magnetic
field h.

Since for generic values of the couplings the model (1)
does not have any continuous symmetries, it is reasonable
to expect that at low temperatures the system will exhibit a
long-range magnetic order, at least for large spin S. In the
limit S → ∞, where the spin operators can be treated as
classical three-component vectors of length S, the possible
lowest-energy spin configurations of the model (1) have been
discussed by several authors [5,12]. Depending on the values
of the parameters J , K , and �, different spin configurations in
the classical ground state are realized, as illustrated in Fig. 2
using three different projections of the three-dimensional pa-
rameter space onto a plane.

In this work, we shall focus on the zigzag phase, which is
realized in the low-temperature regime of the iridium oxides
and ruthenates [6]. In this regime, the magnetic ground state
further reduces the discrete translational symmetry of the
honeycomb lattice, so that four inequivalent sublattices are
necessary to describe the discrete translational symmetry of
the system. This implies that in the zigzag phase the spectrum
of spin-wave excitations has four different branches, which
have been obtained numerically [55] using the algorithm
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FIG. 2. Three equivalent representations of the classical phase
diagram of the Kitaev-Heisenberg-� model for vanishing exter-
nal magnetic field, omitting incommensurate phases. The three-
dimensional parameter space is spanned by J , K , and �. Since
the phase diagram depends only on the relative energy scales, we
set J/R = sin ϑ cos ϕ, K/R = sin ϑ sin ϕ, and �/R = cos ϑ , where
R2 = J2 + K2 + �2. The angles ϑ and ϕ parametrize the surface of
the unit sphere, which we project onto the plane in three different
ways: (a) equirectangular projection, (b) Mollweide projection, and
(c) depiction of the upper (� > 0) and the lower (� < 0) hemisphere.
The blue line represents the curve � = K , while the orange line
represents � = −3/2K with K > 0.

developed by Colpa [96] (see also Refs. [97–99]) that we
summarize in Appendix A.

III. MAGNON HAMILTONIAN IN THE ZIGZAG STATE

A. Classical ground states

To set up the spin-wave expansion, we should first iden-
tify the spin configuration in the classical ground state. In
this limit, we treat the spin operators Si as classical vectors
and minimize the resulting classical Hamiltonian. Therefore
it is convenient to work with the coordinate representation
of the spins in the crystallographic basis, where the Si are

represented by the column vectors⎛⎝ex · Si

ey · Si

ez · Si

⎞⎠ =
⎛⎝Sx

i

Sy
i

Sz
i

⎞⎠, (3)

which we call again Si for a notational simplicity. Then the
Kitaev-Heisenberg-� Hamiltonian can be written as

H =
∑

α

∑
〈i j〉α

ST
i HαS j −

∑
i

h · Si

=
∑

α

∑
R∈A

ST
RHαSR+dα

−
∑

R

h · SR, (4)

where in the second line the symbol
∑

R∈A denotes summation
over all sites of the A sublattice (see Fig. 1) and the 3 × 3
matrices Hα are defined by

Hα = J1 + KeαeT
α +

∑
βγ

�α
βγ eβeT

γ , (5)

or more explicitly

Hx =
⎛⎝J + K 0 0

0 J �

0 � J

⎞⎠, (6a)

Hy =
⎛⎝J 0 �

0 J + K 0
� 0 J

⎞⎠, (6b)

Hz =
⎛⎝J � 0

� J 0
0 0 J + K

⎞⎠. (6c)

Introducing the site-dependent effective magnetic field

BR = h −
∑

α

HαSR±dα
, (7)

where the upper sign in SR±dα
should be taken for R ∈ A and

the lower sign for R ∈ B, the conditions for the extremum of
the classical energy can be written as [100]

SR × BR = 0, (8)

which means that for each lattice site R the effective field
BR must be aligned with SR. To obtain an explicit analytical
solution of the system (8) of nonlinear equations we have
to make further simplifying assumptions. Here we restrict
ourselves to the spin configurations satisfying

SR+dα
= TαSR for R ∈ A, (9)

where the 3 × 3 matrices Tα parametrize the relative orienta-
tion of the neighboring spins and depend only on the displace-
ments dα connecting the spins SR and SR+dα

. This restriction
does not allow for the incommensurate spiral phase, which
we ignore in the following analysis as it never crosses the line
of our interest � = K > 0 and thus does not interfere with
our analysis, see supplementary notes of Ref. [55]. Renaming
R + dα → R, the condition (9) can alternatively be written as

SR−dα
= T −1

α SR, for R ∈ B, (10)

which is valid for all sites R belonging to the B sublattice
shown in Fig. 1. For simplicity, we shall from now on consider
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only the case of vanishing external magnetic field h = 0.
Then, for the A sublattice, Eq. (8) reduces to

SR = ±S

∑
α HαSR+dα∣∣∑
α HαSR+dα

∣∣ = ±S

∑
α HαTαSR∣∣∑
α HαTαSR

∣∣ , (11)

and, for the B sublattice, to

SR = ±S

∑
α HαSR−dα∣∣∑
α HαSR−dα

∣∣ = ±S

∑
α HαT −1

α SR∣∣∑
α HαT −1

α SR

∣∣ . (12)

Keeping in mind that the classical energy can be written as

H0 = ±S
∑
R∈A

∣∣∣∣∣∑
α

HαSR+dα

∣∣∣∣∣ = ±S
∑
R∈A

∣∣∣∣∣∑
α

HαTαSR

∣∣∣∣∣, (13)

it is clear that we should choose the minus sign in Eqs. (11)
and (12) to minimize the energy. Note that on the A sublattice,
the spin SR must be an eigenvector of the matrix

∑
α HαTα ,

while on the B sublattice SR must be an eigenvector of∑
α HαT −1

α . To construct the minimum of the energy, let λmax

be the eigenvalue of the matrix
∑

α HαTα with the largest
absolute value. Then the classical ground-state energy can be
written as

H0 = −N

2
S2|λmax|. (14)

To classify possible ground states, note that by successively
applying these transformations to the six spins at the corners
of a hexagon we obtain the holonomy condition

T −1
x TyT −1

z TxT −1
y Tz = I, (15)

where I is the three-dimensional identity matrix. If we require
that the discrete lattice rotational symmetry should not be bro-
ken, these conditions can be satisfied in five inequivalent ways
[12]: (a) ferromagnetic state: (Tx, Ty, Tz ) = (I, I, I ); (b) an-
tiferromagnetic state: (Tx, Ty, Tz ) = (−I,−I,−I ); (c) zigzag
states: (Tx, Ty, Tz ) = (I, I,−I ) or (I,−I, I ) or (−I, I, I );
(d) stripy states: (Tx, Ty, Tz ) = (I,−I,−I ) or (−I, I,−I ) or
(−I,−I, I ); and (e) 120◦ state: (Tx, Ty, Tz ) = (I, R120, R2

120),
where R120 represents a 120◦ rotation around the [111]
direction.

B. Zigzag state

In the rest of this work, we shall focus on the parame-
ter regime where the magnetization in the classical ground
state forms a zigzag pattern with (Tx, Ty, Tz ) = (1, 1,−1) as
illustrated in Fig. 3. Then, the neighboring spins connected
by dz are antiparallel, while the neighboring spins connected
by dx and dy are parallel. This state, which is realized in
some iridates and α-RuCl3, breaks the discrete translational
symmetry of the honeycomb lattice, and requires a four-
sublattice description. We label the sublattices by a, b, c, and
d , as shown in Fig. 3. The local moments Si in the zigzag state
are

Si = Smi, mi = ζin3, (16)

where ζi = 1 for the sites Ri on the sublattices a and d , and
ζi = −1 on the sublattices b and c, and n3 is the normalized

e2

e1

d

a b

c

FIG. 3. Spin configuration in the zigzag state mi = ζin3 where
ζi = 1 on sublattices a and d and ζi = −1 on sublattices b and c.
It turns out that in the special case � = K > 0, where the magnon
spectrum can be calculated analytically as discussed in Sec. IV B, the
local moments are mi = ζie2, i.e., the magnetization lies in the plane
of the lattice and points in the direction of the stripes. The dashed
rectangle marks the choice of the unit cell of the lattice with a four-
site basis, with the primitive vectors a′

1 = 3de1 and a′
2 = √

3de2. The
associated reciprocal lattice basis is b′

1 = 2π

3d e1 and b′
2 = 2π√

3d
e2.

eigenvector of the matrix

∑
α

HαTα = Hx + Hy − Hz =
⎛⎝J + K −� �

−� J + K �

� � J − K

⎞⎠
(17)

whose eigenvalue λ3 has the largest magnitude. The eigenval-
ues of the matrix (17) are

λ1 = J + K + �, (18a)

λ2 = J − �

2
+ R

2
, (18b)

λ3 = J − �

2
− R

2
, (18c)

with

R =
√

4K2 − 4K� + 9�2 =
√

(2K − �)2 + 8�2. (19)

The corresponding normalized eigenvectors in the crystallo-
graphic basis are

n1 = 1√
2

⎛⎝ 1
−1

0

⎞⎠ = 1√
2

(ex − ey), (20a)
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n2 = 1√
2 + r2

⎛⎝1
1
r

⎞⎠ = 1√
2 + r2

(ex + ey + rez ), (20b)

n3 = sign(s)√
2 + s2

⎛⎝1
1
s

⎞⎠ = sign(s)√
2 + s2

(ex + ey + sez ), (20c)

where

r = 2K + 3� − R

2K − 3� + R
= −3� + 2K − R

3� − 2K − R
(21)

and

s = 2K + 3� + R

2K − 3� − R
= −3� + 2K + R

3� − 2K + R
= −2

r
. (22)

For later reference, we note that

r + s = 1 − 2K/�, (23)

and hence

K + �(r + s) = � − K. (24)

Recall that the local magnetization in the classical ground
state is parallel to the eigenvector whose eigenvalue has
the largest magnitude. In the zigzag phase, this is n3; the
corresponding classical ground-state energy is simply

Hcl = −N

2
S2|λ3|. (25)

For � → 0, we may expand

R = 2|K| − �signK + O(�2), (26)

so that

s ∼ 2K + 2|K| + 3� − �signK + O(�2)

2K − 2|K| − 3� + �signK + O(�2)
. (27)

For positive K , this expression diverges as −2K/� → ∓∞
for � → ±0. In this limit, r → 0 so that the eigenvector
n2 reduces to (ex + ey)/

√
2, while the eigenvector n3, which

gives the direction of the magnetization, approaches ez. On
the other hand, for K < 0 the parameter s vanishes for � → 0
while r approaches ∓∞ for � → ±0; the local magnetization
lies then in the crystallographic xy plane. Using the relation

rs =
(

3� + 2K − R

3� − 2K − R

)(
3� + 2K + R

3� − 2K + R

)
= (3� + 2K )2 − R2

(3� − 2K )2 − R2
= 16K�

−8K�
= −2, (28)

one easily verifies that n1 × n2 = n3, so that {n1, n2, n3} form
a right-handed basis with the third axis n3 matching the
direction of the local magnetization in the zigzag phase.

In Sec. IV B, we will show that for � = K > 0 the magnon
spectrum can be calculated analytically, which will enable us
to calculate the magnon damping. In this case, r = 1 and s =
−2 so that the direction of the classical magnetization is

n3 = 1√
6

⎛⎝−1
−1

2

⎞⎠, (29)

which is the coordinate representation of the vector e2 point-
ing along the direction of the zigzag pattern shown in Fig. 3.

Hence, for � = K > 0, the magnetic moments lie in the plane
of the honeycomb lattice and point in the direction of the
zigzag pattern. Note that e2 can be combined with another
unit vector e1 in the plane of the honeycomb lattice that is
perpendicular to the zigzag pattern, and with a third unit
vector e3 that is perpendicular to the plane of the honeycomb
lattice to form a basis {e1, e2, e3}, which matches the geometry
of the lattice. The relation between this honeycomb basis and
the crystallographic basis {ex, ey, ez} is

ex = − e1√
2

− e2√
6

+ e3√
3
, (30a)

ey = e1√
2

− e2√
6

+ e3√
3
, (30b)

ez =
√

2

3
e2 + e3√

3
. (30c)

The inverse transformations are

e1 = −ex + ey√
2

, (31a)

e2 = −ex − ey + 2ez√
6

, (31b)

e3 = ex + ey + ez√
3

. (31c)

From Eq. (31b), it is obvious that n3 in Eq. (29) can indeed
be identified with e2.

C. Projection onto local reference frames

In this section, we consider a general case of the zigzag
state with a finite magnetic field. To derive the spin-wave
spectrum, we express spin operators in terms of canonical
boson operators using the Holstein-Primakoff transformation
[95]. Therefore we project the operators Si onto the right-
handed basis {t i1, t i2, mi} with the third direction

mi = ζin3 (32)

matching the direction defined by the local magnetization
in the zigzag state given in Eq. (16). The transverse basis
vectors t i1 and t i2 are not unique and are defined only up to a
local U(1) gauge transformation [100,101]. The most general
choice of the transverse basis vectors is

t i1 = n1 cos φ − n2 sin φ, (33a)

t i2 = ζi[n1 sin φ + n2 cos φ], (33b)

where n1 and n2 are defined in Eqs. (20a) and (20b) and the
angle φ is arbitrary. The factor ζi is introduced such that our
local basis is right-handed. The corresponding spherical basis
vectors are

t p
i = t i1 + ipt i2 = eipζiφ (n1 + ipζin2), p = ±. (34)

To derive the expansion in powers of 1/S, we project spin
operators onto our local basis,

Si = S‖
i mi + S⊥

i , (35)
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with the transverse part given by

S⊥
i = 1

2

∑
p=±

S−p
i t p

i . (36)

Then the spin components are bosonized using the Holstein-
Primakoff transformation [95],

S+
i =

√
2S

√
1 − a†

i ai

2S
ai ≈

√
2S

[
ai − a†

i aiai

4S

]
, (37a)

S−
i =

√
2Sa†

i

√
1 − a†

i ai

2S
≈

√
2S

[
a†

i − a†
i a†

i ai

4S

]
, (37b)

S‖
i = S − a†

i ai, (37c)

where ai and a†
i are canonical boson operators satisfying the

usual commutation relations [ai, a†
j ] = δi j . To express our

Hamiltonian (1) in terms of the Holstein-Primakoff bosons it
is convenient to write it in the form

H = 1

2

∑
i j,α

⎡⎣Jα
i jS

α
i Sα

j +
∑
βγ

�α
βγ ,i jS

β
i Sγ

j

⎤⎦−
∑

i

h · Si, (38)

where Jα
i j = Jα (Ri − R j ) and �α

βγ ,i j = �α
βγ (Ri − R j ) are only

finite if Ri − R j connect nearest-neighbor sites on the honey-
comb lattice, with

Jα (Ri − R j = ±dμ) = J + δαμK, (39a)

�α
βγ (Ri − R j = ±dμ) = δαμ�α

βγ . (39b)

Substituting the decomposition (35) into Eq. (38) and
setting S‖

i = S − a†
i ai, our spin Hamiltonian can be written as

H = H0 + H2‖ + H4‖ + H⊥ + H‖⊥, (40)

with

H0 = S2

2

∑
i j,α

⎡⎣Jα
i jm

α
i mα

j +
∑
βγ

�α
βγ ,i jm

β
i mγ

j

⎤⎦− S
∑

i

h · mi,

(41)

H2‖ = −S

2

∑
i j,α

⎡⎣Jα
i jm

α
i mα

j +
∑
βγ

�α
βγ ,i jm

β
i mγ

j

⎤⎦
× (a†

i ai + a†
j a j ) +

∑
i

h · mia
†
i ai, (42)

H⊥ = 1

2

∑
i j,α

⎡⎣Jα
i j (S

⊥
i · eα )(S⊥

j · eα )

+
∑
βγ

�α
βγ ,i j (S

⊥
i · eβ )(S⊥

j · eγ )

⎤⎦, (43)

H‖⊥ = −
∑

i j

S⊥
i ·

{
δi jh −

∑
α

[
Jα

i jeαmα
j

+
∑
βγ

�α
βγ ,i jeβmγ

j

⎤⎦(S − a†
j a j )

⎫⎬⎭. (44)

Within these notations, the condition (8) for a spin configura-
tion to be in the classical ground state can be written as

mi ×
⎧⎨⎩h − S

∑
j,α

⎡⎣Jα
i jeαmα

j +
∑
βγ

�α
βγ ,i jeβmγ

j

⎤⎦⎫⎬⎭ = 0.

(45)
Using this condition, the part H‖⊥ of the Hamiltonian which
mixes longitudinal and transverse fluctuations simplifies to

H‖⊥ = −
∑
i j,α

S⊥
i ·

⎡⎣Jα
i jeαmα

j +
∑
βγ

�
αβγ
i j eβmγ

j

⎤⎦a†
j a j . (46)

If this term does not vanish by symmetry, it generates cubic
interactions of the Holstein-Primakoff bosons in the leading
order in the 1/S expansion.

