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The spin-Peierls transition at TSP of spin- 1
2 chains with isotropic exchange interactions has previously been

modeled as correlated for T > TSP and mean field for T < TSP. We use correlated states throughout in the J1-J2

model with antiferromagnetic exchange J1 and J2 = αJ1 between first and second neighbors, respectively, and
variable frustration 0 � α � 0.50. The thermodynamic limit is reached at high T by exact diagonalization of
short chains and at low T by density matrix renormalization group calculations of progressively longer chains.
In contrast to mean field results, correlated states of 1D models with linear spin-phonon coupling and a harmonic
adiabatic lattice provide an internally consistent description in which the parameter TSP yields both the stiffness
and the lattice dimerization δ(T ). The relation between TSP and �(δ, α), the T = 0 gap induced by dimerization,
depends strongly on α and deviates from the BCS gap relation that holds in uncorrelated spin chains. Correlated
states account quantitatively for the magnetic susceptibility of TTF-CuS4C4(CF3)4 crystals (J1 = 79 K, α =
0, TSP = 12 K) and CuGeO3 crystals (J1 = 160 K, α = 0.35, TSP = 14 K). The same parameters describe the
specific heat anomaly of CuGeO3 and inelastic neutron scattering. Modeling the spin-Peierls transition with
correlated states exploits the fact that δ(0) limits the range of spin correlations at T = 0 while T > 0 limits the
range at δ = 0.

DOI: 10.1103/PhysRevB.101.054411

I. INTRODUCTION

Jacobs et al. [1] identified the spin-Peierls transition at
TSP = 12 K in the organic crystal TTF-CuS4C4(CF3)4. The
spin- 1

2 chain at T > TSP has equally spaced cation radi-
cals TTF+ and is dimerized at lower T . They analyzed the
magnetic susceptibility χ (T ) using the linear Heisenberg
antiferromagnet with equal exchange J1 to both neighbors
for T > TSP and alternating exchange J1(1 ± δ(T )) in the
dimerized phase. The T dependence of δ(T ) followed the
BCS gap equation of superconductors. Subsequently, Hase
et al. [2] identified the inorganic spin-Peierls crystal CuGeO3

with TSP = 14 K based on spin- 1
2 chains of Cu(II) ions. The

magnetic susceptibility at T > TSP indicated [3] exchange
J2 = αJ1 with α = 0.35 between second neighbors in addition
to J1. However, δ(T ) did not follow BCS and extensive
CuGeO3 studies have been inconclusive [4] with respect to
frustration α. These prototypical spin-Peierls (SP) crystals
have been analyzed with correlated states for T > TSP but only
as uncorrelated or mean field for T < TSP.

Spin- 1
2 chains have been long studied theoretically as sim-

ple 1D systems with two states, α and β, per site. The linear
Heisenberg antiferromagnet (HAF) is the α = 0 limit of the
J1-J2 model, Eq. (4) below. The HAF may well be the best
characterized many-body system, and the J1-J2 model also has
an extensive literature.

*manoranjan.kumar@bose.res.in
†soos@princeton.edu

The electronic problem for SP transitions is to obtain the
thermodynamic limit of the free energy per site A(T, δ) at
temperature T and dimerization δ. In reduced (J1 = 1) units,
we have

A(T, δ) = −T ln Q(T, δ). (1)

The thermodynamic limit is known for free fermions but not
for correlated systems such as the HAF or the J1-J2 model.
SP modeling has consequently been approximate and subject
to revision due to computational advances. In particular, we
show below that δ(T ) for the HAF does not follow BCS.

We model both transitions with a recent method that
combines exact diagonalization (ED) of short chains with
density matrix renormalization group (DMRG) calculations
of progressively longer chains [5]. The premise is that the full
spectrum {E (δ, N )} of large systems is never needed. Since
T limits the range of spin correlations, ED is sufficient once
the system size exceeds the correlation length. Bonner-Fisher
results [6] to N = 12 were used [1] for χ (T ) of TTF+ chains
at T > TSP. ED to N = 24 is now accessible. DMRG for
larger N yields the spectrum {E (δ, N )} up to some cutoff
EC (δ, N ), thereby extending thermodynamics to lower T . The
hybrid approach is particularly well suited for SP systems
because dimerization opens a gap that limits spin correlations
at T = 0.

The driving force for dimerization is the partial derivative
∂A(T, δ)/∂δ that is opposed by the lattice. The simplest
lattice model is used in conventional approaches [7–9] to the
Peierls or SP instability: The coupling is linear, the potential
energy δ2/2εd per site is harmonic, and the stiffness 1/εd is
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independent of T . The equilibrium dimerization is

δ(T )

εd
= −

(
∂A(T, δ)

∂δ

)
δ(T )

. (2)

At T = 0, A(0, δ) = E0(δ) is the ground-state energy per
site. DMRG returns the derivative E ′

0(δ, N ) of large systems
and the extrapolated limit E ′

0(δ). Dimerization decreases and
vanishes at TSP, where 1/εd = −A′′(TSP, 0). In principle, the
observed TSP is the model parameter that specifies both
the stiffness and δ(T ). To emphasize the point, we refer to the
equilibrium susceptibility as χ (T, TSP) over the entire range.
Moreover, the driving force is a property of the electronic
system that is balanced by whatever model is adopted for the
lattice.

The equilibrium dimerization is explicitly known for free
fermions; δ(T ) for a half-filled tight-binding band is given by

1

εd
= 8

π

∫ π/2

0
dk

sin2 k

ε(k, δ(T ))
tanh

ε(k, δ(T ))
2T

,

ε(k, δ) = 2
√

cos2 k + δ2 sin2 k. (3)

The stiffness is half as large for spinless fermions, which
corresponds to the XY spin- 1

2 chain. The band gap opens as
2ε(π/2, δ) = 4δ and δ(0) goes as exp(−1/εd ) in the weak-
coupling limit. The spinless fermion representation of the
HAF has interactions between first neighbors. The HAF is
correlated. Although not exact, the HAF gap opens [10] as
δ3/4 based on diverse numerical studies collected in Ref. [11].
The DMRG exponent in the range 0.001 � δ � 0.10 is [12]
0.7475 ± 0.0075.

To illustrate correlations and frustration, we show in Fig. 1
the dimerization of spin chains with TSP = 0.09 (or 0.09J1).
The fermion curve is Eq. (3) with 4/π instead of 8/π ; the
band gap 4δ(0) = 3.55TSP is within 1% of the BCS gap
relation. The other curves are A′(T, δ, N ) for J1-J2 models
with N = 32 in Eq. (4), periodic boundary conditions, and
α = 0 (HAF), 0.35, and 0.50. The fermion δ(T ) scaled by
1/1.59 is the dashed line through the HAF points; the scaled T
dependence is nearly BCS. The stiffness increases by an order
of magnitude from the HAF to MG while δ(0) decreases by a
factor of four and δ(T ) clearly deviates from free fermions.

We analyze SP transitions of the J1-J2 model with frus-
tration 0 � α � 0.50. Under some conditions, numerical ad-
vances have made accessible the thermodynamic limit of
correlated states of 1D systems. The influential but approxi-
mate HAF analysis [1,13] of TTF-CuS4C4(CF3)4 was widely
thought to apply to the larger data set made possible by sizable
CuGeO3 crystals. But CuGeO3 turned out to be different
and has largely resisted modeling. Correlated states provide
a consistent description of both SP transitions.

The paper is organized as follows. Section II presents the
calculation of A′(T, δ) in J1-J2 models with frustration α and
the criterion for the thermodynamic limit. We model in Sec. III
the magnetic susceptibility χ (T, TSP) of TTF-CuS4C4(CF3)4

with two parameters, J1 = 79 K and TSP = 12 K. The CuGeO3

parameters J1 = 160 K, α = 0.35, and TSP = 14 K account
for both χ (T, TSP) and the specific heat anomaly, C(T, TSP).
In Sec. IV we discuss the CuGeO3 excitations probed by
inelastic neutron scattering, not modeled previously, that
give an independent determination of J1. We also study the
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FIG. 1. Equilibrium dimerization δ(T ) of spin chains with TSP =
0.09 leading to stiffness 1/εd and δ(0) in Eq. (2). The exact free
fermion curve is Eq. (3) with 4/π instead of 8/π . The HAF (α = 0),
α = 0.35, and MG (α = 0.50) curves are based on Eq. (4) with N =
32 spins. The HAF dimerization is close to the fermion δ(T )/1.59.
Note the large variation of 1/εd and δ(0) in chains with equal TSP.

Majumdar-Ghosh (MG) point [14], α = 0.50, where the exact
ground state is known. Aspects and limitations of 1D models
are mentioned in the discussion (Sec. V).

II. DIMERIZED J1-J2 MODEL

The J1-J2 model has isotropic exchange interactions
J1, J2 = αJ1 between first and second neighbors of a regular
(δ = 0) spin- 1

2 chain. The dimerized model has alternating
J1(1 ± δ) along the chain. We consider finite chains with
N = 4n spins, periodic boundary conditions, and J1 = 1 as
the unit of energy. The electronic Hamiltonian is

H (δ, α) =
∑

r

[1 + δ(−1)r]�Sr · �Sr+1 + α
∑

r

�Sr · �Sr+2. (4)

The HAF is the special case α = δ = 0. The ground state of
H (0, α) is nondegenerate for 0 � α � αc = 0.2411, the quan-
tum critical point [15] that separates a gapless phase from the
gapped dimer phase with a doubly degenerate ground state.
The exact δ = 0 ground state is known at α = 0.50, the MG
point [14], that marks the onset of an incommensurate phase.
Finite δ breaks inversion symmetry at sites and increases the
singlet-triplet gap �(δ, α) but does not change the length in
systems with periodic boundary conditions. The analysis does
not depend on the index α which is suppressed below.