D. Quadratic boson Hamiltonian

From now on, we set h = 0 again. After substituting the
spin projections in the local basis {t+

i , t−
i , mi} of the zigzag

state into the general formulas given in the previous section,
the spin-wave dispersions in the zigzag state can be obtained
from the part H2 of the Hamiltonian that is quadratic in
the boson operators. For the explicit calculation of H2, the
following identity for the sum over a function of the nearest-
neighbor sites on the honeycomb lattice is useful,

∑
〈i j〉

f (Ri, R j ) = 1

2

∑
μ=x,y,z

[∑
Ri∈A

f (Ri, Ri + dμ)

+
∑
Ri∈B

f (Ri, Ri − dμ)

]

=
∑

μ=x,y,z

∑
Ri∈A

f (Ri, Ri + dμ), (47)

where Ri ∈ A means all sites of the sublattice A = a ∪ c
and Ri ∈ B means all sites of the sublattice B = b ∪ d . The
quadratic contribution H2‖ to the longitudinal part of the
bosonized Hamiltonian defined in Eq. (42) is easily obtained:

H2‖ = −FS
∑

R

a†
RaR, (48)

with

F = J + K
(
m2

x + m2
y − m2

z

)+ 2�(mymz + mzmx − mxmy).

(49)

The calculation of the corresponding transverse part H2⊥ is
more involved. For simplicity, we use the gauge φ = 0 for the
transverse basis where the transverse spherical basis vectors
are simply t p

i = n1 + ipζin2. In the zigzag state, the expansion
of the transverse part of the spin operators is

S⊥
i = 1

2

∑
p

S−p
i np for Ri ∈ a ∪ d, (50a)

= 1

2

∑
p

Sp
i np for Ri ∈ b ∪ c, (50b)
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where we introduced the site-independent spherical basis
vectors

np = n1 + ipn2. (51)

Decomposing the transverse part H⊥ of the spin Hamiltonian
defined in Eq. (43) into contributions from the three types of
interactions,

H⊥ = HJ
⊥ + HK

⊥ + H�
⊥, (52)

we then obtain for the Heisenberg part (J term),

HJ
⊥ = J

2

∑
p

∑
R∈A

[
Sp

RS−p
R+dx

+ Sp
RS−p

R+dy
+ Sp

RSp
R+dz

]
.

(53)

To explicitly write down the transverse contribution of the
Kitaev term in the zigzag state, we separate the contributions
from the four sublattices,

HK
⊥ = 1

8

∑
pp′

{∑
R∈a

[
K p̄p̄′

xx Sp
RSp′

R+dx
+ K p̄p̄′

yy Sp
RSp′

R+dy
+ K p̄p′

zz Sp
RSp′

R+dz

]+
∑
R∈c

[
K pp′

xx Sp
RSp′

R+dx
+ K pp′

yy Sp
RSp′

R+dy
+ K pp̄′

zz Sp
RSp′

R+dz

]
+
∑
R∈b

[
K pp′

xx Sp
RSp′

R−dx
+ K pp′

yy Sp
RSp′

R−dy
+ K pp̄′

zz Sp
RSp′

R−dz

]+
∑
R∈d

[
K p̄p̄′

xx Sp
RSp′

R−dx
+K p̄p̄′

yy Sp
RSp′

R−dy
+K p̄p′

zz Sp
RSp′

R−dz

]}
, (54)

where we have defined

K pp′
αβ = K (eα · np)(eβ · np′

). (55)

and the superscripts p̄ and p̄′ stand for −p and −p′. Similarly, the contribution from the off-diagonal exchange term to the
transverse part of the spin Hamiltonian can be written as

H�
⊥ = 1

8

∑
pp′

{∑
R∈a

[
� p̄p̄′

yz Sp
RSp′

R+dx
+ � p̄p̄′

zx Sp
RSp′

R+dy
+ � p̄p′

xy Sp
RSp′

R+dz

]+
∑
R∈c

[
�pp′

yz Sp
RSp′

R+dx
+ �pp′

zx Sp
RSp′

R+dy
+ �pp̄′

xy Sp
RSp′

R+dz

]
+
∑
R∈b

[
�pp′

yz Sp
RSp′

R−dx
+ �pp′

zx Sp
RSp′

R−dy
+ �pp̄′

xy Sp
RSp′

R−dz

]+
∑
R∈d

[
� p̄p̄′

yz Sp
RSp′

R−dx
+ � p̄p̄′

zx Sp
RSp′

R−dy
+ � p̄p′

xy Sp
RSp′

R−dz

]}
, (56)

where we have defined

�
pp′
αβ = �[(eα · np)(eβ · np′

) + (eβ · np)(eα · np′
)]. (57)

To obtain the corresponding Hamiltonian H2⊥ = HJ
2⊥ +

HK
2⊥ + H�

2⊥, which is quadratic in the boson operators, we
approximate the spherical components of the spin operators
by the leading terms in the Holstein-Primakoff transformation,
S+

i ≈ √
2Sai and S−

i ≈ √
2Sa†

i , see Eqs. (37a) and (37b).
Then the resulting quadratic boson Hamiltonian can be block-
diagonalized by transforming to the momentum space on each
of the four sublattices separately,

aR =
√

4

N

∑
k

eik·Rak, R ∈ a, (58a)

=
√

4

N

∑
k

eik·Rbk, R ∈ b, (58b)

=
√

4

N

∑
k

eik·Rck, R ∈ c, (58c)

=
√

4

N

∑
k

eik·Rdk, R ∈ d, (58d)

where the momentum sums are over the reduced (magnetic)
Brillouin zone associated with one of the four sublattices
containing N/4 lattice sites. Note that the coordinates of the
sites of different sublattices can be transformed into each other

by shifting by a vector that is not a primitive vector of the
Bravais lattice,

Rb = Ra + dz, (59a)

Rc = Ra + dz − dx = Ra + a1, (59b)

Rd = Ra + dx, (59c)

where the subscripts indicate the sublattice and the shift
vectors dx, dz, and a1 are defined in the caption of Fig. 1. As
a consequence, we should distinguish four types of periodic δ

functions,

δa(k) = 4

N

∑
Ra

eik·Ra =
∑

G

δk,G, (60a)

δb(k) = 4

N

∑
Rb

eik·Rb =
∑

G

δk,GeiG·dz , (60b)

δc(k) = 4

N

∑
Rc

eik·Rc =
∑

G

δk,GeiG·a1 , (60c)

δd (k) = 4

N

∑
Rd

eik·Rd =
∑

G

δk,GeiG·dx , (60d)

where G are the reciprocal lattice vectors of the honeycomb
lattice associated with the a-sublattice, i.e., eiRa·G = 1. It
follows that the Fourier components of the operators ak, bk,

054424-8



MAGNON DAMPING IN THE ZIGZAG PHASE OF THE … PHYSICAL REVIEW B 101, 054424 (2020)

ck, and dk defined via Eq. (58) have the following periodicity
properties:

ak+G = ak, (61a)

bk+G = e−iG·dz bk, (61b)

ck+G = e−iG·a1 ck, (61c)

dk+G = e−iG·dx dk. (61d)

These nontrivial phase factors are crucial for the correct
treatment of umklapp scattering in our calculation of magnon
damping presented in Sec. V.

In the momentum space, the total quadratic part of the
boson Hamiltonian is of the form

H2 = H2‖ + H2⊥ =
∑

k

∑
mn

{
Amn

k a†
kmakn

+ 1

2

[
Bmn

k a†
kma†

−kn + (
Bnm

k

)∗
a−kmakn

]}
, (62)

where the labels m, n ∈ {a, b, c, d} refer to the four sublattices
and we have set aka = ak, akb = bk, akc = ck, and akd = dk.
In general, the hermiticity of the Hamiltonian implies that the
matrix Ak with elements [Ak]mn = Amn

k is Hermitian, i.e.,

Amn
k = (

Anm
k

)∗
, or Ak = A†

k. (63)

Moreover, the symmetry under relabeling k → −k in the off-
diagonal terms implies

Bmn
k = Bnm

−k, or Bk = BT
−k. (64)

In the zigzag state with the local moment given by mi = ζin3

and general transverse basis vectors given by Eqs. (33a) and
(33b), the nonzero elements of the matrices given above are

Aaa
k = Abb

k = Acc
k = Add

k = λ, (65a)

Aad
k = (

Ada
k

)∗ = Acb
k = (

Abc
k

)∗ = αk, (65b)

Aab
k = (

Aba
k

)∗ = βk, (65c)

Acd
k = (

Adc
k

)∗ = β∗
−k, (65d)

and

Bab
k = Bba

−k = Bcd
k = Bdc

−k = μk, (66a)

Bad
k = Bda

−k = νk, (66b)

Bcb
k = Bbc

−k = ν∗
−k, (66c)

where

λ = −S

[
J + K

2 − s2

2 + s2
+ 2�

2 + s2
(2s − 1)

]
= S

[
−J + K

2 − r2

2 + r2
+ �

r(4 + r)

2 + r2

]
, (67)

αk = S

[
J + K

4

4 + r2

2 + r2
+ �

r

2 + r2

]
(eik·dx + eik·dy ), (68)

βk = −Se2iφ

[
K

2

r2

2 + r2
+ �

2

4 + r2

2 + r2

]
eik·dz , (69)

μk = S

[
J + K − �

2

r2

2 + r2

]
eik·dz , (70)

νk = Se2iφ

{[
K

4

r2

2 + r2
− �

r

2 + r2

]
(eik·dx + eik·dy )

+ i
K − �r

2

√
2

2 + r2
(eik·dx − eik·dy )

}
. (71)

The parameters r and s = −2/r are functions of K and � as
given in Eqs. (21) and (22). Note that for K = �r, the last term
in Eq. (71) vanishes so that νk = ν∗

−k for φ = 0. It turns out
that on this special surface in the parameter space, the spin-
wave spectrum can be obtained analytically for all k, as will
be discussed in Sec. IV B. We conclude that in the zigzag state
the matrices Ak and Bk defined via the quadratic spin-wave
Hamiltonian H2 in Eq. (62) have the following structure:

Ak =

⎛⎜⎜⎜⎝
Aaa

k Aab
k 0 Aad

k

(Aab
k )∗ Abb

k Abc
k 0

0 (Abc
k )∗ Acc

k Acd
k

(Aad
k )∗ 0 (Acd

k )∗ Add
k

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
λ βk 0 αk

β∗
k λ α∗

k 0

0 αk λ β∗
−k

α∗
k 0 β−k λ

⎞⎟⎟⎟⎠ (72)

and

Bk =

⎛⎜⎜⎜⎝
0 Bab

k 0 Bad
k

Bab
−k 0 Bbc

k 0

0 Bbc
−k 0 Bcd

k

Bad
−k 0 Bcd

−k 0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 μk 0 νk

μ−k 0 ν∗
k 0

0 ν∗
−k 0 μk

ν−k 0 μ−k 0

⎞⎟⎟⎟⎠. (73)

E. Including third-nearest-neighbor exchange

A more realistic model of the spin-orbit coupled iridium
oxides and α-RuCl3 also takes into account an isotropic third-
nearest-neighbor Heisenberg exchange interaction J3 connect-
ing spins on the opposite corners in the hexagons of the
honeycomb lattice. Then we should add the following term
to our Hamiltonian in Eq. (1):

HJ3 = J3

2

∑
α

[∑
R∈A

SR · SR+δα
+
∑
R∈B

SR · SR−δα

]
, (74)

where the vectors δα = −2dα connect the opposite sites of
the hexagons. The classical ground-state energy of the zigzag
state is then given by

H0

NS2
= −|λ3|

2
− 3

2
J3 = −1

2

∣∣∣∣J − �

2
− R

2

∣∣∣∣− 3

2
J3, (75)

where λ3 is given in Eq. (18c). Hence, a positive J3 stabilizes
the zigzag state, similarly to the consideration of Ref. [55]. It
turns out, that the structure of the matrices Ak and Bk given
in Eqs. (72) and (73) above does not change with J3; we
simply have to redefine the diagonal matrix element λ of Ak
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as follows:

λ = S

[
3J3 − J + K

2 − r2

2 + r2
+ �

r(4 + r)

2 + r2

]
, (76)

and replace the off-diagonal element μk of the matrix Bk by

Bab
k = Bba

−k = Bcd
k = Bdc

−k = μk

= S

[
J + K − �

2

r2

2 + r2

]
eik·dz

+ SJ3(e−2ik·dx + e−2ik·dy + e−2ik·dz ). (77)

Note that the additional contribution to the matrix element μk

involving J3 does not violate the symmetry μ−k = μ∗
k.

F. Cubic boson Hamiltonian

For the calculation of the magnon damping in the zigzag
state presented in Sec. V, we also need the cubic part H3 of the
boson Hamiltonian, which can be obtained from H‖⊥ given in
Eq. (46) by expanding the transverse components of the spin
operators to linear order in the Holstein-Primakoff bosons. In
real space, we obtain

H3 = −
√

2S

2

{∑
R∈a

a†
R

(
Vxρ

d
R+dx

+ Vyρ
d
R+dy

− Vzρ
b
R+dz

)
−
∑
R∈c

c†
R

(
V ∗

x ρb
R+dx

+ V ∗
y ρb

R+dy
− V ∗

z ρd
R+dz

)

−
∑
R∈b

b†
R

(
V ∗

x ρc
R−dx

+ V ∗
y ρc

R−dy
− V ∗

z ρa
R−dz

)
+
∑
R∈d

d†
R

(
Vxρ

a
R−dx

+ Vyρ
a
R−dy

− Vzρ
c
R−dz

)+ H.c.

}
,

(78)

where ρa
R = a†

RaR, ρb
R = b†

RbR, ρc
R = c†

RcR and ρd
R = d†

RdR are
the number operators of the Holstein-Primakoff bosons in the
four sublattices a, b, c, and d , and

Vx = eiφsgns√
2 + s2

[
K − �s√

2
+ i

� − K√
2 + r2

]
, (79a)

Vy = eiφsgns√
2 + s2

[
−K − �s√

2
+ i

� − K√
2 + r2

]
, (79b)

Vz = 2eiφsgns√
2 + s2

√
2 + r2

(� − K ). (79c)

Defining the Fourier transform to momentum space as in
Eq. (58) and carefully keeping track of the phase factors
associated with the umklapp scattering using Eq. (60), we
obtain

H3 =
√

2S

2

√
4

N

∑
k1k2k3

∑
G

δk1+k2+k3,G
{−[(VxeiG·dx−i(k2+k3 )·dx + VyeiG·dx−i(k2+k3 )·dy

)
d†

−k1
+ V ∗

z eiG·dz−i(k2+k3 )·dz b†
−k1

]
a†

−k2
ak3

+ [(
V ∗

x eiG·a1+i(k2+k3 )·dx + V ∗
y eiG·a1+i(k2+k3 )·dy

)
c†
−k1

+ Vze
i(k2+k3 )·dz a†

−k1

]
b†

−k2
bk3

+ [(
V ∗

x eiG·dz−i(k2+k3 )·dx + V ∗
y eiG·dz−i(k2+k3 )·dy

)
b†

−k1
+ Vze

iG·dx−i(k2+k3 )·dz d†
−k1

]
c†
−k2

ck3

− [(
Vxei(k2+k3 )·dx + Vyei(k2+k3 )·dy

)
a†

−k1
+ V ∗

z eiG·a1+i(k2+k3 )·dz c†
−k1

]
d†

−k2
dk3 + H.c.

}
. (80)

In the second line, we use k2 + k3 = G − k1, a1 = dz − dx,
a2 = dz − dy, dx − dy = a2 − a1, and eiG·(a1±a2 ) = 1 to sim-
plify the phase factors as follows:

eiG·dx−i(k2+k3 )·dx = ei(G−k2−k3 )·dx = eik1·dx , (81a)

eiG·dx−i(k2+k3 )·dy = eiG·(dx−dy )+ik1·dy

= eiG·(a2−a1 )+ik1·dy = eik1·dy , (81b)

eiG·dz−i(k2+k3 )·dz = ei(G−k2−k3 )·dz = eik1·dz . (81c)

The phases of the three terms in the third line of Eq. (80)
can be simplified as follows:

eiG·a1+i(k2+k3 )·dx = eiG·(a1+dx )−ik1·dx

= eiG·dz e−ik1·dx , (82a)

eiG·a1+i(k2+k3 )·dy = eiG·(a1+dy )−ik1·dy

= eiG·(a2+dy )−ik1·dy

= eiG·dz e−ik1·dy , (82b)

ei(k2+k3 )·dz = eiG·dz e−ik1·dz , (82c)

and in the fourth line we can write

eiG·dz−i(k2+k3 )·dx = eiG·(dz−dx )+ik1·dx

= eiG·a1 eik1·dx , (83a)

eiG·dz−i(k2+k3 )·dy = eiG·(dz−dy )+ik1·dy

= eiG·a2 eik1·dy

= eiG·a1 eik1·dy , (83b)

eiG·dx−i(k2+k3 )·dz = eiG·(dx−dz )+ik1·dz

= e−iG·a1 eik1·dz = eiG·a1 eik1·dz , (83c)

where in the last line we have used the fact that 2a1 is a vector
of the Bravais lattice so that e−2iG·a1 = 1. Finally, to simplify
the phases in the last line of Eq. (80), we use 1 = eiG·(a1−a2 ) =
e−iG·dx eiG·dy and hence eiG·dx = eiG·dy to write

ei(k2+k3 )·dx = eiG·dx e−ik1·dx , (84a)

ei(k2+k3 )·dy = eiG·dy e−ik1·dy

= eiG·dx e−ik1·dy , (84b)
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eiG·a1+i(k2+k3 )·dz = eiG·a1+i(G−k1 )·dz

= eiG·(a1+dz )e−ik1·dz

= eiG·(−a1+dz )e−ik1·dz

= eiG·dx e−ik1·dz . (84c)

Defining

Vk =
√

2S

2

(
Vxeik·dx + Vyeik·dy

)
=

√
2S

2

eiφsigns√
2 + s2

[
K − �s√

2
(eik·dx − eik·dy )

+ i
� − K√
2 + r2

(eik·dx + eik·dy )

]
, (85)

Uk =
√

2S

2
Vze

ik·dz

=
√

2S
eiφsgns√

2 + s2
√

2 + r2
(� − K )eik·dz , (86)

we finally obtain the cubic part of the boson Hamiltonian in
the zigzag state,

H3 =
√

4

N

∑
k1k2k3

∑
G

δk1+k2+k3,G

× {−[Vk1 d†
−k1

+ U ∗
−k1

b†
−k1

]
a†

−k2
ak3

+ eiG·dz
[
V ∗

k1
c†
−k1

+ U−k1 a†
−k1

]
b†

−k2
bk3

+ eiG·a1
[
V ∗

−k1
b†

−k1
+ Uk1 d†

−k1

]
c†
−k2

ck3

− eiG·dx
[
V−k1 a†

−k1
+ U ∗

k1
c†
−k1

]
d†

−k2
dk3 + H.c.