We consider the equilibrium Eq. (2) with increasing system
size to obtain the thermodynamic limit at finite T and then
evaluate δ(T ) in models with TSP > T . The free energy per
spin of finite chains is

A(T, δ, N ) = −T N−1 ln Q(T, δ, N ). (5)

The Boltzmann sum in Q(T, δ, N ) is over the 2N spin states
with energies Er (δ, N ). Exact diagonalization (ED) yields the
full spectrum of short chains. The equilibrium dimerization
requires the partial derivative that we approximate as

A′(T, δ, N ) ≈ A(T, δ + ε, N ) − A(T, δ − ε, N )

2ε
. (6)
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FIG. 2. Driving force for dimerization, −A′(T, δ, N ), of HAF
chains with N spins and α = 0 in Eq. (4). N = 16 and 20 are exact.
DMRG for N = 24 and 32 is shown up to T ′(δ, N ), shown as open
circles, the maximum of SC (T, δ, N )/T discussed in the text. Arrows
at T = 0 are thermodynamic limits that increase with δ.

The numerator is accurate to three decimal places for ε =
0.001. We find that the size dependence of A′ is considerably
weaker than that of A, presumably due to cancellations in the
numerator.

The hybrid ED/DMRG method [5] follows the size de-
pendence of the quantity of interest, here the driving force
−A′(T, δ, N ). Since T reduces the range of spin correlations,
ED up to N = 24 for δ = 0 or N = 20 for δ > 0 returns
the thermodynamic limit at high T . DMRG with periodic
boundary conditions [16] is then used to obtain the lowest few
thousand states of larger systems. The spectrum Er (δ, N ) �
EC (δ, N ) up to a cutoff defines a truncated partition func-
tion QC (T, δ, N ) and hence a truncated entropy per site,
SC (T, δ, N ). Finite-size gaps reduce SC (T, δ, N ) compared to
the actual entropy at low T while truncation reduces it at high
T . Since SC (T, δ, N )/T converges from below with increasing
N , its maximum at T ′(δ, N ) is the best choice for a given
cutoff EC (δ, N ). The cutoff is increased until T ′(δ, N ) is in-
dependent or almost independent of EC . The thermodynamic
limit of A′(T ′, δ) at T ′(δ, N ) is approximated by DMRG at
system size N .

Figure 2 illustrates the T dependence of −A′(T, δ, N ) of
the HAF. As expected for any α, −A′ decreases with T and
increases N to the thermodynamic limit. The N = 16 and 20
lines are exact. DMRG results for N > 20 extend to the points
T ′(δ, N ), the maxima of SC (T, δ, N )/T that are shown as
open circles. Finite-size gaps are evident around T ∼ δ ∼ 0,
where −A′(T, δ, N ) is constant. Arrows indicate the T = 0
intercepts, −E ′

0(δ, N ), that are obtained by extrapolation of
ground-state DMRG calculations [12] at constant δ. Since δ

opens a magnetic gap in the infinite chain, the size dependence
decreases as seen at δ = 0.101. Convergence to the thermody-
namic limit is found by T ∼ 0.15. The general criterion based
on T ′(δ, N ) is evidently conservative for A′(T, δ, N ), which is
seen to converge at lower T .

The size dependence of A′(T, δ, N ) in the dimer phase
is shown in Fig. 3 for α = 0.35 and 0.50 in Eq. (4). The
MG ground states are the two Kekulé valence bond diagrams
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FIG. 3. Same as Fig. 2 for frustration α = 0.35 and MG (α =
0.50) in Eq. (4).

with singlet pairing either between all sites 2r, 2r − 1 or all
sites 2r, 2r + 1. The energy per site is −3/8 for even N
in Eq. (4) and A′(0, δ, N ) = −3/8 is exact [17] to order δ.
The thermodynamic limit is reached by T ∼ 0.13 for α =
0.50. The size dependence at α = 0.35 is intermediate. The
ground state is degenerate in the thermodynamic limit but
not for finite N . The −A′(0, 0, N ) intercept decreases with
N to B(0.35) = 0.078 in the thermodynamic limit, where
B(α) is the amplitude of the bond order wave [18]. The size
dependence again decreases with δ.

Figures 2 and 3 indicate how A′(T, δ, N ) approaches the
thermodynamic limit. The convergence depends on the model
and the largest system Nm,

A′(T, δ, Nm) → A′(T, δ), T > T ′(δ, Nm). (7)

T ′(δ, Nm) is the maximum of SC (δ, T, Nm )/T of the largest
system considered. We have performed DMRG calculations
up to N ∼ 100, but smaller N may be sufficient and conver-
gence at δ = 0 typically also holds for δ > 0. The system
size is eventually limited [5] by the numerical accuracy of the
dense energy spectrum, which is of course model dependent.
Although the mathematically interesting A′(T, 0) at T ∼ 0 is
out of reach, modeling SP transitions merely requires TSP >

T ′(0, Nm). The equilibrium Eq. (2) then gives δ(T ) in the
thermodynamic limit.