}
. (87)

Note that the Umklapp processes associated with the nonzero
vectors G of the reciprocal lattice involve nontrivial phase
factors. Below we shall calculate the magnon damping in
the special case � = K > 0 where r = 1 and s = −2. Then
Uk = 0, while Vk reduces to

Vk = −
√

6S

4
K (eik·dx − eik·dy ), (88)

where we have chosen the gauge φ = 0 for simplicity, so that
V−k = V ∗

k .

IV. MAGNON SPECTRUM IN THE ZIGZAG
STATE FOR � = K

To obtain the magnon spectrum, we should diagonalize the
quadratic part H2 of our boson Hamiltonian in Eq. (62). Due
to the anomalous terms involving the matrix Bk, this requires a
multiflavor generalization of the Bogoliubov transformation.
A general algorithm for constructing such a transformation
has been described by Colpa [96] and by Blaizot and Ripka
[97], see also more recent discussions in Refs. [98,99]. We
provide a careful review of this algorithm in Appendix A
where we also point out some mathematical subtleties [98].

For a general boson Hamiltonian of the type (62) with
f different boson flavors, Colpa’s algorithm transforms the
Hamiltonian to a diagonal 2 f × 2 f matrix containing magnon
energies ωkn as well as negative magnon energies −ωkn, where

n = 1, . . . , f labels the magnon bands. In the zigzag phase of
the Kitaev-Heisenberg-� model, the number of boson flavors
is f = 4, so one has to deal with 8 × 8 matrices to calculate
the magnon spectrum. Although this can be done numerically,
the size of the matrices is too large for performing analytic
calculations beyond the standard linear SWT in a reasonable
amount of time. In this section, we will show that we can avoid
this doubling of the flavor dimension by using the Hermitian-
field parametrization of the SWT developed in Refs. [81–85].
Another advantage of this approach is that it allows us to iden-
tify special regimes in the parameter space of the model where
the calculation of the magnon spectrum simplifies. In fact, we
will demonstrate below that for � = K > 0 and arbitrary J
and J3, magnon spectrum can be obtained fully analytically,
which will enable us to calculate magnon damping and the
dynamical structure factor for � = K in Sec. V.

A. Hermitian field parametrization of spin fluctuations

At this point, it is advantageous to work with the Euclidean
action associated with the quadratic boson-Hamiltonian (62),

S2 = β
∑

K

∑
mn

{(
Amn

k − iωδmn
)
āKmaKn

+ 1

2

[
Bmn

k āKmā−Kn + (
Bnm

k

)∗
a−KmaKn

]}
, (89)

where aKm are now complex variables labeled by the
momentum-energy index K = (k, iω) and the sublattice index
m. Here, iω is the bosonic Matsubara frequency, β is inverse
temperature, and

∑
K = ∑

k

∑
ω. For each complex field aKm,

we now introduce a pair of real fields XKm and PKm by setting

aKm = 1√
2

[XKm + iPKm], (90a)

ā−Km = 1√
2

[XKm − iPKm], (90b)

where XKm and PKm are the Fourier components of real fields
that satisfy

X−Km = X ∗
Km, P−Km = P∗

Km. (91)

In terms of these new variables, the quadratic part of our spin-
wave action can be written as

S2 = β

2

∑
K

∑
mn

[
T mn

k P−KmPKn + V mn
k X−KmXKn

+ 2
(
ωδmn + W mn

k

)
X−KmPKn

]
, (92)

where T mn
k , V mn

k , and W mn
k are the matrix elements of the f ×

f matrices Tk, Vk, and Wk defined by

Tk = AR
k − BR

k , (93a)

Vk = AR
k + BR

k , (93b)

Wk = −AI
k + BI

k, (93c)

where we introduced

AR
k = Ak + A∗

−k

2
= Ak + AT

−k

2
, (94a)

AI
k = Ak − A∗

−k

2i
= Ak − AT

−k

2i
, (94b)
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BR
k = Bk + B∗

−k

2
= Bk + B†

k

2
, (94c)

BI
k = Bk − B∗

−k

2i
= Bk − B†

k

2i
. (94d)

Our notation is motivated by the theory of coupled oscil-
lators in classical mechanics [102], in which the analog of
Tk is associated with the kinetic energy of the system and
the analog of Vk describes potential energy in the harmonic
approximation. Note that the matrix Wk can alternatively be
written as

Wk = Wk,+ + Wk,−, (95)

with

Wk,+ = Wk + WT
−k

2
= BI

k, (96a)

Wk,− = Wk − WT
−k

2
= −AI

k. (96b)

In these notations, our action (92) can be written in a more
symmetric form

S2 = β

2

∑
K

∑
mn

[
T mn

k P−KmPKn + V mn
k X−KmXKn

+ (
ωδmn + W mn

k,−
)
(X−KmPKn − P−KmXKn)

+W mn
k,+(X−KmPKn + P−KmXKn)

]
. (97)

The symmetry of the fields under the relabeling K → −K and
m ↔ n implies

T mn
k = T nm

−k or Tk = TT
−k, (98a)

V mn
k = V nm

−k or Vk = VT
−k, (98b)

W mn
k,± = ±W nm

−k,± or Wk,± = ±WT
−k,±. (98c)

In addition, the hermiticity of the underlying Hamiltonian
implies

T mn
k = (

T nm
k

)∗
or Tk = T†

k, (99a)

V mn
k = (

V nm
k

)∗
or Vk = V†

k, (99b)

W mn
k,± = ±(W nm

k,±
)∗

or Wk,± = ±W†
k,±. (99c)

Hence, the matrices Tk, Vk, and Wk,+ are Hermitian, while
Wk,− is antiHermitian. Combining the relations given above,
we see that all matrix elements satisfy

T mn
k = (

T mn
−k

)∗
or Tk = T∗

−k, (100a)

V mn
k = (

V mn
−k

)∗
or Vk = V∗

−k, (100b)

W mn
k,± = (

W mn
−k,±

)∗
or Wk,± = W∗

−k,±. (100c)

In the compact matrix notation, our quadratic spin-wave
action (97) can be written as

S2[X, P] = β

2

∑
K

[X †
K VkX K + P†

K TkPK

+ X †
K (Wk + ω)PK + P†

K (W†
k − ω)X K ]

= β

2

∑
K

(
X T

−K , PT
−K

)( Vk Wk + ω

W†
k − ω Tk

)(
X K

PK

)
,

(101)

where we have defined the four-component column vectors

X K =

⎛⎜⎝XKa

XKb

XKc

XKd

⎞⎟⎠, PK =

⎛⎜⎝PKa

PKb

PKc

PKd

⎞⎟⎠. (102)

After the analytic continuation to real frequencies (ω =
−iiω → −iω), the spin-wave dispersions can be obtained
from the roots of the equation

det

(
Vk Wk − iω

W†
k + iω Tk

)
= 0. (103)

At first sight, it seems that one has to calculate the determinant
of the 2 f × 2 f -matrix in order obtain the f magnon bands,
as in Colpa’s algorithm [96]. However, we can reduce the
dimension of the matrices by performing Gaussian integration
over the P field. The resulting effective action for the X
field is

S2[X ] = β

2

∑
K

∑
mn

X m
−K

[
G−1

0 (K )
]mn

X n
K , (104)

where the inverse Gaussian propagator of the X field is
given by

G−1
0 (k, iω) = Vk − (Wk + ω)T−1

k (W†
k − ω)

= Vk + (
ω − AI

k + BI
k

)
T−1

k

(
ω − AI

k − BI
k

)
.

(105)

The matrix in the right-hand side of Eq. (105) is the so-called
Schur complement of the block Vk in the matrix(

Vk Wk + ω

W†
k − ω Tk

)
. (106)

After the analytic continuation to real frequencies (iω → ω),
the inverse propagator matrix in Eq. (105) becomes

G−1
0 (k, ω) = Vk − (ω + iWk)T−1

k (ω − iW†
k)

= Vk − (Wk − iω)T−1
k (W†

k + iω)

= Vk − (
ω − iAI

k + iBI
k

)
T−1

k

(
ω − iAI

k − iBI
k

)
.

(107)

Note that Eq. (107) can also be obtained directly from
Eq. (103) using general formula for the determinant of a block
matrix,

det

(
A B
C D

)
= det(A − BD−1C)detD. (108)

Given that the matrix AI
k is antiHermitian, while Vk, Tk and

BI
k are Hermitian, it is obvious that for the real frequencies

the inverse propagator matrix G−1
0 (k, ω) is Hermitian, so that

it can be diagonalized by means of a unitary transformation.
Then the spin-wave dispersions can be obtained from the roots
of the equation

detG−1
0 (k, ω) = 0. (109)

Obviously, the calculation of the magnon spectrum simplifies
if the matrix Wk vanishes. In this case, the inverse propagator
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of the X field is simply

G−1
0 (k, iω) = Vk + ω2T−1

k , (110)

so that Eq. (109) reduces to

det
(
Vk − ω2T−1

k

) = 0, (111)

or equivalently

det(TkVk − ω2) = 0. (112)

In summary, by expressing each Holstein-Primakoff boson
in terms of two Hermitian operators, we can reduce the
calculation of the energy bands of a general f -flavor boson
Hamiltonian of the type (62) to the calculation of a deter-
minant of a Hermitian f × f matrix. This is in contrast with
the conventional algorithm [96–99] reviewed in Appendix A,
within which one has to solve a generalized eigenvalue
equation involving a non-Hermitian 2 f × 2 f matrix Mdyn

k ,
see Eq. (A43). Another advantage of the Hermitian field
parametrization is that it allows one to identify special regimes
in which calculations of the magnon spectrum simplifies,
significantly easier than in the conventional approach. In fact,
the next section shows that within the Hermitian field ap-
proach, we can identify previously unnoticed special surfaces
in the parameter space of the Kitaev-Heisenberg-� model, on
which the magnon spectrum and eigenstates of the Hamil-
tonian can be calculated analytically. This enables us to go
beyond the linear SWT and calculate magnon damping in this
regime.

B. Analytically solvable magnon spectrum in the zigzag state

At this point, it is convenient to work with the gauge φ = 0
in the definition (33) of the local transverse basis. Then the
matrix element βk in Eq. (69) has the symmetry βk = β∗

−k so
that the matrix Ak defined in Eq. (72) can be written as

Ak =

⎛⎜⎜⎜⎜⎝
λ βk 0 αk

β∗
k λ α∗

k 0

0 αk λ βk

α∗
k 0 β∗

k λ

⎞⎟⎟⎟⎟⎠. (113)

Keeping in mind that αk = α∗
−k, the antisymmetric part AI

k
of the matrix Ak vanishes in the zigzag state, so that Wk =
BI

k. On the other hand, for φ = 0, the function νk defined in
Eq. (71) has a part νk2 violating the symmetry νk = ν∗

−k. To
isolate this part, we write

νk = νk1 + iνk2, (114)

with

νk1 = νk + ν∗
−k

2

= S

[
K

4

r2

2 + r2
− �

r

2 + r2

]
(eik·dx + eik·dy ) (115)

and

νk2 = νk − ν∗
−k

2i

= S
K − �r

2

√
2

2 + r2
(eik·dx − eik·dy ). (116)

The two parts of the matrix Bk = BR
k + iBI

k are, therefore,

BR
k = Bk + B∗

−k

2
=

⎛⎜⎜⎜⎝
0 μk 0 νk1

μ∗
k 0 ν∗

k1 0

0 νk1 0 μk

ν∗
k1 0 μ∗

k 0

⎞⎟⎟⎟⎠ (117)

and

BI
k = Bk − B∗

−k

2i
=

⎛⎜⎜⎜⎝
0 0 0 νk2

0 0 −ν∗
k2 0

0 −νk2 0 0

ν∗
k2 0 0 0

⎞⎟⎟⎟⎠ = Wk.

(118)

Then the matrices Tk and Vk are given by

Tk = Ak − BR
k

=

⎛⎜⎜⎜⎝
λ βk − μk 0 αk − νk1

β∗
k − μ∗

k λ α∗
k − ν∗

k1 0

0 αk − νk1 λ βk − μk

α∗
k − ν∗

k1 0 β∗
k − μ∗

k λ

⎞⎟⎟⎟⎠
(119)

and

Vk = Ak + BR
k

=

⎛⎜⎜⎜⎝
λ βk + μk 0 αk + νk1

β∗
k + μ∗

k λ α∗
k + ν∗

k1 0

0 αk + νk1 λ βk + μk

α∗
k + ν∗

k1 0 β∗
k + μ∗

k λ

⎞⎟⎟⎟⎠.

(120)

Now, the crucial point is that for K = �r, the matrix element
νk2 and hence the matrix Wk vanishes for all momenta. In
these case, νk = ν∗

−k and the spin-wave dispersions can be ob-
tained from Eq. (112). The explicit solution of this biquadratic
equation gives the squares of the magnon dispersions,

(ω+
k,±)2 = λ2 + |αk + βk|2 − |μk + νk|2 ±

√
2|αk + βk|2(2λ2 − |μk + νk|2) + 2Re[(αk + βk)2(μ∗

k + ν∗
k )2], (121)

(ω−
k,±)2 = λ2 + |αk − βk|2 − |μk − νk|2 ±

√
2|αk − βk|2(2λ2 − |μk − νk|2) + 2Re[(αk − βk)2(μ∗

k − ν∗
k )2]. (122)
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FIG. 4. Dispersions of the four magnon branches in the Kitaev-
Heisenberg-� model given by Eqs. (121) and (122) for the model
parameters S = 1/2, J = −12 meV, K = � = 7 meV, and J3 =
3 meV. We show a cut through k = 0 along e1 perpendicular to the
zigzag stripes, see Fig. 3. The thicker dashed lines mark the boundary
of the first magnetic Brillouin zone. Although the individual func-
tions ω+

k,± and ω−
k,± are not periodic within the first Brillouin zone,

the full magnon spectrum is.

With r given by Eq. (21), the condition K = �r, under which
the spin-wave spectrum can be calculated analytically, can be
written as

�

K
= 1

r
= 2K − 3� + √

4K2 − 4K� + 9�2

2K + 3� − √
4K2 − 4K� + 9�2

. (123)

For negative K , this equation has only one trivial solution, �=
0, but for K >0 two nontrivial solutions exist,

� = K and � = − 3
2 K. (124)

In Fig. 4, we plot the magnon dispersions (121) and (122)
for a representative set of parameters satisfying � = K >

0. In the projected representations of the three-dimensional
parameter space of the Kitaev-Heisenberg-� model in Fig. 2,
the parameters satisfying � = K and � = −3K/2 with K > 0
are represented by the blue and orange lines, respectively.
However, one should keep in mind that we have assumed
that the zigzag state is the classical ground state. Therefore,
the only meaningful parts of these lines are the ones which
overlap with the zigzag phase. As one can see in Fig. 2,
for the � = −3K/2 line this condition is not met anywhere,
while for the � = K > 0 line there is a single point that
touches the zigzag phase, which corresponds to � = K = −J .
Fortunately, adding the experimentally relevant third-nearest-
neighbor coupling J3 > 0 to our model, the stability region of
the zigzag phase is extended, while this extra term does not
invalidate our analytic calculation of the magnon spectrum. In
Fig. 5, we show the phase diagram of the Kitaev-Heisenberg-
� model for representative values of J3/

√
�2 + K2 + J2 in the

same projection as in Fig. 2(b) to demonstrate the expansion
of the zigzag region for J3 > 0.

The underlying physical reason for the simplifications in
the calculation of the magnon spectrum for � = K is because
in this case the magnetization lies in the plane of the honey-
comb lattice and is aligned with the direction e2 of the zigzag
pattern, as was pointed out in Sec. III B, see Eq. (29). The
fact that in this case the magnon spectrum can be obtained by
solving a biquadratic equation suggests that for � = K it must

FIG. 5. Phase diagram of the Kitaev-Heisenberg-� model for
representative values of J̃3 = J3/

√
�2 + K2 + J2. Note that the

zigzag phase is stabilized for J3 > 0. The blue line corresponds to
� = K > 0, which has a finite overlap with the zigzag phase for
J3 > 0.

be possible to set up the spin-wave expansion such that the
magnon spectrum can be obtained from two magnon bands
defined in the full Brillouin zone of the honeycomb lattice.
In Appendix B, we show that this is indeed the case, because
one can simplify the spin Hamiltonian to the two-sublattice
structure already in real space. Then, one needs only two
bosonic flavors in order to block-diagonalize the quadratic
magnon Hamiltonian in momentum space. In the following,
we do not follow this path and continue with the original
four-sublattice formulation for the sake of generality.

V. MAGNON DAMPING IN THE ZIGZAG STATE FOR
� = K > 0

In this section, we will present a fully microscopic calcu-
lation of the magnon damping of the Kitaev-Heisenberg-�
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model with additional next-nearest-neighbor exchange J3 on
the � = K > 0 line. Note that in Ref. [55], matrix elements
that determine magnon damping have not been calculated
microscopically, but have been estimated on the basis of
reasonable analogies with similar models. Here we show that
for � = K > 0, we can perform such calculations explicitly
and in a fully microscopic fashion because in this case the
magnon spectrum and all relevant matrix elements can be
obtained analytically.

A. Strategy

Let us briefly summarize our strategy. The first step is to
explicitly construct the multiflavor Bogoliubov transforma-
tion that diagonalizes the quadratic magnon Hamiltonian. In
principle, this can be done numerically using the algorithm
developed by Colpa [96], see also Refs. [97–99]. Fortunately,
for � = K > 0, we can construct the Bogoliubov transforma-
tion analytically, which considerably simplifies the numeri-
cal effort for the calculation of magnon damping. Here we
present a new algorithm to calculate the relevant four-flavor
Bogoliubov transformation involving only Hermitian 4 × 4
matrices. Then, we express the cubic part of the Hamiltonian
given in Eq. (87) in terms of the Bogoliubov operators, thus
obtaining decay vertices explicitly, and finally calculate the
damping of magnons using perturbation theory. In the earlier
work on the generalized Kitaev-Heisenberg model by Winter
et al. [55], the magnon damping was calculated by approx-
imating momentum-dependent vertices in the cubic part of
the Hamiltonian by a single momentum-independent constant.
For � = K > 0, this approximation can be eliminated because
explicit analytic expressions for the magnon dispersions and
all momentum dependent interaction vertices are available.
We compare the results of the two methods at the end of
the section for a representative set of parameters. We also
calculate the transverse components of the magnetic structure
factor and the neutron scattering intensities to demonstrate the
effect of the magnon lifetime on them.

B. Construction of the multiflavor Bogoliubov transformation

To diagonalize the quadratic part S2 of the magnon action
defined in Eq. (89), we first express this action in terms
of the Hermitian fields defined in Eq. (90), then decouple
the momentum modes by means of a series of canonical
transformations, and finally transform back to new complex
fields which completely diagonalize the action. To carry out
this program it is convenient to use block matrix notations and
write the quadratic magnon action S2 defined in Eq. (89) as

S2 = β

2

∑
K

(
aK

ā−K

)†(Ak − iω Bk

B†
k AT

−k + iω

)(
aK

ā−K

)
, (125)

where the four-component vector

aK =

⎛⎜⎝aK

bK

cK

dK

⎞⎟⎠ (126)

contains the four flavors of the Holstein-Primakoff magnons
introduced in Eq. (58).

1. Parametrization in terms of Hermitian fields

To begin, we express each complex field in terms of two
real fields as in Eq. (90). For our four-flavor theory, the
transformation can be written in a matrix form as(

aK

ā−K

)
= N

(
X K

PK

)
. (127)

Here we have defined the 8 × 8 matrix

N = 1√
2

(
1 i1
1 −i1

)
, (128)

where 1 is the 4 × 4 identity matrix. Then the action S2 in
Eq. (125) can be written as

S2 = β

2

∑
K

(
X T

−K , PT
−K

)(Vk ω

−ω Tk

)(
X K

PK

)
, (129)

with

Vk = Ak + Bk, (130a)

Tk = Ak − Bk. (130b)

Here we have used that for � = K > 0, the matrix Wk that
encodes the imaginary parts of the matrices Ak and Bk and is
defined in Eq. (93c) vanishes identically. This is the key for
the following diagonalization as it simplifies the calculation
significantly. Note also that the 4 × 4 matrices Vk and Tk are
Hermitian.

2. Transformation to normal modes

We now follow the theories of coupled oscillators [102]
and phonons [103] and perform a series of canonical trans-
formations to decouple degrees of freedom with different
momenta. As a first step, we define new fields such that
the “kinetic energy matrix” Tk is transformed to the identity
matrix. Since Tk is Hermitian, we can construct a Hermitian
matrix T

1/2

k with the property (T
1/2

k )2 = Tk. Therefore we
diagonalize Tk via a unitary transformation,

U†
kTkUk = Dk diagonal, (131)

and define the square root D
1/2

k of Dk in terms of the square
roots of the diagonal elements of Dk such that (D

1/2

k )2 = Dk.
The matrix T

1/2

k is then defined by

T
1/2

k = UkD
1/2

k U†
k. (132)

Note that the inverse of T
1/2

k is given by

T
−1/2

k ≡ (
T

1/2

k

)−1 = UkD
−1/2

k U†
k, (133)

An explicit expression for T
1/2

k in our four-flavor case is given
in Eq. (C2) of Appendix C. With the canonical transformation(

X K

PK

)
=
(

T
1/2

k 0
0 T−1/2

k

)(
X̃ K

P̃K

)
, (134)

the “kinetic energy matrix” in the action (129) is transformed
to the identity matrix,

S2 = β

2

∑
K

(
X̃

T
−K , P̃

T
−K

)( Ṽk ω

−ω 1

)(
X̃ K

P̃K

)
, (135)
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where the transformed “potential energy matrix” is

Ṽk = T
1/2

k VkT
1/2

k . (136)

By construction, Ṽk is Hermitian, so that it can be diagonal-
ized by means of another unitary matrix Sk

SkṼkS†
k = �2

k diagonal, (137)

where the elements of the diagonal matrix �k are the magnon
energies, see Eq. (C8) of Appendix C. An explicit expression
for Sk for the discussed case is given in Eq. (C6). With the
canonical transformation(

X̃ K

P̃K

)
=
(

Sk�
1/2

k 0
0 Sk�

−1/2

k

)(
X ′

K
P′

K

)
, (138)

our quadratic magnon action (135) assumes the form

S2 = β

2

∑
K

(
X ′T

−K , P′T
−K

)(�k ω

−ω �k

)(
X ′

K
P′

K

)
. (139)

As a result, the fluctuations with different momenta are now
decoupled.

3. Complete diagonalization via complex fields

Finally, we use the inverse transformation of Eq. (127) to
introduce a new four-component complex field bK via(

X ′
K

P′
K

)
= N−1

(
bK

b̄−K

)
= 1√

2

(
1 1

−i1 i1

)(
bK

b̄−K

)
. (140)

With this transformation, our quadratic magnon action is
completely diagonalized

S2 = β

2

∑
K

(
bK

b̄−K

)†(
�k − iω 0

0 �k + iω

)(
bK

b̄−K

)
. (141)

The described chain of the canonical transformations defines
the multiflavor Bogoliubov transformation and can be ex-
pressed in terms of a single block matrix Tk as,(

aK

ā−K

)
= Tk

(
bK

b̄−K

)
, (142)

where

Tk = N

(
T

1/2

k Sk �
−1/2

k 0
0 T−1/2

k Sk �
1/2

k

)
N−1

=
(

Qk Rk

Rk Qk

)
, (143)

with the 4 × 4 matrices Qk and Rk are given by

Qk = 1
2

[
T

1/2

k Sk �
−1/2

k + T−1/2

k Sk �
1/2

k

]
, (144)

Rk = 1
2

[
T

1/2

k Sk �
−1/2

k − T−1/2

k Sk �
1/2

k

]
. (145)

Note that in the case considered here the matrices Qk and Rk

satisfy Qk = Q∗
−k and Rk = R∗

−k, so that the parametrization
(143) agrees with the general structure of the transformation
matrix Tk of a multiflavor Bogoliubov transformation given
Eq. (A25) of Appendix A. The explicit expressions for the
4 × 4 matrices Lk = T

1/2

k Sk and Yk = T−1/2

k Sk are given
in Eqs. (C9) and (C10) of Appendix C. Moreover, in Ap-
pendix B, we use the procedure described above to calculate

magnon spectrum of the Kitaev-Heisenberg-� model for � =
K > 0 in an alternative two-sublattice approach where T

1/2

k
and Sk are only 2 × 2 matrices.

C. Transformation of the cubic interaction

For the calculation of magnon damping, we have to express
the Euclidean action associated with the cubic Hamiltonian
H3 given in Eq. (87) in terms of the components of the Bogoli-
ubov fields bK and b̄K , which diagonalize the quadratic part of
the action. For � = K > 0, the Euclidean action associated
with H3 in terms of the original Holstein-Primakoff fields is
given by

S3 = β

√
4

N

∑
K1K2K3

∑
G

δk1+k2+k3,Gδω1+ω2+ω3,0{−Vk1 [d̄−K1 ā−K2 aK3 + dK1 aK2 ā−K3 ]

+ eiG·dzV ∗
k1

[c̄−K1 b̄−K2 bK3 + cK1 bK2 b̄−K3 ]

+ eiG·a1Vk1 [b̄−K1 c̄−K2 cK3 + bK1 cK2 c̄−K3 ]

− eiG·dxV ∗
k1

[ā−K1 d̄−K2 dK3 + aK1 dK2 d̄−K3 ]
}
. (146)

Defining the eight-component field

(φμ
K ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1
K

φ2
K

φ3
K

φ4
K

φ5
K

φ6
K

φ7
K

φ8
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aK

bK

cK

dK

ā−K

b̄−K

c̄−K

d̄−K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (147)

where the index μ ∈ {1, 2, 3, 4, 5, 6, 7, 8} labels the eight
different field types, we can write the cubic part of the action
in tensor notation

S3 = β

√
4

N

∑
K1K2K3

∑
G

δk1+k2+k3,Gδω1+ω2+ω3,0

× 1

3!

∑
μνλ

�μνλ(k1, k2, k3)φμ
K1

φν
K2

φλ
K3

. (148)

The vertex �μνλ(k1, k2, k3) is fully symmetric with respect to
the exchange of any of its three index pairs. In Eqs. (C13)–
(C16) of Appendix C, we list the 48 nonzero index combina-
tions. Next, we express S3 in terms of the Bogoliubov fields
bK and b̄−K defined via the transformation (142), which we
write as

φ
μ
K =

∑
μ′

Tμμ′
k ψ

μ′
K , (149)

where the 8 × 8 transformation matrix Tk is defined in
Eq. (143) and (

ψ
μ′
K

) =
(

bK

b̄−K

)
(150)

is an eight-component field that contains Bogoliubov bosons
bK and their conjugates b̄−K . Then, the cubic part of the action
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assumes the form

S3 = β

√
4

N

∑
K1K2K3

∑
G

δk1+k2+k3,Gδω1+ω2+ω3,0

× 1

3!

∑
μνλ

�̃μνλ(k1, k2, k3)ψμ
K1

ψν
K2

ψλ
K3

, (151)

with

�̃μνλ(k1, k2, k3) =
∑
μ′ν ′λ′

�μ′ν ′λ′
(k1, k2, k3)Tμ′μ

k1
T ν ′ν

k2
T λ′λ

k3
.

(152)

The explicit analytic expressions for the elements of the
transformed tensor �̃μνλ(k1, k2, k3) are rather lengthy, but can
be easily implemented in the symbolic manipulation software
MATHEMATICA.

D. Magnon damping in Born approximation

To the leading order in the expansion in powers of 1/S, the
magnon damping is determined by the magnon self-energies
that involve squares of the cubic vertices,

�n(K ) = �(a)
n (K ) + �(b)

n (K ) + �(c)
n (K ), (153)

where the index n = 1, 2, 3, 4 and the indices n′ and m below
label the four magnon bands. The three contributions (a), (b),
and (c) in (153) can be represented by the following Feynman
diagrams:

�(a)
n (K ) = − 2

2β
(3!)2 , (154a)

�(b)
n (K ) = − 1

2β
(3!)2 , (154b)

�(c)
n (K ) = − 1

2β
(3!)2 , (154c)

where arrows denote magnon propagators and dots represent
cubic vertices. The combinatorial factor of (3!)2 is due to
the fact that we have unified all cubic vertices as symmetric
tensors of dimension 8 instead of splitting them into different
decay and absorption channels.

Let us now discuss the explicit evaluation of the first
contribution �(a)

n (K ) to the self-energy,

�(a)
n (K ) = − 2

2β
(3!)2

= − 4β

N (3!)2

∑
K ′

∑
n′m

(3!)2 1

β
G0

n′ (K ′)
1

β
G0

m(G1 − K − K ′)

× |�̃nn′m+4(k, k′, G1 − k − k′)|2

= − 4

N

∑
k′

∑
n′m

|�̃nn′m+4(k, k′, G1 − k − k′)|2

× 1

β

∑
ω′

1

ωk′n′ − iω′
1

ωG1−k−k′,m − iω − iω′ , (155)

where G0
n(K ) = [iω − ωkn]−1 is a noninteracting propagator

of magnons with the band index n and the reciprocal lattice

vector G1 = G1(k + k′) has to be chosen such that k + k′ −
G1 lies in the first Brillouin zone. We also defined G1 =
(0, G1). The superscript m + 4 can have values from 5 to 8
corresponding to the last four possible values of the index λ in
�̃μνλ(k1, k2, k3). The sum over the Matsubara frequencies in
the last line of Eq. (155) can be performed analytically using
the identity

F (a)(E1, E2, iω) ≡ 1

β

∑
ω′

1

E1 − iω′
1

E2 − iω − iω′

= n(E1) − n(E2)

E1 − E2 + iω
, (156)

where

n(E ) = 1

eβE − 1
(157)

is the Bose function. After analytic continuation to real fre-
quencies iω → ω + i0+ we can extract the imaginary part of
F (a)(E1, E2, ω + i0+),

Im F (a)(E1, E2, ω + i0+)

= −π [n(E1) − n(E2)]δ(ω + E1 − E2). (158)

From this, we obtain the imaginary part of the self-energy
for the external frequencies infinitesimally above the real-
frequency axis,

Im �(a)
n (k, ω + i0+)

= π
4

N

∑
k′

∑
n′m

|�̃nn′m+4(k, k′, G1 − k − k′)|2

× [n(ωk′n′ ) − n(ωG1−k−k′m)]

× δ(ω + ωk′n′ − ωG1−k−k′m). (159)

The second contribution to the self-energy can be evaluated
analogously with the result

Im �(b)
n (k, ω + i0+)

= −π

2

4

N

∑
k′

∑
n′m

|�̃n+4 n′m(−k, k′, G2 + k − k′)|2

× [1 + n(ωk′n′ ) + n(ωG2+k−k′m)]

× δ(ω − ωk′n′ − ωG2+k−k′m), (160)

where the reciprocal lattice vector G2 = G2(k′ − k) should be
chosen such that k′ − k − G2 is in the first Brillouin zone.
Finally, the third contribution is

Im �(c)
n (k, ω + i0+)

= π

2

4

N

∑
k′

∑
n′m

|�̃nn′m(k, k′, G1 − k − k′)|2

× [1 + n(ωk′n′ ) + n(ωG1−k−k′m)]

× δ(ω + ωk′n′ + ωG1−k−k′m). (161)

Then, the magnon damping in band n is given by

γkn = −Im �n(k, ωkn + i0+). (162)

The Bose functions appearing in Eqs. (159)–(161) vanish at
T = 0. Moreover, the argument of the δ function in (161)
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FIG. 6. The momentum-space path used in our numerical evalua-
tion of the magnon damping. The dashed black hexagon indicates the
Brillouin zone of the honeycomb lattice. The dashed green rectangle
indicates the first magnetic Brillouin zone of the zigzag state, see
Fig. 3. The component k1 is perpendicular to the zigzag stripes.

for Im �(c)
n (k, ω + i0+) is always finite so this term does not

contribute to the magnon damping. Therefore, at T = 0, we
obtain for the magnon damping in the lowest-order (Born)
approximation

γkn = −Im �(b)
n (k, ωkn + i0+)

= π

2

4

N

∑
k′

∑
n′m

|�̃n+4 n′m(−k, k′, G2 + k − k′)|2

× δ(ωkn − ωk′n′ − ωG2+k−k′m). (163)

E. Numerical evaluation of the damping

In the thermodynamic limit (N → ∞), the momentum
sums can be converted to the integrals over the first Brillouin
zone. Furthermore, one can omit the reciprocal lattice vector
G2 in Eq. (163) because S2 in Eq. (125) and S3 in Eq. (148)
are invariant if one shifts one of the summation momenta by
a reciprocal lattice vector. Equation (163) can then be written
as

γkn = π

2

∫
BZ

d2k′

VBZ

∑
n′m

|�̃n+4 n′m(−k, k′, k − k′)|2

× δ(ωkn − ωk′n′ − ωk−k′m), (164)

where VBZ is the area of the first magnetic Brillouin zone
marked by the dashed green line in Fig. 6. We evaluate this
expression for a representative momentum k cut along the
path shown in Fig. 6. Note that for the calculations of the
neutron-scattering structure factor in the next section, we
also choose a finite out-of-plane momentum component k3 =√

3π/d .
For the numerical calculations, we use a representative set

of the model parameters

S = 1
2 , (165a)

J = −12 meV, (165b)

K = � = 7 meV, (165c)

J3 = 3 meV. (165d)

Zigzag

Ferro

Antiferro

=+R

K=+RK=-R

=-R

J=+R

FIG. 7. Phase diagram of the Kitaev-Heisenberg-� model for
J2 + K2 + �2 = 242 meV2 with additional third-nearest-neighbor
Heisenberg exchange J3 = 3 meV. We use the same parametrization
and projection as in Fig. 2(c). We highlight the line � = K > 0
and the point (165) in the parameter space, for which the magnon
damping is calculated.