Figure 4 shows A′(T, δ, N ) vs δ for models with N = 32
and α = 0 (HAF) or 0.50 (MG). These curves are the lower
and upper bounds of −A′(T, δ, N ) for J1-J2 models with 0 �
α � 0.50. The δ = 0 intercept at T = 0 decreases from 3/8
at α = 0.50 to zero at αc = 0.2411, where [12,19] E ′

0(δ) =
−0.62δ0.33. The HAF result [12] is E ′

0(δ) = 0.56δ0.44. The
graphical solutions δ(T, α) of Eq. (2) are the intersections in
Fig. 4 of A′(T, δ, N ) with dashed lines δ/εd at the indicated
stiffness. The chains are unconditionally unstable for finite εd

since E ′
0(δ) is finite at δ = 0 for α > αc while E ′′

0 (δ) diverges
at δ = 0 for α < αc. The E ′

0(δ) cusp at δ = 0 in the dimer
phase leads to the flatter two δ(T ) curves [17] in Fig. 1.

We conclude that the thermodynamic limit A′(T, δ) can be
reached in finite chains at T = 0 when δ > 0 or at δ = 0 when
T > 0. The T > TSP range is more accessible numerically
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FIG. 4. The driving force −A′(T, δ, N ) at reduced T of MG and
HAF chains with N = 32 and α = 0.50 and 0 in Eq. (4). The dashed
lines are δ/εd and crossing points are solutions δ(T ) to Eq. (2). The
HAF and MG curves are lower and upper bounds for frustration 0 �
α � 0.50.

for large TSP/J1 that in turn generates large δ(0). The relation
between TSP and δ(0) is strongly model dependent as seen in
Fig. 1.

III. MAGNETIC SUSCEPTIBILITY AND SPECIFIC HEAT

A sudden decrease of the molar magnetic susceptibility
χ (T ) at T < TSP is a direct manifestation of an SP transition.
Figure 5 shows published data for [1] TTF-CuS4C4(CF3)4 and
[2,20] CuGeO3 on a log scale that emphasizes low T . The
excellent TTF+ fit shown in Fig. 5 of Ref. [1] or Fig. 10 of
Ref. [13] is based on the HAF with J1 = 77 K and g = 1.97
for T > TSP = 12 K. The g value is within the range given by
electron spin resonance (ESR) with the applied magnetic field
along the c axis. The T ∼ 0 limit is shown as slightly positive
(∼0.08 × 10−3 emu/mol).

FIG. 5. Absolute molar magnetic susceptibility: TTF-
CuS4C4(CF3)4 data from Fig. 5 of Ref. [1] or Fig. 10 of Ref. [13];
CuGeO3 data from Ref. [2] to 10 K and Ref. [20] for T > 10 K. Fits
are discussed in the text. The δ = 0 lines are DMRG up to T ′(0, N )
shown as filled circles.
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FIG. 6. Molar specific heat C(T ) of CuGeO3 shown as the en-
tropy derivative S′ = C/T : Blue circles from Ref. [24], green stars
and A from Ref. [25]. The calculated C(T, 0)/T curves are ED for
N = 24, DMRG for N = 32 and 48. The equilibrium C(T, TSP )/T is
the bold red line, Eq. (8), whose first term is labeled “a”.

We included this T -independent contribution in the cor-
related fit shown with J1 = 79 K, TSP = 12 K, and g = 1.97.
The δ = 0 curve above TSP is ED for N = 24 and DMRG
for N = 32 with α = 0 in Eq. (4). In the dimerized phase,
we calculated χ (T, TSP) for N = 32 at the equilibrium δ(T )
given by Eq. (2). The correlated fit is equally quantitative. It
has one fewer parameter and is internally consistent: TSP and
J1 determine both the stiffness 1/εd = 1.96 and δ(0) = 0.103.
The previous χ (T, δ(T )) was based [1] on a mean field δ(T )
for the T dependence and required an adjustable δ(0) = 0.126
that, as noted, [1] leads to TSP = 9 rather than 12 K.

The range of spin correlations is reduced at low T by sub-
stantial dimerization δ(0) = 0.10. The thermodynamic limit
is reached in relatively short chains that are now amenable
to quantitative analysis. Correlated states clarify the SP tran-
sition of TTF-CuS4C4(CF3)4. Contrary to long held expec-
tations, the HAF dimerization δ(T ) does not follow free
fermions or BCS.

The χ (T ) data for CuGeO3 are from Ref. [2] up to
10 K (TSP = 14 K) and from Ref. [20] from 10 to 950 K
(TSP = 14.3 K), kindly provided in digital form by Professor
Lorenz. There is a mismatch at 10 K. The range (∼0.5 K) of
reported TSP reflect variations of growth conditions that are
discussed in Ref. [21]. We retained the previous parameters
[20] based on ED for N = 18 and the χ (T ) maximum at
T = 56 K: J1 = 160 K, frustration α = 0.35 in Eq. (4), and
g = 2.256 from ESR. The δ = 0 fit is quantitative for T >

TSP = 14 K (0.09J1). The points T ′(N ) on the δ = 0 curve are
the SC (T, 0, N )/T maxima of truncated calculations at system
size N . The resulting χ (T, TSP) for T < TSP is consistent with
the available data and corresponds to δ(0) = 0.025. We extend
[20] or improve [22,23] previous T > TSP fits.

Sizable single crystals of CuGeO3 made possible other
measurements. The specific heat C(T ) to 20 K is shown in
Fig. 6 as the entropy derivative S′ = C/T in Refs. [24,25].
The dashed line is the reported lattice (Debye) contribution
[25], AT 2, with A = 0.32 mJ/mol K4. The specific heat has
not been modeled aside from the initial exponential increase
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with T . The anomaly is sharper and better resolved than in
small TTF-CuS4C4(CF3)4 crystals [26].

The equilibrium C(T, TSP) has two contributions [17] be-
low TSP,

C(T, TSP) = C(T, δ(T )) + ∂δ

∂T

[(
∂E (T, δ)

∂δ

)
T

+ δ(T )

εd

]
.

(8)

E (T, δ) is the internal energy per site, −[∂ ln Q(β, δ)/∂β]
with β = 1/kBT . The first term is evaluated at δ(T ) along
the equilibrium α = 0.35 line in Fig. 1, which can be fitted
quantitatively as

δ(T )

δ(0)
=

[
1 −

(
T

TSP

)a]b

, T � TSP, (9)

with a = 5.29 and b = 0.689. We used Eq. (9) to evaluate
∂δ/∂T . The calculated C(T, TSP)/T is the bold red line shown
in Fig. 6. The low-T behavior of δ = 0 chains is a finite-
size effect. Since gaps initially decrease C(T, N )/T , entropy
conservation requires increased C(T, N )/T before converging
from above to the thermodynamic limit. The N = 48 and 24
gaps are smaller and larger, respectively, than N = 32, which
is in the thermodynamic limit for T > 12 K.

The C(T, δ(T ))/T part of Eq. (8) is the curve labeled
“a” in Fig. 6. The ∂δ(T )/δT derivative is mainly responsible
for the sharp anomaly. The area under C(T, TSP)/T up to
TSP is within 5% of the accurately known δ = 0 area. The
adiabatic and mean field approximations for the lattice enforce
δ = 0 for T > TSP; this general problem for any transition
has long been recognized. The agreement between theory and
experiment by 20 K implies equal area under the measured,
dimerized, and δ = 0 curves in Fig. 6. Lattice fluctuations
observed above TSP must be offset by reduced C/T below TSP.
Overall, the anomaly is fitted rather well considering these
approximations.

IV. INELASTIC NEUTRON SCATTERING

Dimerization opens a gap �(δ, α) in gapless spin chains or
increases the gap in gapped chains. The gap is from the singlet
(S = 0) ground state to the lowest energy triplet (S = 1).
The opening of the HAF gap [10,11] �(δ, 0) or of �(δ, αc)
at the critical point [12,19] has been extensively discussed
using field theory and numerical methods; �(0, α) is finite
in the dimer phase, exponentially small just above αc, and
substantial at α = 0.50. We obtained the thermodynamic limit
of gaps in Fig. 7 by extrapolation of DMRG calculations up to
N = 96. As expected, size convergence is rapid for δ > 0.01.
The gap opens as

�(δ, α) = �(α) + Dδγ , (10)

with � = 0.0053, D = 2.03, and γ = 0.585 for α = 0.35.
The T dependence is given by δ(T ). The large MG gap is
�(0, 0.5) = 0.233.

Inelastic neutron scattering (INS) at T = 0 is exclusively
to triplets in models with isotropic exchange. Figure 8 shows
the scaled gap �(T )/�(0) vs T/TSP. The solid line is the
calculated �(δ(T ), 0.35) in Eq. (10) with δ(T ) in Eq. (9)
or the α = 0.35 curve in Fig. 1. The gap �J1 = 0.85 K is
almost an order of magnitude below INS resolution and scales
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FIG. 7. Scaled singlet-triplet gap �(T, δ, N ) at T = 0 of N-spin
chains in Eq. (4) with dimerization δ and frustration α = 0.35 and
0.50. The lines are 1/N extrapolations of DMRG to N = 96. Note
the rapid convergence at the MG point.

to 0.022 for T > TSP and δ(0) = 0.025. The dashed line is
the gap ratio δ(T )/δ(0) for free fermions in Fig. 1. INS
studies of CuGeO3 crystals in Refs. [27–30] have reported the
T dependence of the singlet-triplet gap �(T ). (The organic
crystals are unsuitably small [30].) Large deviations from
the free fermions or BCS were unexpected and unexplained.
Correlated states are consistent with these data, and how
quantitatively remains to be seen.