This set of parameters is shown in Fig. 7 as a blue dot
along the K = � line. The integration procedure for the two-
dimensional integral over the Brillouin zone was implemented
using the standard routines in MATHEMATICA with the δ func-
tion in Eq. (164) represented as a Lorentzian of width w =
3
4 |J| × 10−3, which is much smaller than all the characteristic
features produced by the calculation.

The resulting magnon damping in Born approximation
is plotted in Fig. 8. The overall magnon decay rates are
rather significant. The most striking features are the peaks

X Γ Y Γ M Γ
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ω
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n
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5
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k

n
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1.0

1.5
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k

n
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k
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ω+
k,+ ω−

k,+ ω−
k,− ω+

k,−

FIG. 8. Magnon damping in the Born approximation (164). The
panels show the magnon energies ωkn (top), the magnon damping γkn

(middle), and the relative magnon damping γkn/ωkn (bottom) for all
four magnon branches. The model parameters are given in Eqs. (165)
and the momentum path is shown in Fig. 6. The color coding of the
damping is the same as for the magnon energies.
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between the X and � points and between the Y and �′ points
that occur in a proximity of the magnon band crossings.
These features are due to the van Hove singularities in the
density of two-magnon states that are also enhanced by the
decay matrix elements, which facilitate transitions between
the nearby branches. It is also interesting to note that the
lower magnon bands experience as much of a damping as the
upper ones, despite the naive expectation for them having less
kinematic phase space for decays. Such van Hove singularities
are expected [73] and need to be regularized, as we do in the
next section.

F. Beyond Born approximation: self-consistent imaginary
Dyson equation

Given the well-pronounced van Hove singularities and
that the Born-approximation damping shown in Fig. 8 is
comparable to the magnon energies in large regions of the
Brillouin zone, the validity of the Born approximation can be
questioned. A simple way to go beyond Born approximation
and regularize singularities is to self-consistently take into ac-
count the imaginary part of the self-energy of the initial-state
magnon, the damping of which we calculate. This procedure
amounts to solving the Dyson’s equation for the self-energy
and retaining only its imaginary part (hence the abbreviation
iDE) in a self-consistency loop [57,68,71],

γkn = −Im �n(k, ωkn + iγkn). (166)

In practice, this can be achieved by iterating the recursion
relation

γ
(i)

kn = π

2

∫
BZ

d2k′

VBZ

∑
n′m

|�̃n+4 n′m(−k, k′, k − k′)|2

× δ
(
ωkn + iγ (i−1)

kn − ωk′n′ − ωk−k′m
)
, (167)

until γ
(i)

kn converges. Here, the δ function with the complex
argument is a shorthand for a Lorentzian. For the given model
parameters, it took about 30 iterations for γ

(i)
kn to converge

at all points along the momentum path shown in Fig. 6. The
resulting self-consistent iDE results for damping are presented
in Fig. 9.

The van Hove singularities are regularized by the iDE
procedure. We note that for the range of momenta between
the � and Y points, i.e., for the momenta perpendicular to the
spin magnetization, the damping rate is comparatively small.
In the other parts of the momentum path, one finds that some
of the magnons are still significantly damped with the typical
damping rate ∼0.2 of the magnon energies. This implies that
the neutron scattering experiments will show well-defined
magnon branches in some regions of the momentum space
as well as broadened excitation continua in the others. These
are the characteristic features observed in α-RuCl3. We will
further elaborate on this discussion in Sec. VI where we
present our results for the dynamical structure factor and the
neutron scattering intensity.
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FIG. 9. Same as in Fig. 8 in the self-consistent iDE approxima-
tion (166).

G. Comparison with the constant matrix element
approximation

While the preceding discussion outlines a fully analytical
approach and demonstrates its power for the problem of
magnon damping, it is applicable only along the special �=K
line in the parameter space. A general set of parameters of
the same model would require numerical diagonalization and
manipulations with the transformation matrix from Eq. (142)
to obtain damping rate at the potentially prohibitive computa-
tional cost. Therefore, it would be useful to have a justifiable
approximate method that is less technically demanding, but is
able to produce magnon damping that is qualitatively correct
or at least give an overall reasonable estimate of the effect.

Such a method has been proposed in Ref. [55], which is
referred to as the “constant matrix element” approximation.
In this approximation, the momentum dependence of the
magnon interaction is accounted for in an effective way by
a coupling strength V (3)

eff and a phenomenological average
momentum dependence f as defined later in the text. Having
an explicit analytic solution presented in this work offers us an
opportunity to verify the overall validity and expose possible
shortcomings of the constant matrix element approximation
of Ref. [55] for the same Kitaev-Heisenberg-� model and for
the same set of parameters. Let us briefly describe the nature
of this approximation.

The first step is to find the three-magnon coupling strength.
The Holstein-Primakoff bosonization yields the three-boson
Hamiltonian H3 in Eq. (78). For the �=K line and in the
zigzag phase, the real-space three-magnon coupling for bonds
x, y, z are given by

∣∣V (3)
x

∣∣ = ∣∣V (3)
y

∣∣ =
√

6SK

4
,

∣∣V (3)
z

∣∣ = 0, (168)
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see also Eq. (88). Introducing the sum of these real-space
vertices over nearest bonds yields the overall scale

V (3)
eff = ∣∣V (3)

x

∣∣+ ∣∣V (3)
y

∣∣+ ∣∣V (3)
z

∣∣ =
√

6SK

2
, (169)

that can be used as a definition of the three-magnon coupling
strength. This definition is consistent with the one previously
used in Ref. [55].

Then, one can redefine the symmetrized three-magnon
vertex function �̃μνλ(k1, k2, k3) introduced in Sec. V C

�̃μνλ(k1, k2, k3) ≡ V (3)
eff �̃μνλ(k1, k2, k3), (170)

where the dimensionless vertices �̃μνλ(k1, k2, k3) include
all the necessary transformations and symmetrizations of
Eq. (152) and V (3)

eff is the three-magnon coupling strength
introduced in Eq. (169). Note that such a redefinition is
independent of whether the vertex is derivable analytically or
requires a numerical diagonalization of H2 via a generalized
Bogoliubov transformation (142), which is needed to trans-
form the Holstein-Primakoff three-magnon Hamiltonian (78)
to the cubic Hamiltonian for the magnon quasiparticles in the
form of Eq. (151). Substituting the parametrization (170) for
the interaction vertices into the lowest Born approximation
decay rate given in Eq. (163) we obtain

γkn =
∣∣V (3)

eff

∣∣2
2

4π

N

∑
k′

∑
n′m

δ(ωkn − ωk′n′ − ωk−k′m),

× |�̃n+4 n′m(−k, k′, k − k′)|2, (171)

with the three-magnon coupling explicitly factored out. Then,
it is tempting to relate the decay rate to the on-shell two-
magnon density of states (DoS)

Dkn = Dk(ωkn) = 4π

N

∑
k′

∑
n′m

δ(ωkn − ωk′n′ − ωk−k′m),

(172)

which quantifies the overlap of the single-magnon excitations
of the branch n with the two-magnon continuum along the
energies ω = ωkn and characterizes the kinematic phase space
for decays of the nth mode.

The main idea of the constant matrix element approach is
exactly that: to approximate the decay rate (171) as propor-
tional to the on-shell two-magnon DoS (172),

γkn ≈ f

2

∣∣V (3)
eff

∣∣2Dkn, (173)

where the constant f is used as a phenomenological param-
eter. This parameter can be thought of as a result of the
averaging of the dimensionless vertex,

f = 〈|�̃n+4 n′m(−k, k′, k − k′)|2〉, (174)

where brackets represent averaging over all momenta. This
approximation leads to a drastic simplification, because all
one now needs for the decay rate calculation are the magnon
energies ωkn from the harmonic theory and the three-magnon
coupling scale V (3)

eff , skipping the need for costly calculation
and manipulation of the eigenvectors and vertices altogether.

There are two justifications for the use of this approxi-
mation. First, the singularities in the Born decay rates are
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FIG. 10. Same as in Fig. 8 in the constant matrix element Born
approximation (166). The three-magnon coupling strength is V (3)

eff =
6.06 meV and the parameter f = 0.2. To be compared with Fig. 8.

always due to the corresponding van Hove singularities in the
two-magnon DoS [73], although their strength can be reduced
or magnified by the matrix element effect in the “full-vertex”
calculation of Eq. (171). This relation should already make
the results of Eq. (173) similar to that of Eq. (171). Second,
the self-consistent iDE approach of Eq. (167) involves an
effective averaging over the decay vertex, thus suggesting that
the constant matrix element approximation in combination
with the iDE should give a better agreement with the iDE
results of Eq. (167) obtained with the full vertex.

The iDE scheme, described in Sec. V F, as applied to the
constant matrix element approximation, is given by the self-
consistent equation

γkn = f

2

∣∣V (3)
eff

∣∣2Dk(ωkn + iγkn), (175)

where the δ function with the complex argument is a short-
hand for a Lorentzian as before.

The only remaining problem is the educated choice of
the phenomenological parameter f . Ref. [55] has considered
Kitaev-Heisenberg-�-J3 model for the choice of parameters
associated with the description of α-RuCl3 [6]. In that work,
the constant f has been estimated to be f ≈ 1/9 on the basis
of a comparison with the constant matrix element calculations
for the Born decay rates (173) in the honeycomb-lattice
XXZ model in external field, for which magnon decay rates
have been calculated fully microscopically in Ref. [69]. The
present work allows us to determine the f -parameter based on
the damping calculation directly for the Kitaev-Heisenberg-�
model, albeit in a different part of the phase diagram.

The results of the constant matrix element approach for
the Born and self-consistent iDE approximations are shown
in Figs. 10 and 11, respectively. We use the same set of
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FIG. 11. Same as in Fig. 10 in the constant matrix element iDE
approximation of Eq. (175). To be compared with Fig. 9.

parameters (165) as for the results in Figs. 8 and 9. For
S =1/2 and K =7 meV, the three-magnon coupling strength
in Eq. (169) is V (3)

eff =6.06 meV. Comparisons with the overall
values of the decay rates in Figs. 8 and 9 suggest an estimate
for the f -parameter near f ≈ 0.2, somewhat higher than
estimated in Ref. [55].

The results of the Born approximation constant matrix
element approach in Fig. 10 correctly reproduce some of
the qualitative features of the “full vertex” calculations in
Fig. 8. As expected, they include positions of the van Hove
singularities as well as the regions where magnon modes
are stable because decays are kinematically forbidden for
them, e. g., the region for the lower modes between � and
Y points. However, some other qualitative and quantitative
features are not properly reproduced. For instance, in the
full-vertex results of Fig. 8, there is a clear enhancement
of the singularities due to the matrix element effect in the
proximity of the magnon band crossings along the X -Y and
�-Y directions. Another inconsistency is in the lack of a
suppression of decays near � and Y points for the upper
modes that is missing in Fig. 10 but is obvious in Fig. 8. It
clearly stems from the symmetries of interaction vertex that
are missing in the constant matrix element approximation.
Lastly, the overall decay rate of the upper modes is higher
in the constant matrix element approximation than it is in a
full-vertex calculations.

Some of these differences are mitigated within the self-
consistent iDE approximation, with the overall agreement of
Figs. 11 and 9 becoming more quantitative, in accord with the
expectations of Ref. [55]. The overall scale of the damping is
similar to the full-vertex result, although the constant matrix
element approach continues to overestimate the damping of
the upper modes and underestimates the damping of the lower
modes. Similarly to the Born approximation, there is also a

lack of decay suppression near the high-symmetry � and Y
points.

Last but not the least, we also note that the phenomeno-
logical f parameter in the present analysis is larger than in
Ref. [55], f ≈1/5 versus f ≈1/9. Therefore the calculations
of Ref. [55] have likely provided a lower bound on the
damping rates of magnons in α-RuCl3, while the actual effect
of broadening for the model parameters of that work may have
been even more significant.

VI. DYNAMICAL STRUCTURE FACTOR AND NEUTRON
SCATTERING INTENSITY

Having obtained the magnon energies and the dampings,
we can calculate the dynamical structure factor Sαβ (k, ω),
which determines the experimentally measured neutron scat-
tering intensity,

I (k, ω) = F 2(k)
∑
αβ

(δαβ − kαkβ/k2)Sαβ (k, ω), (176)

where F (k) is the material-dependent form factor and the
dynamical structure factor is defined as the Fourier transform
of the two-spin correlation function,

Sαβ (k, ω) =
∫ ∞

−∞

dt

2π

1

N

∑
i j

〈
Sα

i (t )Sβ
j (0)

〉
e−ik·(Ri−R j )+iωt

=
∫

dt

2π

〈
Sα

−k(t )Sβ

k (0)
〉
eiωt . (177)

Here we have introduced the Fourier components of the spin
operators via

Sk(t ) = 1√
N

∑
i

Si(t )e−ik·Ri . (178)

The superscripts α and β label the three Cartesian compo-
nents of the spins in the honeycomb basis {e1, e2, e3}, which
is aligned with the geometry of the honeycomb lattice, see
Figs. 1 and 3. Staying within the leading order in 1/S, we
consider only the components of the structure factor trans-
verse to the magnetization; the longitudinal components can
be neglected because they are of the higher order in 1/S.
To calculate the transverse components for � = K > 0 in
the zigzag state, we note that in this case the magnetization
of the ordered moments is aligned with the direction e2

of the zigzag pattern, so that the basis {n1, n2, n3} defined
in Eq. (20), onto which the spin operators are projected,
is related to the honeycomb basis {e1, e2, e3} defined in
Eq. (31) via

n1 = −e1, n2 = e3, n3 = e2. (179)

To calculate the dynamical structure factor within our spin-
wave expansion, we express the transverse components of
Sk in terms of the local spin frame defined via Eqs. (32)
and (33). Choosing the gauge φ = 0 for the transverse ba-
sis, we obtain for the two components transverse to the
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magnetization,

S1
k = e1 · Sk = −n1 · Sk = − 1√

N

∑
i

e−ik·Ri n1 · Si

= − 1√
N

⎡⎣∑
i∈a,d

e−ik·Ri t i1 · Si +
∑
i∈b,c

e−ik·Ri t i1 · Si

⎤⎦,

(180a)

S3
k = e3 · Sk = n2 · Sk = 1√

N

∑
i

e−ik·Ri n2 · Si

= 1√
N

⎡⎣∑
i∈a,d

e−ik·Ri t i2 · Si −
∑
i∈b,c

e−ik·Ri t i2 · Si

⎤⎦. (180b)

Next, we approximate the spin components in the local
reference frames by the Holstein-Primakoff transformation
(37) to the leading order,

t i1 · Si ≈
√

2S

2
(ai + a†

i ), (181a)

t i2 · Si ≈
√

2S

2i
(ai − a†

i ), (181b)

and obtain

S1
k = − 1√

N

∑
i∈a,d

e−ik·Ri

√
2S

2
(ai + a†

i )

− 1√
N

∑
i∈b,c

e−ik·Ri

√
2S

2
(ai + a†

i ), (182a)

S3
k = 1√

N

∑
i∈a,d

e−ik·Ri

√
2S

2i
(ai − a†

i )

− 1√
N

∑
i∈b,c

e−ik·Ri

√
2S

2i
(ai − a†

i ). (182b)

Using the sublattice Fourier transform (58) of the Holstein-
Primakoff bosons, we obtain

S1
k = −

√
2S

4
(ak + a†

−k + bk + b†
−k + ck + c†

−k + dk + d†
−k)

≡ −
√

2S

4

∑
μ

φ
μ

k , (183a)

S3
k =

√
2S

4i
(ak − a†

−k − bk + b†
−k − ck + c†

−k + dk − d†
−k)

≡
√

2S

4i

∑
μ

σμ φ
μ

k , (183b)

where the symbols σμ = ±1 determine the signs of the field
components according to the following rule

σ1 = σ4 = σ6 = σ7 = 1, (184a)

σ2 = σ3 = σ5 = σ8 = −1. (184b)

Therefore, the off-diagonal part of the transverse structure
factor is

S13(k, ω) = −
∫

dt

2π
eiωt

〈
S1

−k(t )S3
k (0)

〉
= −

∫
dt

2π
eiωt 2S

16i

∑
μν

σν

〈
φ

μ

−k(t )φν
k (0)

〉
= − 2S

16i

∑
μν

σν

∑
μ′ν ′

Tμμ′
−k T νν ′

k

×
∫

dt

2π
eiωt

〈
ψ

μ′
−k(t )ψν ′

k (0)
〉
. (185)

Here, Tμμ′
k are the components of the 8 × 8 transformation

matrix Tk given in Eq. (142) and the components of the
operators ψ

μ

k contain Bogoliubov bosons associated with the
four magnon bands,

(
ψ

μ

k

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1
k

ψ2
k

ψ3
k

ψ4
k

ψ5
k

ψ6
k

ψ7
k

ψ8
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bk1

bk2

bk3

bk4

b†
−k1

b†
−k2

b†
−k3

b†
−k4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (186)

Recall that the range of the field-type labels μ and ν is
{1, 2, . . . , 8}, while the band label n assumes values in
the range {1, 2, 3, 4}. The transformation to the Bogoliubov
bosons (186) block-diagonalizes the expectation values and
we obtain