The calculation of the INS spectrum is straightforward
in finite systems with periodic boundary conditions. Triplets
|Tn(q)〉 at En(q) relative to the singlet ground state |G〉 are re-
quired. At T = 0, the INS intensity Mn(q) for energy transfer
ω = En(q) and momentum transfer q is [31]

Mn(q) = 2π
∣∣〈Tn(q)|Sz

q|G〉∣∣2
,

Sz
q = (4n)−

1
2

∑
r

eiqrSz
r . (11)
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FIG. 8. Scaled singlet-triplet gap �(T )/�(0) vs T/TSP. The
solid line is �(δ(T ), α)/�(δ(0), α) with α = 0.35 in Eq. (10); the
dashed line is δ(T )/δ(0) for free fermions in Fig. 1. The symbols are
inelastic neutron data from Refs. [27–30].
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FIG. 9. Exact triplet excitations En(q) at wave vector q in 24-
spin chains: Left panel, α = 0 (HAF); right panel, α = 0.35. The
color coding is the intensity Mn(q) > 0.001 in Eq. (11). The lowest
triplets E1(q) for α = 0.50 (MG) are the open circles on the right.
The dashed lines are the spinon boundaries, Eq. (13).

The x or y components of Sq also yield Mn(q). The lowest
triplet of H (δ, α) is E1(π ) = �(δ, α). The INS intensity at
finite T is the thermal average [31] of Eq. (11) over excited
states as well as |G〉. The static structure factor at T = 0 is
given by ground-state spin correlation functions

S(q) = 〈G|Sz
−qSz

q|G〉. (12)

The total INS intensity per spin is π/2 for chains with a singlet
ground state. The thermal average of S(T, q) in Eq. (12) is far
less tedious since it only requires the T dependence of N/2
correlation functions.

The Bethe ansatz [32] has provided the exact ground state
of the HAF and the so-called class C states with S > 0 that can
be solved exactly. Faddeev and Takhtajan [33] obtained the
double-spinon continuum in the thermodynamic limits. The
lower and upper boundaries at wave vector q are

ε1(q) = π

2
sin q, 0 � q � π,

ε2(q) = π sin
q

2
. (13)

Each state is fourfold degenerate, two S = 1
2 spinons forming

a triplet or a singlet. The boundaries up to q = π are the
dashed lines in the HAF panel of Fig. 9. The spectrum is
symmetric about q = π . The singlet-triplet gap ε1(q) was
found earlier by des Cloizeaux and Pearson [34].

The almost quantitative calculation of intensities Mn(q)
in the thermodynamic limit has recently been achieved [35].
Mourigal et al. [36] have confirmed theory in detail on a Cu(II)
spin chain with J1 = 2.93 K; the INS analysis in Fig. 1(d)
of Ref. [36] was carried out at finite T using both two-
and four-spinon calculations. S(q, ω) is continuous in the
thermodynamic limit. Figure 1(d) is color coded according
to intensity and impressive agreement between theory and
experiment is shown, as in Fig. 9, side by side with 0 � q � π

and π � q � 2π .
When total spin is conserved, a system of N = 4n spins

has 3(4n)!/[(2n − 1)!(2n + 2)!] triplets out of which only

n(2n + 1) are in class C [32] and have excitation energy
between ε2(q) and ε1(q) in the thermodynamic limit. The
S(q, ω) spectra in the HAF panel of Fig. 9 are for α = δ = 0
and N = 24. The color coding is according to the intensity
Mn(q) > 0.001. There are a few triplets not in class C, but
99.4% of the total intensity is between the dashed lines. The
discrete S(q, ω) spectra are close to the thermodynamic limit
for both excitations and intensities.

The S(q, ω) spectra in the α = 0.35 panel of Fig. 9 are for
δ = 0, N = 24 and color coded according to Mn(q) > 0.001.
ED returns the full spectrum. The special feature of the triplets
shown is greater intensity than over 500 000 other triplets. The
triplets account for 99.5% of the total intensity and, again with
a few outliers, resemble the spinons in the left panel.

Frustration decreases the dispersion E1(q) of the lowest
triplet, as shown by open circles in the MG (α = 0.50) curve.
The HAF triplets E1(q, N ) are slightly above ε1(q), which
at q = π is entirely due to finite size. The q = π , α = 0.35
gap is mainly due to finite size while the α = 0.50 gap is
close the thermodynamic limit of 0.233 in Fig. 7. The HAF
dispersion has previously been used to infer J1 = 2E1/π from
the measured E1(π/2).