S13(k, ω) = − 2S

16i

∑
μν

∑
n

σν

∫
dt

2π
eiωt

× [
Tμ n+4

−k T νn
k 〈b†

kn(t )bkn(0)〉
+Tμn

−kT
ν n+4
k 〈b−kn(t )b†

−kn(0)〉]. (187)

The time integrals can be expressed in terms of the retarded
magnon Green functions,∫

dt

2π
eiωt 〈b†

kn(t )bkn(0)〉

= 1

e−βω − 1

1

π
Im Gn(k,−ω + i0+), (188a)∫

dt

2π
eiωt 〈b−kn(t )b†

−kn(0)〉

= 1

e−βω − 1

1

π
Im Gn(k, ω + i0+). (188b)

At T = 0, the expectation value in Eq. (188a) vanishes,
leaving only

S13(k, ω) = 1

π

∑
n

W 13
kn Im Gn(k, ω + i0+), (189)
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FIG. 12. The diagonal components of the transverse part of the dynamical structure factor Sαβ (k, ω) that include magnon lifetime effects
in the iDE approximation (167) as given by Eq. (191) in the laboratory frame {e1, e2, e3}. The momentum k follows the same representative
path as in Fig. 6. [Top (bottom)] S11(33)(k, ω). All other components are higher order in the 1/S expansion. An artificial broadening of 0.1 meV
is included in the imaginary part of the Green function. The plot range is cut at 0.1 meV−1 in order to emphasize details of the structure
factor.

with

W 13
kn = S

8i

∑
μν

Tμn
−k σν T

ν n+4
k . (190)

Analogous calculations for the remaining transverse compo-
nents of the structure factor lead to

Sαβ (k, ω) = 1

π

∑
n

W αβ

kn Im Gn(k, ω + i0+), (191)

with the “envelope” functions

W 11
kn = S

8

∑
μν

Tμn
−kT

ν n+4
k , (192a)

W 13
kn = (

W 31
kn

)∗ = S

8i

∑
μν

Tμn
−k σν T

ν n+4
k , (192b)

W 33
kn = −S

8

∑
μν

σμT
μn
−k σν T

ν n+4
k . (192c)

Within our approximations, the imaginary part of the
magnon propagator is

Im Gn(k, ω + i0+) ≈ γkn

(ω − ωkn)2 + γ 2
kn

. (193)

In Fig. 12, we plot the diagonal components of the transverse
structure factor for the same representative set of the model
parameters given in Eq. (165). For the magnon damping γkn,
we used our results obtained within the iDE approach in
Sec. V F. Note that within our approximation, the off-diagonal
components of the structure factor vanish identically.

To analyze the effect of magnon interactions in the neutron
scattering intensity, we normalize the intensity in Eq. (176) by
the square of the material-dependent form factor,

I (k, ω)

F 2(k)
=
∑
αβ

(
δαβ − kαkβ/k2

)
Sαβ (k, ω)

= 1

π

∑
n

Ikn
γkn

(ω − ωkn)2 + γ 2
kn

, (194)

where we defined the k-dependent weights Ikn associated with
a given magnon band n as

Ikn =
∑
αβ

(
δαβ − kαkβ/k2

)
W αβ

kn . (195)

The intensity defined in Eq. (194) is plotted in Fig. 13.
Note that while the in-plane component of the momentum k
follows the same representative path shown in Fig. 6, for the
neutron-scattering intensity in Fig. 13, the contour also has a
finite out-of-plane component k3 = √

3π/d to avoid artificial
singularities. One can clearly distinguish sharp excitation
branches in wide regions of the k space, indicating well-
defined magnon quasiparticles. However, for a significant
range of the k-ω space, the quasiparticles cease to exist and
are replaced instead by a broad continuum of excitations. This
result justifies the claim put forward in Ref. [55] that the
anharmonic magnon couplings can destroy the quasiparticle
character of the magnetic excitation spectrum in the zigzag
phase of the Kitaev-Heisenberg-� model in a large part of the
Brillouin zone. In the same Fig. 13, the lower panel offers
a comparison of the effects of the “full-vertex” calculations
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FIG. 13. (Top) Neutron-scattering intensity I(k, ω) normalized by the square of the atomic formfactor as given in Eq. (194) with magnon
lifetime effects in the iDE approximation given by Eq. (167). The presented k path also involves a finite out-of-plane component k3 = √

3π/d ,
see the text. (Bottom) Same with the decay rates from the constant matrix element approximation. An artificial broadening of 0.1 meV is
included in the imaginary part of the Green function.

of the magnon damping in the iDE approximation with that
of the constant matrix element approximation. The damping
rates in the latter approach are from Fig. 11. It is again visible
that the constant matrix element approximation overestimates
the damping of the higher energy magnon branches around
the � and Y points. The overall form of decays is however
very similar, showing a coexistence of the k-ω regions with
well-defined quasiparticles with the regions where they are
absent.

VII. SUMMARY AND CONCLUSIONS

The present work advances the studies of the Kitaev-
Heisenberg-� model in several directions. First of all, we have
found a special line in the parameter space of the Kitaev-
Heisenberg-� model along which the magnon spectrum and
all matrix elements needed for the calculation of the magnon
damping can be obtained analytically for the physically rel-
evant zigzag phase. This line is defined by � = K > 0, arbi-
trary nearest-neigbor exchange J , and third-nearest-neighbor
exchange J3. This enormously reduces the complexity of the
evaluation of the perturbative expressions for the magnon
damping and has enabled us to calculate the magnon damping
in this regime without additional simplifying assumptions.
Although special points in the parameter space of the Kitaev-
Heisenberg-� model characterized by additional symmetries
have been identified in the past [9], the fact that on the line
� = K > 0 the magnon spectrum and all interaction vertices
in the zigzag state can be obtained analytically has not been
noticed before. Physically, the origin for the simplifications
for � = K > 0 is that on this line the magnetic moments in
the zigzag state lie in the plane of the honeycomb lattice and
point in the direction of the zigzag pattern.

Next, we would like to emphasize that our explicit cal-
culation of the magnon damping for � = K > 0 within the
leading order Born approximation and the self-consistent iDE
approach based on the solution of the imaginary part of
the Dyson’s equation is at the cutting edge of what can be
done analytically within spin-wave theory. To carry out this
calculation, it was crucial to work with an unconventional
parametrization of the spin-wave theory where each Holstein-
Primakoff boson is expressed in terms of two conjugate
Hermitian operators [81–85]. The advantages of this approach
as compared with the conventional procedure outlined in Ap-
pendix A are (a) that it simplifies the identification of special
points in parameter space where the calculations simplify,
(b) that the explicit diagonalization of the quadratic spin-
wave Hamiltonian obtained after Holstein-Primakoff trans-
formation can be mapped on the well-known diagonalization
procedure for coupled harmonic oscillators [102,103], and (c)
that for the implementation of this procedure for a system
with f boson flavors one has to manipulate only Hermitian
f × f matrices. In Appendix B, we give another example
for the “Hermitian field formulation” of spin-wave theory by
calculating the magnon spectrum and the relevant Bogoliubov
transformation of the Kitaev-Heisenberg-� model for � =
K > 0 in a two-sublattice approach. Somewhat surprisingly,
we could not find such an explicit analytic construction in
the literature, although in this case one only has f = 2 boson
flavors.

We have demonstrated for the representative values of
the model parameters, that the magnon damping in approx-
imations based on the Born and the self-consistent iDE ap-
proaches is significant, leading to characteristic broad fea-
tures in the dynamical structure factor. These results under-
score the importance of taking into account the nonlinear
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magnon coupling in interpreting broad features in the neutron-
scattering spectra for the general Kitaev-Heisenberg-� model.
The present work thus confirms the assertion of Ref. [55]
that anharmonic interactions can lead to large decay rates
such that some of the magnon branches cease to be well-
defined quasiparticles, as is possibly observed in α-RuCl3.
By focusing our attention on the regime �=K >0 with an
additional third-nearest-neighbor Heisenberg interaction J3

to stabilize the zigzag-ordered state, we have been able to
confirm in a quantitative manner the validity of the claims
regarding the importance of the anharmonic magnon coupling
terms that were put forward in Ref. [55]. In particular, we
have shown that the phenomenological constant matrix el-
ement approximation used in Ref. [55] can indeed be used
to estimate semiquantitatively the magnitude of the decay
rates in a large part of the Brillouin zone. On the other
hand, in some parts of the Brillouin zone the momentum-
dependence of the interaction vertex is important, so that
the constant matrix element approximation cannot reliably
predict the order of magnitude of magnon damping and the
spectral line-shape of the dynamic structure factor. This is
especially true for momenta in the proximity of magnon band
crossings along the X -Y and �-Y directions. Moreover, as
shown in Appendix D, the damping becomes even stronger for
all modes in certain areas on the momentum plane when the
third-nearest-neighbor exchange interaction is smaller than all
other interactions.

Finally, let us emphasize that this work contains technical
advances in spin-wave theory that can also be useful for other
spin models. First of all, the Hermitian field parametrization of
spin-wave theory developed in Sec. V B (see also Appendix B)
is an efficient alternative to Colpa’s algorithm [96–99] in the
magnetically ordered phase of any spin-model with a com-
plicated magnon spectrum consisting of several bands. More-
over, for the calculation of the magnon damping in multiband
magnon systems it is crucial to carefully keep track of all
phase factors in the interaction vertices generated by umklapp
scattering processes. In Sec. III F, we have carefully derived
the proper phase factors for the cubic interaction vertices in
the zigzag state of the Kitaev-Heisenberg-� model. Similar
considerations should be used to derive umklapp phase factors
in other models with multiple magnon bands.
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APPENDIX A: CONSTRUCTION OF MULTIFLAVOR
BOGOLIUBOV TRANSFORMATIONS

In this Appendix, we review the method for reducing the
problem of diagonalizing a general f -flavor quadratic boson
Hamiltonian of the form [see Eq. (62)]

H2 =
∑

k

f∑
nm=1

{
Anm

k a†
knakm

+ 1

2

[
Bnm

k a†
kna†

−km + (
Bmn

k

)∗
a−knakm

]}
(A1)

to a 2 f -dimensional generalized eigenvalue problem. Note
that the hermiticity of the Hamiltonian implies that

Anm
k = (

Amn
k

)∗
(A2)

and the symmetry under relabeling k → −k in the off-
diagonal terms implies that the coefficients Bnm

k can be chosen
such that

Bnm
k = Bmn

−k. (A3)

For f = 1, the Hamiltonian (A1) can be diagonalized by the
the usual Bogoliubov transformation. For arbitrary f , a gen-
eral algorithm for diagonalizing this type of Hamiltonian has
been constructed by Colpa [96]. A discussion of this algorithm
can also be found in the textbook by Blaizot and Ripka [97]
and in Refs. [98,99]. Here we review some mathematical
subtleties of this treatment, as presented by Maldonado [98],
which are often ignored in the literature.

It is convenient to define the f -component column vectors

ak =

⎛⎜⎝ak1
...

ak f

⎞⎟⎠, a∗
k = (

aT
k

)† =

⎛⎜⎝a†
k1
...

a†
k f

⎞⎟⎠ (A4)

and the adjoint row vectors

a†
k = (a†

k1 . . . a†
k f ), aT

k = (ak1 . . . ak f ). (A5)

These vectors can be combined to vectors with 2 f compo-
nents containing both annihilation and creation operators,

φk =
(

ak

a∗
−k

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak1
...

ak f

a†
−k1
...

a†
−k f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A6)

φ†
k = (a†

k, aT
−k) = (a†

k1 . . . a†
k f , a−k1 . . . a−k f ). (A7)

Then, our quadratic boson Hamiltonian (A1) can be written in
a matrix form as follows:

H2 = 1

2

∑
k

[φ†
kMkφk − TrAk], (A8)

where the 2 f × 2 f matrix Mk is of the form

Mk =
(

Ak Bk

B†
k AT

−k

)
=
(

Ak Bk

B∗
−k A∗

−k

)
, (A9)
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with the f × f blocks Ak and Bk defined by [Ak]nm = Anm
k

and [Bk]nm = Bnm
k . In the second equality in Eq. (A9), we have

used the symmetries (A2) and (A3) which imply that

Ak = A†
k, (A10)

Bk = BT
−k. (A11)

We would like to construct a new set of boson operators
bk1, . . . , bk f , which diagonalize the Hamiltonian. We combine
these operators and their adjoints b†

kn to form a 2 f -component
column vector with the same structure as φk in Eq. (A6),

ψk =
(

bk

b∗
−k

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bk1
...

bk f

b†
−k1
...

b†
−k f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A12)

Let us make the following ansatz for the desired transforma-
tion:

φk = Tkψk, (A13)

where Tk is an invertible 2 f × 2 f matrix. Substituting this
ansatz into the Hamiltonian (A8), we obtain

H2 = 1

2

∑
k

[ψ†
kT

†
k MkTkψk − TrAk]. (A14)

The transformation matrix Tk should be constructed such that
the matrix

Dk = T †
k MkTk (A15)

is diagonal. In addition, the matrix Tk has to satisfy the
following two conditions.

(1) Boson condition. The new operators bkn should satisfy
canonical bosonic commutation relations. This implies that
only those transformations Tk are allowed, which are pseudo-
orthogonal in the sense that

T †
k GTk = G = TkGT †

k , (A16)

where the metric matrix G has the block structure

G =
(

1 0
0 −1

)
. (A17)

Here, 1 is the f -dimensional identity matrix.
(2) Permutation condition. this condition follows from the

fact that the second f components of the vectors φk and ψk
cannot be chosen independently of the first f components,
because they are related by a permutation as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a†
−k1
...

a†
−k f
ak1

...
ak f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(

0 1
1 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak1
...

ak f

a†
−k1
...

a†
−k f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A18)

Introducing the permutation matrix

P =
(

0 1
1 0

)
, (A19)

the condition (A18) and the analogous condition for the new
boson operators ψk imply that

φ∗
−k = Pφk, (A20)

ψ∗
−k = Pψk. (A21)

Hence,

PTkψk = Pφk = φ∗
−k

= T ∗
−kψ

∗
−k = T ∗

−kPψk, (A22)

which implies

PTk = T ∗
−kP . (A23)

Using P 2 = 1, this relation can also be written as

PTkP = T ∗
−k. (A24)

It follows that the matrix Tk must have the following block
structure:

Tk =
(

Qk Rk

R∗
−k Q∗

−k

)
, (A25)

with two independent f × f matrices Qk and Rk.
The boson condition (A16) as well as the permutation

condition (A23) define two different groups. The intersection
of these groups, i.e., the set of matrices Tk satisfying both
conditions (A16) and (A23), defines the group of f -flavor
Bogoliubov transformations. We are looking for a matrix of
this type, which diagonalizes the matrix Mk according to
Eq. (A15). Note that the matrix Mk in Eq. (A9) also satisfies
the permutation condition (A23). In fact, given the Hamilto-
nian (62), there is some redundancy in the definition of the
matrix Mk because we can use the commutation relations
akma†

kn = a†
knakm + δnm to rewrite Eq. (A8) in the form

H2 = 1

2

∑
k

[φ†
kM

′
kφk − TrAk − TrA′

k], (A26)

where now

M′
k = Mk +

(
A′

k B′
k1

B′
k2 −(A′

−k)T

)
. (A27)

Here the matrix Mk is the same as in Eq. (A9), the f × f
matrix A′

k is arbitrary and the f × f matrices B′
k1 and B′

k2
are antisymmetric in the sense that B′

ki = −(B′
−ki )

T for i =
1, 2, which guarantees that the corresponding contributions
in Eq. (A26) cancel after summation. Our choice above,
A′

k = 0 = B′
ki, is unique because the matrix Mk satisfies the

permutation condition, which also guarantees that M′
k = Mk

is Hermitian. Then the Heisenberg equation of motion for the
original boson operators can be written as

i∂tφk = [φk,H2] = GMkφk ≡ Mdyn
k φk, (A28)

where we have introduced the dynamical matrix

Mdyn
k = GMk. (A29)
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Note that this definition differs from what Colpa calls the
dynamical matrix in Ref. [96]. The new bosons then satisfy

i∂tψk = [ψk,H2] = [T−1
k φk,H2] = T−1

k [φk,H2]

= T−1
k Mdyn

k Tkψk. (A30)

The linear transformation φk → ψk = Tkφk maps the ma-
trix Mk onto T †

k MkTk, while the dynamical matrix Mdyn
k

transforms differently, Mdyn
k → T−1

k MkTk. Mathematically,
the different transformation behavior of Mk and Mdyn

k is
due to the fact that Mk is the matrix representation of a
bilinear form [i.e., a rank (0,2) tensor], while Mdyn

k represents
the linear mapping [. . . ,H2], which is a rank (1,1) tensor.
Multiplication by the pseudometric G establishes the transfor-
mation between these two objects, similar to the dualization of
Lorentz vectors in relativity.

To explicitly calculate the spectrum of H2, we write the
transformation matrix Tk in the form

Tk = (vk1, vk2, . . . , vk2 f ), (A31)

i.e., the columns of the matrix Tk are identified with the
column vectors vki, i = 1, . . . , 2 f . Then the diagonalization
condition (A15) can be written as[

T †
k MkTk

]
i j = v†

kiMkvk j = δi jdki, (A32)

where dki are the diagonal elements of the diagonal matrix
Dk in Eq. (A15). The boson condition (A16) implies that the
column vectors vki satisfy the pseudo-orthogonality condition

v†
kiGvk j = gi j, (A33)

where gi j = δi j for i = 1, . . . , f , and gi j = −δi j for i = f +
1, . . . , 2 f .