Arai et al. [37] reported the S(q, ω) spectrum of CuGeO3

and interpreted it using the HAF while also pointing out
differences. At 10 K, the observed S(q, ω) intensity peaks at
π/2 and 3π/2 are at 16 meV (186 K). The peaks for α = 0.35,
N = 24 in Fig. 9 are at reduced energy E1(π/2) = 1.14, or
E1 = 182 K for J1 = 160 K. The agreement is well within the
combined accuracy. The N = 16, 20, and 24 gaps extrapolated
as 1/N return E1 = 1.1 in the thermodynamic limit. The weak
size dependence is typical of large gaps. The upper limit of the
INS spectrum extends [37] to 32 meV at q = π at both 10 and
50 K. The calculated T = 0 spectrum with appreciable Mn(π )
also extends to ω ∼ 2E1(π/2) = 2.28.

The calculations in Fig. 9 approximate the unknown
S(q, ω) at α = 0.35 in the same sense that N = 24 approx-
imates the HAF spectrum. S(q, ω) at q = π/2 or 3π/2 of
CuGeO3 has a noticeably narrower [37] energy spread than
the spinon spread ε2(π/2) − ε1(π/2). The correlated states in
Fig. 9 capture this narrowing at α = 0.35 compared to α = 0.
Indeed, the width is entirely suppressed at α = 0.50, where
INS at q = π/2 or 3π/2 is a δ function at E = J1. This exact
result for a triplet, not reported previously, is derived in the
Appendix.

The INS data in Fig. 10, upper panel, for the static structure
factor S(T, q) of CuGeO3 is the rescaled Fig. 2 of Ref. [37].
Large differences from HAF were noted [37]. The dashed line
is the exact S(q) = (1 − cos q)/4 at T = δ = 0, α = 0.50,
where finite size simply leads to discrete q. Although S(q)
depends on α and δ, the area π/2 under S(q) does not.
The 10 K data are almost as broad as the MG curve before
considering the resolution in q.

The calculated S(T, q) in the lower panel of Fig. 10
are for the HAF and for CuGeO3 parameters: J1 = 160 K,
α = 0.35, and TSP = 14 K. The HAF structure factor for
N = 24, δ = 0 is strongly peaked at q = π and diverges in
the thermodynamic limit, but the size dependence elsewhere
is small since the area is conserved [38]. The α = 0.35 curves
at T = 0 and 20 K (0.125) are for N = 24 and δ = 0.025 and
0, respectively. We obtained explicitly the T dependence of
the spin correlation functions in S(q). The T = 0 and 20 K
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FIG. 10. Upper panel: Static structure factor S(T, q) rescaled
from Fig. 2 of Ref. [37]. The exact S(q) at the MG point is (1 −
cos q)/4 at T = 0. Lower panel: Calculated S(T, q) for N = 24 spins
at α = 0.35 and 0.0. The area under T = 0 curves is π/2 in both
panels. The HAF peak at q = π diverges in the thermodynamic limit.

curves illustrate similar spin correlations at δ > 0, T = 0
and T > 0, δ = 0, as seen in experiment. Convolution with a
broadening function in q will be needed to match the observed
peaks that depend on resolution in q. The T = 50 K (0.313)
line is based on δ = 0, N = 20 since the thermodynamic limit
is reached at lower T . We understand the modest broadening
at 50 K by noting that J1 = 160 K is large. We conclude that
a 1D model with correlated states accounts reasonably well
for these INS data.

V. DISCUSSION

Structural changes at Peierls or SP transitions as well as
thermal expansion or contraction have been probed by elastic
x-ray or neutron scattering, as discussed in reviews of widely
different classes of quasi-1D crystals [39–41]. We note that
3D changes are always found that in some cases exceed those
of the 1D chain. While delicate growth conditions leave open
the definitive CuGeO3 structure, the largest change below TSP

is along the b axis rather than the ∼1% dimerization of the
chain along the c axis [42]. Small displacement ±u of Cu
ions along c is consistent with the small calculated δ(0) =
0.025 in the correlated model; they are related by the linear
spin-phonon coupling constant. Elastic scattering below TSP

from superlattice points is due to structural changes, not just
dimerization, that are all initiated at TSP but do not necessarily
vary identically with T . Elastic superlattice scattering and
coupling to 3D lattices are beyond the scope of this paper.

We have applied the hybrid ED/DMRG method to the
best characterized SP transitions and to the J1-J2 model,
Eq. (4), with frustration 0 � α � 0.50 and isotropic exchange
J1, J2 = αJ1 between first and second neighbors. We exploit
the fact that δ(0) limits the range of spin correlations at T = 0
while finite T limits the range at δ = 0. Internal consistency
requires TSP to govern both the stiffness 1/εd and dimerization
δ(T ). The relevant system size depends on TSP/J1, about 50

spins for the transitions modeled. When the thermodynamic
limit can be reached, the SP transition becomes essentially
model exact. On the other hand, the SP instability at T ∼ 0 is
mathematically motivated and beyond the hybrid method. The
general problem is the SP transition at arbitrary TSP while we
have modeled specific systems with known TSP.

Correlated states account quantitatively for the magnetic
susceptibility of both crystals. On the theoretical side, δ(T )
of that HAF deviates from free fermions or BCS, contrary to
previous expectations based on mean field. We place CuGeO3

in the dimer phase with α = 0.35 on the basis of χ (T ), the
specific heat, the ratio �(T )/�(0) of the singlet-triplet gap,
and INS data that provide an independent determination of
J1 = 160 K. The first inorganic SP system is also, to the best
of our knowledge, the first physical realization of the dimer
phase of the J1-J2 model.

Isotropic exchange between near neighbors is the domi-
nant magnetic interaction that governs the thermodynamics
of spin chains. However, such 1D models are approximate
and incomplete. Approximate because spin-orbit coupling
generates corrections to isotropic exchange and g factors that
are more important in Cu(II) systems than for organic rad-
icals. Incomplete because dipolar interaction between spins
are neglected, as well as hyperfine interactions with nuclear
spins and all interchain interactions. More detailed analysis
of specific quasi-1D systems beyond, for example, the J1-J2

model will certainly be needed at low T . Neutron [27–30]
and ESR [43] data indicate J ′ ∼ J1/10 between chains and
corrections to isotropic exchange, respectively, in CuGeO3.
The present results establish that the J1-J2 model is the proper
starting point for finer low-T modeling.

A static magnetic field H can readily be added to Eq. (4)
as −gμBHSZ , where SZ is the total spin component along H
and μB is the Bohr magneton. Since total S is conserved, the
energy spectrum {E (δ, N )} of correlated states has resolved
Zeeman energies when H > 0, and the tensor g may often
be taken as a scalar. Multiple studies of the SP transition of
CuGeO3 in applied fields of a few teslas have been reviewed
[4]. The field dependence has been successfully modeled. We
anticipate at most minor changes on analyzing magnetic field
effects using correlated states.

We are computing correlation functions of spin- 1
2 chains

as functions of T and H and separation between spins. One
goal is to quantify S(T, q), the T dependence of the static
structure factor, Eq. (12), in models with increasing frustration
α. A limitation of the hybrid method became apparent in
connection with S(q, ω). While ED is computed in sectors
with fixed q and SZ , DMRG is performed in sectors with
fixed SZ up to a cutoff EC (δ, N ). We can infer S and q, but
the SZ = 1 states below the cutoff cluster around q ∼ π in
Fig. 9. The spectrum around q ∼ π/2 that starts at E > 1 is
soon above EC (δ, N ) with increasing system size.

In summary, we have modeled the SP transition of the
HAF and J1-J2 model with α � 0.5 in Eq. (4) using correlated
states. The thermodynamic limit of finite chains is reached
under conditions that are satisfied by TTF-CuS4C4(CF3)4 and
CuGeO3. The SP transition depends strongly on frustration
α = J2/J1 because the α < αc = 0.2214 phase is gapless with
a nondegenerate ground state while α > αc is gapped with a
doubly degenerate ground state.
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APPENDIX

Choose the Kekulé diagram with N/2 singlet pairs at sites
2r, 2r − 1 as the ground state |G〉 at the MG point. The J1-J2

model reads

H

(
1

2
, 0

)

= H0 +
N/2∑
r=1

[
�S2r · �S2r+1 + 1

2
(�S2r−1 · �S2r+1 + �S2r · �S2r+2)

]
.

(A1)

H0 describes isolated dimers 2r, 2r − 1 with singlet-triplet gap
E = 1. The second term acts on adjacent singlets pairs in |G〉.
Direct multiplication of spin functions shows that each term
annihilates |G〉; E0 = −3N/8 is exact.

Let |2m, 2m − 1〉 be the product function with a triplet at
sites 2m, 2m − 1 and singlets at sites 2r, 2r − 1, r 	= m. The
triplet degeneracy under H0 is N/2. The second term still
annihilates |2m, 2m − 1〉 when acting on adjacent singlets,
but not when acting on the triplet and either adjacent singlet.
Annihilation requires an out-of-phase linear combination of
triplets that occurs at q = π/2 or 3π/2,

|T, π/2〉 =
(

2

N

) 1
2

N
2∑

m=1

(−1)m|2m, 2m − 1〉. (A2)

The normalized triplet |T, π/2〉 is an exact excited state in
the thermodynamic limit. In Eq. (11), we find that SZ

π/2|G〉 =
(1/2)|T, π/2〉. All INS intensity at q = π/2 or 3π/2 is at
E = 1. The other Kekulé diagram with singlet pairs 2r, 2r + 1
gives the same result.
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