To explicitly construct the vectors vki with the above
properties, it is useful to consider the solutions vk of the
generalized eigenvalue equation [96],

Mkvk = ωGvk. (A34)

Multiplying both sides by G and using G2 = 1 makes
Eq. (A34) equivalent to the conventional eigenvalue equation
for Mdyn

k = GMk,

Mdyn
k vk = ωvk. (A35)

Although, in general, Mdyn
k is not Hermitian, let us assume

that the eigenvalue equation (A35) indeed has 2 f linearly
independent eigenvectors vk1, . . . , vk2 f with eigenvalues ωkn.
If we can normalize the eigenvectors such that the pseudo-
orthogonalization condition (A33) is satisfied, we have by
construction

v†
kiMkvk j = ωk jv

†
kiGvk j = δi jωkigii, (A36)

so that we may identify dki = ωkigii. Assuming that the
Hamiltonian H2 describes a stable magnon system, the Her-
mitian matrix Mk must be positive definite, which means that

ωkiv
†
kiGvki > 0. (A37)

We refer to v†
kiGvki as pseudonorm of vki. It remains to be

shown that the solutions of the eigenvalue equation (A35)

can indeed by constructed such that they satisfy the pseudo-
orthogonality condition (A33). The hermiticity of Mk implies
that for any two eigenvectors vki and vk j ,

0 = (Mkvki )
†vk j − v†

ki(Mkvk j ) = (ω∗
ki − ωk j )v

†
kiGvk j,

(A38)

so that either ω∗
ki = ωk j or v†

kiGvk j = 0. In particular, the
eigenvalues of all eigenvectors with v†

kiGvki �= 0 are real.
If all eigenvalues are real and pairwise distinct, the matrix
T †

k MkTk is diagonal and by properly normalizing the eigen-
vectors we can satisfy the pseudo-orthogonality condition
(A33). Given the fact that the metric G has f positive and f
negative eigenvalues, this must also be true for the unitarily
equivalent matrix T †

k GTk, so that exactly f eigenvectors
can be normalized such that v†

kiGvki = 1 and the remaining
f eigenvectors can be normalized such that v†

kiGvki = −1.
However, according to Eq. (A37), we have ωkiv

†
kiGvki > 0,

so that the eigenvectors vki with positive pseudonorm have
positive eigenvalues ωki > 0, while the eigenvectors with
negative pseudonorm have negative eigenvalues ωki < 0.

In case of degeneracy of eigenvalues, the correspond-
ing linearly independent eigenvectors do not necessarily
satisfy the pseudo-orthogonality condition (A33). However,
by means of a generalized Gram-Schmidt orthogonaliza-
tion procedure, we can construct linear combinations of the
eigenvectors in the degenerate subspaces with the desired
pseudo-orthogonalization. For example, if the eigenvectors
vk1, . . . , vkm all have the same eigenvalue, we should replace
the first m − 1 eigenvectors by

vki → vki −
m∑

j=i+1

vk j (v
†
kiGvk j ), i = 1, . . . , m − 1.

(A39)
The eigenvalues of Mdyn

k always appear in pairs: if ωk is an
eigenvalue with eigenvector vk, then −ω∗

−k is an eigenvalue
with eigenvector Pv∗

−k, which follows from the following
chain of identities:

Mk(Pv∗
−k) = PM∗

−kv
∗
−k = P (ω−kGv−k)∗

= ω∗
−kPGv∗

−k = −ω∗
−kG(Pv∗

−k). (A40)

After suitable relabeling, the eigenvalues can always be ar-
ranged such that ωkn+i = −ω−ki and vkn+i = Pv∗

−ki for i =
1, . . . , f . Then the matrix Tk can be written in terms of
column vectors as follows,

Tk = (vk1, . . . , vk f ,Pv∗
−k1, . . . ,Pv∗

−k f ), (A41)

which satisfies the permutation condition (A23). The diago-
nalized Hamiltonian can be written as

H2 = 1

2

∑
k

[
f∑

i=1

ωki(b
†
kibki + bkib

†
ki ) − TrAk

]
. (A42)

The magnon spectrum can be obtained directly from the
positive roots of

det
(
Mdyn

k − ω1
) = 0. (A43)
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The new boson annihilation operators bki can be obtained with
the help of T−1

k = GT †
k G from the components of the first f

columns of the matrix Tk,

bki = (
T−1

k φk

)
i
=

f∑
j=1

[(v†
ki ) jak j − (v†

ki ) f + ja
†
−k j], (A44)

where i = 1, . . . , f .
In case when Mk is only positive semidefinite, the Hamilto-

nian may still be representable as a sum of number operators,
but this requires a careful handling of zero modes that will not
be discussed here. The combined eigenvalue/Gram-Schmidt
procedure gives an explicit construction for a pseudounitary
P -consistent diagonalization of an arbitrary Hermitian pos-
itive definite matrix Mk as long GMk has only real eigen-
values. However, the generalized Gram-Schmidt procedure
presented above is not numerically stable, similarly to the or-
dinary Gram-Schmidt procedure. One could adapt the known
algorithms for unitary diagonalization to use the indefinite
form v†Gw as a scalar product, which would require han-
dling edge cases and peculiarities of the particular algorithm
used.

In Ref. [96], Colpa takes a different approach. By reducing
the problem to a Cholesky decomposition and an ordinary uni-
tary diagonalization, one can make use of the known efficient
and/or stable algorithms for these well-researched problems,
which are already available in software libraries or computer
algebra systems. Colpa’s algorithm is executed as follows:
(1) find an upper triangular Matrix Hk with Mk = H†

kHk

(Cholesky decomposition); (2) find a unitary matrix Uk such
that Lk = U†

kHkGH†
kUk is diagonal (unitary diagonalization

of HGH†); (3) order the columns of Uk such that Lk has the
signature (+, . . . ,+,−, . . . ,−); and (4) solve the equation

HkTk = UkΩ
1/2
k with Ωk := GLk for the components of Tk.

Note that the fourth step in Colpa’s procedure requires only a
trivial 2 f -step recursion because Hk is triagonal.

The algorithm constructed by Colpa is the method of
choice when the magnon spectrum and the Bogoliubov trans-
formation are calculated numerically. On the other hand, for
the analytic calculation of the magnon spectrum presented in
this work, the Hermitian field approach developed in Sec. V B
of the main text is more convenient.

In Appendix B, we shall give another application of
the Hermitian field approach by diagonalizing the quadratic
magnon Hamiltonian for the Kitaev-Heisenberg-� model for
� = K using only two sublattices.

APPENDIX B: APPENDIX B: TWO-SUBLATTICE
APPROACH FOR � = K

As is mentioned in the last paragraph of Sec. IV, for
� = K > 0, it is possible to diagonalize the quadratic magnon
Hamiltonian by using only two sublattices A and B of the
honeycomb lattice, thus avoiding an additional complexity of
the four-sublattice formulation. In this Appendix, we show
why and how this two-sublattice approach works and con-
struct the corresponding Bogoliubov transformation using the
Hermitian field method developed in Sec. V B.

Let us go back to the derivation of the quadratic magnon
Hamiltonian in the zigzag state presented in Sec. III D, where
we projected spin operators on each site onto local axes that
match the direction of the local magnetization of the zigzag
state. In this basis, the contributions from the Kitaev part and
the off-diagonal exchange part to the transverse part H⊥ of
the spin Hamiltonian, HK

⊥ and H�
⊥, are given in Eqs. (54) and

(56). Adding these two contributions, we obtain

HK
⊥ + H�

⊥ = 1

8

∑
pp′

{∑
R∈a

[(
K p̄p̄′

xx + � p̄p̄′
yz

)
Sp

RSp′
R+dx

+ (
K p̄p̄′

yy + � p̄p̄′
zx

)
Sp

RSp′
R+dy

+ (
K p̄p′

zz + � p̄p′
xy

)
Sp

RSp′
R+dz

]
+
∑
R∈c

[(
K pp′

xx + �pp′
yz

)
Sp

RSp′
R+dx

+ (
K pp′

yy + �pp′
zx

)
Sp

RSp′
R+dy

+ (
K pp̄′

zz + �pp̄′
xy

)
Sp

RSp′
R+dz

]
+
∑
R∈b

[(
K pp′

xx + �pp′
yz

)
Sp

RSp′
R−dx

+ (
K pp′

yy + �pp′
zx

)
Sp

RSp′
R−dy

+ (
K pp̄′

zz + �pp̄′
xy

)
Sp

RSp′
R−dz

]
+
∑
R∈d

[(
K p̄p̄′

xx + � p̄p̄′
yz

)
Sp

RSp′
R−dx

+ (
K p̄p̄′

yy + � p̄p̄′
zx

)
Sp

RSp′
R−dy

+ (
K p̄p′

zz + � p̄p′
xy

)
Sp

RSp′
R−dz

]}
. (B1)

Here the coefficients K pp′
αβ and �

pp′
αβ are defined in Eqs. (55) and (57) of the main text. In general, all these coefficients are complex

and the coefficients in the c-sublattice sum (second line) are the complex conjugates of the coefficients in the a-sublattice sum
(first line); similarly, the coefficients in the d-sublattice sum (last line) are the complex conjugates of the coefficients in the
b-sublattice sum (third line). It turns out, however, that for � = K > 0, the imaginary parts of all coefficients in the sums
K pp′

αβ + �
pp′
αβ cancel, so that the coefficients in the a sum are identical to the coefficients in the c sum, while the coefficients in the

b-sum match those of the d sum. As a consequence, it is sufficient to work only with two sublattices A = a ∪ c and B = b ∪ d
in this case. By explicitly evaluating the coefficients for � = K > 0 using Eqs. (20) and (51), we obtain

HK
⊥ + H�

⊥ = K

8

{∑
R∈A

[
3

2
(S+

R S−
R+dx

+ S+
R S−

R+dy
) − 2S+

R S−
R+dz

− 1

2
(S+

R S+
R+dx

+ S+
R S+

R+dy
) + H.c.

]

+
∑
R∈B

[
3

2
(S+

R S−
R−dx

+ S+
R S−

R−dy
) − 2S+

R S−
R−dz

− 1

2
(S+

R S+
R−dx

+ S+
R S+

R−dy
) + H.c.

]}
. (B2)
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Actually, keeping in mind that the nearest-neighbor vectors dα connect different sublattices and shifting Rb − dα = Ra (where
the subscript indicates the sublattice) in the second line, we see that the contribution from the two lines in Eq. (B2) are identical,
so that in the special care � = K > 0 we may write

HK
⊥ + H�

⊥ = K

4

∑
R∈A

[
3

2
(S+

R S−
R+dx

+ S+
R S−

R+dy
) − 2S+

R S−
R+dz

− 1

2
(S+

R S+
R+dx

+ S+
R S+

R+dy
) + H.c.

]
. (B3)

In the special case � = K , it is, therefore, possible to diagonalize the quadratic magnon Hamiltonian by introducing only two
sublattices, which simplifies the calculation of magnon spectrum and the construction of the Bogoliubov transformation. After
expressing spin operators in terms of the Holstein-Primakoff bosons and retaining all terms quadratic in bosons, we find that
the Hamiltonian (1) with additional next-next nearest-neighbor Heisenberg exchange J3 leads to the following quadratic boson
Hamiltonian for � = K > 0:

H2 = (3J3 − J + 2K )S
∑

R

a†
RaR + JS

∑
R∈A

[a†
RaR+dx + a†

RaR+dy + a†
Ra†

R+dz
+ H.c.] + J3S

∑
R∈A

∑
α=x,y,z

[a†
Ra†

R−dα
+ H.c.]

+ KS
∑
R∈A

[
3

4
(a†

RaR+dx + a†
RaR+dy ) − a†

RaR+dz − 1

4
(a†

Ra†
R+dx

+ a†
Ra†

R+dy
) + H.c.

]
. (B4)

Defining

aR =
√

2

N

∑
k

eik·Rak, R ∈ A, (B5a)

=
√

2

N

∑
k

eik·Rbk, R ∈ B, (B5b)

where the sums are over the first Brillouin zone of the hon-
eycomb lattice, and N is the total number of lattice sites, we
obtain

H2 = −JS
∑

k

{A(a†
kak + b†

kbk)

+ [Bka†
kbk − Cka†

kb†
−k + H.c.]}, (B6)

where

A = 1 − 2K

J
− 3J3

J
, (B7a)

Bk = −
(

1 + 3K

4J

)
γ

xy
k + K

J
γ z

k , (B7b)

Ck = − K

4J
γ

xy
k + γ z

k + 3J3

J
γ

(3)
k , (B7c)

with

γ
xy
k = eik·dx + eik·dy , (B8a)

γ z
k = eik·dz , (B8b)

γ
(3)

k = 1

3

∑
α=x,y,z

e−2ik·dα . (B8c)

Obviously, the Hamiltonian (B6) is of the form (A1) with
f = 2 boson flavors, so that we could use Colpa’s algorithm
to calculate magnon spectrum. The matrices Ak and Bk in this
case are given by

Ak =
(

Aaa
k Aab

k

Aba
k Abb

k

)
= (−JS)

(
A Bk

B∗
k A

)
, (B9)

Bk =
(

Baa
k Bab

k

Bba
k Bbb

k

)
= JS

(
0 Ck

C∗
k 0

)
. (B10)

We have not been able to find in the existing literature an
explicit analytic construction of the Bogoliubov transforma-
tion that would diagonalize the quadratic boson Hamiltonian
(B6) in a general case of noncommuting matrices Ak and
Bk. We, therefore, provide an explicit construct of such a
transformation using the Hermitian-field method developed in
Sec. IV A and in Sec. V B instead of the Colpa’s approach.

First of all, we note that in the case of our interest, the ma-
trices satisfy Ak = A∗

−k and Bk = B∗
−k, so that the matrix Wk

defined in Eq. (93c) vanishes identically. Then, the magnon
spectrum can be obtained from the roots of [see Eq. (112) of
the main text]

det(TkVk − ω21) = 0, (B11)

where

Tk = Ak − Bk = (−JS)

(
A Bk + Ck

B∗
k + C∗

k A

)
, (B12)

Vk = Ak + Bk = (−JS)

(
A Bk − Ck

B∗
k − C∗

k A

)
. (B13)

Equation (B11) can be reduced to the biquadratic equation

0 =
(

ω2

(JS)2

)2

− 2[A2 + |Bk|2 − |Ck|2]
ω2

(JS)2
+ [A2 + |Bk|2

− |Ck|2]2 − (BkC∗
k − B∗

kCk)2 − 4A2|Bk|2, (B14)

which has positive roots

ωk± = |J|S
√

A2 + |Bk|2 − |Ck|2 ± Rk, (B15)

with

Rk =
√

4A2|Bk|2 + (BkC∗
k − B∗

kCk)2

= 2
√

A2|Bk|2 − [Im(BkC∗
k )]2. (B16)

Keeping in mind that in the two-sublattice approach the mo-
mentum k belongs to the first Brillouin zone of the honeycomb
lattice (black dashed hexagon in Fig. 6), while in the four-
sublattice approach the corresponding first Brillouin zone is
only half as large (green dashed rectangle in Fig. 6), we
see that the magnon spectrum {ωk+, ωk−} obtained in the
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two-sublattice approach is indeed identical to the magnon
spectrum {ω+

k+, ω−
k+, ω+

k−, ω−
k−} obtained in the four-sublattice

approach, see Eqs. (121) and (122).
To construct the explicit Bogoliubov transformation that

diagonalizes the Hamiltonian (B6), we use the Hermitian
field algorithm described in Sec. V B, which consists of the
following steps: (1) calculate the square root T1/2

k of the
“kinetic energy matrix” Tk and its inverse T−1/2

k ; (2) calculate
the transformed “potential energy matrix” Ṽk = T1/2

k VkT1/2
k ;

(3) calculate the unitary matrix Sk that diagonalizes Ṽk:

SkṼkS†
k = �2

k diagonal. (B17)

(4) Then, the two-flavor Bogoliubov transformation to the
new operators bk1 and bk2 that diagonalize the Hamiltonian
can be expressed in terms of a single 4 × 4 block matrix Tk as
follows:⎛⎜⎜⎝

ak

bk

a†
−k

b†
−k

⎞⎟⎟⎠ = Tk

⎛⎜⎜⎝
bk1

bk2

b†
−k1

b†
−k2

⎞⎟⎟⎠ =
(

Qk Rk

Rk Qk

)⎛⎜⎜⎝
bk1

bk2

b†
−k1

b†
−k2

⎞⎟⎟⎠, (B18)

where the 2 × 2 blocks Qk and Rk are given by

Qk = 1
2

[
T

1/2

k Sk �
−1/2

k + T−1/2

k Sk �
1/2

k

]
, (B19)

Rk = 1

2

[
T

1/2

k Sk �
−1/2

k − T−1/2

k Sk �
1/2

k

]
. (B20)

Let us now explicitly construct the matrices above for the
specific two-flavor Hamiltonian H2 given in Eq. (B6). Writing
the “kinetic energy matrix” Tk introduced in Eq. (B12) as

Tk =
(

a tk
t∗
k a

)
, (B21)

where a = −JSA and tk = −JS(Bk + Ck), the eigenvalues
and normalized eigenvectors of Tk are

tk+ = 1√
2

(
λk

1

)
, eigenvalue a + |tk|, (B22)

tk− = 1√
2

(−1
λ∗

k

)
, eigenvalue a − |tk|, (B23)

where we have introduced the phase factor

λk = tk/|tk|. (B24)

The matrix Tk is, therefore, diagonalized by the following
unitary matrix:

Uk = (tk+, tk−) = 1√
2

(
λk −1
1 λ∗

k

)
. (B25)

Explicitly,

U†
kTkUk =

(
a + |tk| 0

0 a − |tk|
)

. (B26)

We conclude that the square root of Tk and its inverse can be
written as

T1/2
k = Uk

(√
a + |tk| 0

0
√

a − |tk|
)

U†
k

=
(

xk zk

z†
k xk

)
, (B27)

T−1/2
k = 1√

a2 − |tk|2
(

xk −zk

−z∗
k xk

)
, (B28)

where

xk = 1

2
[
√

a + |tk| +
√

a − |tk|], (B29)

zk = λk

2
[
√

a + |tk| −
√

a − |tk|], (B30)

and we have used x2
k − |zk|2 =

√
a2 − |tk|2. Writing

Vk =
(

a vk

v∗
k a

)
, (B31)

where vk = −JS(Bk − Ck), the transformed “potential energy
matrix” can be written as

Ṽk = T1/2
k VkT1/2

k =
(

ãk ṽk

ṽ∗
k ãk

)
, (B32)

with

ãk = a
(
x2

k + |zk|2
)+ (vkz∗

k + v∗
kzk)xk

= (JS)2[A2 + |Bk|2 − |Ck|2], (B33)

ṽk = vkx2
k + v∗

kz2
k + 2axkzk

= λk[a + Re(vkλ
∗
k ) + i

√
a2 − |tk|2Im(vkλ

∗
k )]. (B34)

In terms of the dimensionless coefficients Bk and Ck defined
above we can write

Re(vkλ
∗
k ) = 1

2

[
vkλ

∗
k + v∗

kλk
]

= (JS)2

|tk| (|Bk|2 − |Ck|2)

= |J|S |Bk|2 − |Ck|2
|Bk + Ck| (B35)

and

Im(vkλ
∗
k ) = 1

2i
[vkλ

∗
k − v∗

kλk]

= (JS)2

i|tk| (BkC∗
k − B∗

kCk)

= 2|J|S Im(BkC∗
k )

|Bk + Ck| . (B36)

By construction, the eigenvalues of the Hermitian matrix Ṽk

are the squares ω2
k,± of the spin-wave dispersions given in

Eq. (B15),

ω2
k± = ãk ± |ṽk| = (JS)2[A2 + |Bk|2 − |Ck|2] ± Rk, (B37)

where Rk is given in Eq. (B16). To see explicitly that indeed
|ṽk| = Rk, we take the squared absolute value of Eq. (B34)
and obtain

|ṽk|2 = a2[|tk| + Re(vkλ
∗
k )]2 + (a2 − |tk|2)[Im(vkλ

∗
k )]2

= a2[|tk|2 + |vk|2 + 2Re(vkt∗
k )] − [Im(vkt∗

k )]2

= 4A2|Bk|2 − 4[Im(BkC∗
k )]2 = R2

k. (B38)
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The normalized eigenvectors and eigenvalues of the matrix Ṽk

are

vk+ = 1√
2

(
λ̃k

1

)
, eigenvalue ãk + |ṽk| = ω2

k+, (B39)

vk− = 1√
2

(−1
λ̃∗

k

)
, eigenvalue ãk − |ṽk| = ω2

k−, (B40)

where we have introduced the phase factor

λ̃k = ṽk/|ṽk|. (B41)

With

S†
k = (vk+, vk−) = 1√

2

(
λ̃k −1
1 λ̃∗

k

)
(B42)

we obtain

SkṼkS†
k = �2

k =
(

ω2
k+ 0
0 ω2

k−

)
. (B43)

With that, all matrices that are necessary to calculate the
transformation matrix Tk in Eq. (B18) are now explicitly
constructed.

APPENDIX C: APPENDIX C: TECHNICAL DETAILS
OF THE CALCULATION OF THE MAGNON DAMPING

FOR � = K

In this Appendix, we give additional technical details of
our calculation of the magnon damping for � = K using the
four-sublattice formulation presented in Sec. V.

1. Propagator matrices at � = K > 0

For � = K > 0, the parameters r and s defined in Eqs. (21)
and (22) have the values r = 1 and s = −2. Choosing the
gauge angle φ introduced in Eq. (33) as φ = 0, the matrix
elements of the quadratic Hamiltonian defined in Eqs. (67)–
(71) reduce to

λ = S(−J + 2K + 3J3), (C1a)

αk = S

(
J + 3

4
K

)
(eik·dx + eik·dy ), (C1b)

βk = −SKeik·dz , (C1c)

μk = SJeik·dz + SJ3

∑
α=x,y,z

e−2ik·dα , (C1d)

νk = −1

4
SK (eik·dx + eik·dy ). (C1e)

2. Transformation matrices

For the construction of the multiflavor Bogoliubov trans-
formation by means of the Hermitian-field approach of
Sec. V B, we have to calculate the square root of the Hermitian
matrix Tk in Eq. (119) for the matrix elements given in
Eqs. (C1). From the definition (132), we find that the square

root of the “kinetic energy matrix” has the structure

T
1/2

k =

⎛⎜⎜⎝
t1,k t3,k t2,k t4,k

t∗
3,k t1,k t∗

4,k t2,k

t∗
2,k t4,k t1,k t3,k

t∗
4,k t∗

2,k t∗
3,k t1,k

⎞⎟⎟⎠. (C2)

Defining

η1,k = αk + βk − μk − νk, (C3a)

η2,k = αk − βk + μk − νk, (C3b)

the matrix elements of T
1/2

k can be written as

t1,k = 1
4 {√λ − |η1,k| +√

λ + |η1,k|
+√

λ − |η2,k| +√
λ + |η2,k|}, (C4a)

t2,k = 1
4 {√λ − |η1,k| +√

λ + |η1,k|
−√

λ − |η2,k| −√
λ + |η2,k|}, (C4b)

t3,k = 1
4 {−sgn(η1,k)[

√
λ − |η1,k| −√

λ + |η1,k|]
+ sgn(η2,k)[

√
λ − |η2,k| −√

λ + |η2,k|]}, (C4c)

t4,k = 1
4 {−sgn(η1,k)[

√
λ − |η1,k| −√

λ + |η1,k|]
− sgn(η2,k)[

√
λ − |η2,k| −√

λ + |η2,k|]}. (C4d)

For the notational simplicity, we define

sgn(z) = z/|z| (C5)

for any complex number z �= 0. For the unitary matrix Sk

defined in Eq. (137) that diagonalizes the modified “potential
energy matrix” Ṽk, we find

Sk = 1

2

⎛⎜⎝ s1,k −s1,k −s2,k s2,k

−1 −1 1 1
−s1,k s1,k −s2,k s2,k

1 1 1 1

⎞⎟⎠, (C6)

with

s1,k = sgn(η2,k) sgn(2λ Re{(−αk + βk)sgn(η∗
2,k)}

+ 2i
√

λ2 − |η2,k|2 Im{(−αk + βk)sgn(η∗
2,k)}), (C7a)

s2,k = sgn(η1,k) sgn(2λ Re{(αk + βk)sgn(η∗
1,k)}

+ 2i
√

λ2 − |η1,k|2 Im{(αk + βk)sgn(η∗
1,k)}). (C7b)

The diagonal matrix �k introduced in Eq. (137) contains
the magnon energies given in Eqs. (121) and (122) with the
following ordering:

�k =

⎛⎜⎜⎜⎜⎜⎝
ω−

k,− 0 0 0

0 ω−
k,+ 0 0

0 0 ω+
k,− 0

0 0 0 ω+
k,+

⎞⎟⎟⎟⎟⎟⎠. (C8)
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Given the matrices T
1/2

k and and Sk, we can explcitly construct the matrices Lk = T
1/2

k Sk and Yk = T−1/2

k Sk, which are the building
blocks of the 4 × 4 matrices Qk and Rk that appear in the 8 × 8 Bogoliubov transformation matrix Tk in Eq. (143). We, thus,
obtain

Lk = T
1/2

k Sk =

⎛⎜⎜⎜⎝
s1,kϑ

+
k − ϑ−

k −ϑ−
k − s1,kϑ

+
k −ϕ−

k − s2,kϕ
+
k s2,kϕ

+
k − ϕ−

k

s1,kϑ
−∗
k − ϑ+

k −ϑ+
k − s1,kϑ

−∗
k ϕ+

k + s2,kϕ
−∗
k ϕ+

k − s2,kϕ
−∗
k

ϑ−
k − s1,kϑ

+
k ϑ−

k + s1,kϑ
+
k −ϕ−

k − s2,kϕ
+
k s2,kϕ

+
k − ϕ−

k

ϑ+
k − s1,kϑ

−∗
k ϑ+

k + s1,kϑ
−∗
k ϕ+

k + s2,kϕ
−∗
k ϕ+

k − s2,kϕ
−∗
k

⎞⎟⎟⎟⎠ (C9)

and

Yk = T−1/2

k Sk =

⎛⎜⎜⎜⎝
q2,k(ϑ−

k + s1,kϑ
+
k ) q2,k(ϑ−

k − s1,kϑ
+
k ) q1,k(ϕ−

k − s2,kϕ
+
k ) q1,k(ϕ−

k + s2,kϕ
+
k )

−q2,k(ϑ+
k + s1,kϑ

−∗
k ) −q2,k(ϑ+

k − s1,kϑ
−∗
k ) q1,k(ϕ+

k − s2,kϕ
−∗
k ) q1,k(ϕ+

k + s2,kϕ
−∗
k )

−q2,k(ϑ−
k + s1,kϑ

+
k ) −q2,k(ϑ−

k − s1,kϑ
+
k ) q1,k(ϕ−

k − s2,kϕ
+
k ) q1,k(ϕ−

k + s2,kϕ
+
k )

q2,k(ϑ+
k + s1,kϑ

−∗
k ) q2,k(ϑ+

k − s1,kϑ
−∗
k ) q1,k(ϕ+

k − s2,kϕ
−∗
k ) q1,k(ϕ+

k + s2,kϕ
−∗
k )

⎞⎟⎟⎟⎠, (C10)

where

qi,k = 1√
λ2 − |ηi,k|2

, i = 1, 2, (C11)

and

ϕ+
k = 1

4 (
√

λ − |η1,k| +√
λ + |η1,k|),

ϕ−
k = 1

4 (
√

λ − |η1,k| −√
λ + |η1,k|)sgn(η1,k), (C12a)

ϑ+
k = 1

4 (
√

λ − |η2,k| +√
λ + |η2,k|),

ϑ−
k = 1

4 (
√

λ − |η2,k| −√
λ + |η2,k|)sgn(η2,k). (C12b)

3. Cubic vertices at � = K > 0

For the calculation of magnon damping in Sec. V D, we
need the cubic interaction vertices in the Bogoliubov basis,
in which the quadratic part of the bosonized Hamiltonian
is diagonal. Therefore we first have to derive the cubic
part of the Hamiltonian in the Holstein-Primakoff basis. The
corresponding Euclidean action is given in Eq. (146). It is
convenient to symmetrize the vertices and write the action in

=+R

K=+R

J=+RJ=- R

K=- R

Stripy

ZigZag

Ferro

Antiferro

120°

FIG. 14. Phase diagram of the Kitaev-Heisenberg-� model for
J2 + K2 + �2 = 177 meV2 with additional third nearest-neighbor
Heisenberg exchange J3 = 0.5 meV. We use the same parametriza-
tion and projection as in Fig. 2(c). We highlight the line � = K > 0
and the point (D1) in the parameter space, for which the magnon
damping is calculated.

the symmetrized form (148). In this notation, the following 48
vertices are nonzero,

�d̄ āa(1, 2, 3) = �d̄aā(1, 2, 3) = �daā(1, 2, 3)

= �dāa(1, 2, 3) = −V1, (C13a)

�ād̄a(1, 2, 3) = �ad̄ā(1, 2, 3) = �adā(1, 2, 3)

= �āda(1, 2, 3) = −V2, (C13b)

�āad̄ (1, 2, 3) = �aād̄ (1, 2, 3) = �aād (1, 2, 3)

= �āad (1, 2, 3) = −V3, (C13c)

�c̄b̄b(1, 2, 3) = �c̄bb̄(1, 2, 3) = �cbb̄(1, 2, 3)

= �cb̄b(1, 2, 3) = ei(k1+k2+k3 )·dzV ∗
1 , (C14a)

X Γ Y Γ M Γ
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ω
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n
[m
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]
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γ
k

n
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1

2

3

4

γ
k

n
/ω

k
n

ω+
k,+ ω−

k,+ ω−
k,− ω+

k,−

FIG. 15. Magnon damping in the Born approximation (164).
(a) Magnon energies ωkn, (b) magnon damping γkn, and (c) magnon
damping rates, γkn/ωkn, for the model parameters given in Eqs. (D1)
and along the momentum path shown in Fig. 6. The color coding is
the same as in Fig. 8.
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FIG. 16. Same as in Fig. 15 in the self-consistent iDE approxi-
mation (166).

�b̄c̄b(1, 2, 3) = �bc̄b̄(1, 2, 3) = �bcb̄(1, 2, 3)

= �b̄cb(1, 2, 3) = ei(k1+k2+k3 )·dzV ∗
2 , (C14b)

�b̄bc̄(1, 2, 3) = �bb̄c̄(1, 2, 3) = �bb̄c(1, 2, 3)

= �b̄bc(1, 2, 3) = ei(k1+k2+k3 )·dzV ∗
3 , (C14c)

�b̄c̄c(1, 2, 3) = �b̄cc̄(1, 2, 3) = �bcc̄(1, 2, 3)

= �bc̄c(1, 2, 3) = ei(k1+k2+k3 )·a1V1, (C15a)

�c̄b̄c(1, 2, 3) = �cb̄c̄(1, 2, 3) = �cbc̄(1, 2, 3)

= �c̄bc(1, 2, 3) = ei(k1+k2+k3 )·a1V2, (C15b)

�c̄cb̄(1, 2, 3) = �cc̄b̄(1, 2, 3) = �cc̄b(1, 2, 3)

= �c̄cb(1, 2, 3) = ei(k1+k2+k3 )·a1V3, (C15c)

�ād̄d (1, 2, 3) = �ādd̄ (1, 2, 3) = �add̄ (1, 2, 3)

= �cb̄b(1, 2, 3) = −ei(k1+k2+k3 )·dxV ∗
1 ,

(C16a)

�d̄ ād (1, 2, 3) = �dād̄ (1, 2, 3) = �dad̄ (1, 2, 3)

= �d̄ad (1, 2, 3) = −ei(k1+k2+k3 )·dxV ∗
2 ,

(C16b)

�d̄dā(1, 2, 3) = �dd̄ā(1, 2, 3) = �dd̄a(1, 2, 3)

= �d̄da(1, 2, 3) = −ei(k1+k2+k3 )·dxV ∗
3 , (C16c)

where we have abbreviated the momentum labels ki by
i = 1, 2, 3, and the interaction vertex Vk is defined in
Eq. (88). For clarity, we have replaced the superscipts
μ, ν, λ ∈ {1, 2, 3, 4, 5, 6, 7, 8} by the associated field types
{a, b, c, d, ā, b̄, c̄, d̄}. Note that the cubic vertices are not
periodic in the first magnetic Brillouin zone because of our
choice of the Fourier transformation in (58). The correspond-
ing vertices �̃μνλ(k1, k2, k3) in the Bogoliubov basis can be
obtained from Eq. (152).

APPENDIX D: APPENDIX D: MAGNON DAMPING FOR
� = K AND SMALL J3 > 0

The full analytical calculation of the matrix elements
for the magnon-magnon interaction gives deviations in the
magnon damping as compared with the constant matrix el-
ement approximation near certain symmetry points on the
momentum plane, where the single-magnon modes become
damped at all energies. This damping becomes even stronger
if the values of the third-nearest-neighbor coupling J3 are
smaller than the other microscopic constants. In this Ap-
pendix, we present the numerical evaluation of the damping
and of the neutron scattering intensity in this regime, for the
following values of the microscopic parameters:

J = −8 meV, (D1a)

K = � = 7 meV, (D1b)

J3 = 0.5 meV. (D1c)

This set of parameters is shown in Fig. 14 as a blue dot
along the K = � line.
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FIG. 17. The neutron-scattering intensity I(k, ω) normalized by the square of the atomic form factor as given in Eq. (194) with magnon
lifetime effects in the iDE approximation given by Eq. (167), evaluated for the model parameters given in Eqs. (D1).
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The magnon damping evaluated numerically in the Born
approximation (as described in Sec. V E) for these parameters
is presented in Fig. 15. The magnon damping evaluated nu-
merically using the iDE approach (as described in Sec. V F)
is presented in Fig. 16. The neutron scattering intensity eval-
uated numerically (as described in Sec. VI) is presented in

Fig. 17. The amplitude of the damping increases in the middle
of the X -� and Y -�′ lines as the ratio of J3 to the other scales
K , �, and J decreases. It results in very large broadening
of the single magnon peaks in these areas of the momentum
plane, while the single-magnon modes remain well-defined in
all other areas of the momentum plane.
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