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Mapping skyrmion stability in uniaxial lacunar spinel magnets from first principles
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The identification of general principles for stabilizing magnetic skyrmion phases in bulk materials over wide
ranges of temperatures is a prerequisite to the development of skyrmion-based spintronic devices. Lacunar
spinels with the formula GaM4X8, with M = V, Mo and X = S, Se, are a convenient case study towards this
goal, as they are some of the first bulk systems suggested to host equilibrium chiral skyrmions far from the
paramagnetic transition. We derive the magnetic phase diagrams likely to be observed in these materials,
accounting for all possible magnetic interactions, and prove that skyrmion stability in the lacunar spinels is a
general consequence of their crystal symmetry rather than the details of the material chemistry. Our results are
consistent with all experimental reports in this space and demonstrate that the differences in the phase diagrams
of particular spinel chemistries are determined by the magnetocrystalline anisotropy, up to a normalization factor.
We conclude that skyrmion formation over wide ranges of temperatures can be expected in all lacunar spinels,
as well as in a wide range of uniaxial systems with low magnetocrystalline anisotropy.
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I. INTRODUCTION

The prediction and experimental demonstration of topo-
logically nontrivial magnetic structures, commonly called
magnetic skyrmions [1–3], has sparked considerable interest
in the conditions required for the formation of these phases
and their potential for applications in spintronic devices [4,5].
Most reports of skyrmion formation in bulk systems have
focused on cubic helimagnets, most frequently with the B20
or β-Mn structures—MnSi [3], FeGe [6], Cu2OSeO3 [7], and
CoxZnyMnz [8]—where skyrmions are typically observed in
a narrow range of fields and temperatures near the paramag-
netic transition. Much larger stability windows for skyrmions
have been reported in thin-film systems [9] and, recently, in
the bulk uniaxial helimagnet GaV4Se8 [10,11] and Heusler
alloys such as Mn1.4PtSn [12]. The realization of practical
skyrmion-based spintronic devices requires the wide stability
windows observed in these materials, motivating a search for
general principles leading to the formation of thermally robust
skyrmion phases.

The lacunar spinels GaM4X8 are a convenient model sys-
tem for studying mechanisms leading to robust skyrmion
stability at all temperatures below the Curie temperature.
GaV4S8 [13] and GaV4Se8 [10,11] have been reported as
skyrmion hosts with unusually wide thermal stability win-
dows, while GaMo4S8 has been suggested as a skyrmion host
on the basis of computational data [14]. Materials in this
class exhibit significant metal-metal bonding [15,16], with the
electronic structure defined by isolated M4 molecular units.
Their magnetic behavior is well described by interactions
between effective spins centered on the M4 clusters [17].
Furthermore, the R3m symmetry and strong Dzyaloshinskii-
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Moriya interactions (DMIs) common to these systems guaran-
tee that skyrmion formation can be treated with explicit spin
models as a largely two-dimensional problem.

Here, we demonstrate that skyrmion stability in GaM4X8

is a consequence of the symmetry of these materials rather
than specifics of the magnetic interactions, with the ex-
ception of magnetocrystalline anisotropy. We construct a
field-temperature magnetic phase diagram for the lacunar
spinels based on a general cluster expansion Hamiltonian
parametrized using density-functional theory (DFT) data
[18–23], which we find to be in close agreement with experi-
mental reports. By analyzing the sensitivity of the phase dia-
gram to all symmetrically allowed perturbations in the Hamil-
tonian, we find that the form of the phase diagram is largely
controlled by uniaxial anisotropy, as well as higher-order
in-plane anisotropy. In the low-anisotropy regime, skyrmion
formation is guaranteed by the lack of a competing canted
spin-wave phase magnetized along the high-symmetry axis,
consistent with phenomenological predictions [24], which
leads us to conclude that the phase behavior we compute is
likely to be broadly applicable to uniaxial magnets with strong
in-plane DMIs.

II. METHODS

A. Cluster expansion generation and fitting

We construct the magnetic cluster expansion following a
methodology similar to that described by Thomas and Van
der Ven [23,25,26]. Our cluster expansion of the internal
energy only includes magnetic degrees of freedom, where the
moment on each M4 tetrahedron is represented by a three-
dimensional unit vector. To construct the cluster expansion,
we identify all site clusters up to a target radius and number of
sites and the symmetry operations which map each cluster to
itself. Then we generate all possible basis functions for spin
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interactions on each cluster. Following previous derivations
of cluster expansions for orientational degrees of freedom
[20,21,27], we use products of spherical harmonics |l, m〉 =√

4πY l
m(φ, θ ) as a complete basis set for spin interactions,

where (φ, θ ) are the spin vector orientation in spherical co-
ordinates. We additionally group these products according to
the total symmetry of the interaction to form basis functions
of the form

|l1, l2; L, M〉 = 4π
∑

m1,m2

cl1,l2,L
m1,m2,M

Y l1
m1

(φ1, θ1)Y l2
m2

(φ2, θ2),

where cl1,l2,L
m1,m2,M

are Clebsch-Gordan coefficients. This proce-
dure isolates the basis functions corresponding to exchange
(L = 0), DMIs (L > 0, odd), and anisotropy (L > 0, even).
Finally, we find the purely real component of each basis
function invariant to the symmetry of the cluster and, us-
ing Gram-Schmidt orthogonalization, obtain an orthonormal
basis set for spin interactions on each cluster. The cluster
expansion implementation relies on an in-house PYTHON code
accelerated using the NUMBA package [28], while general
structure processing, data handling, and symmetry analysis
rely on the pymatgen package [29]. A detailed description
of the cluster expansion and the procedure used to generate
interaction functions is available in Supplemental Note 1 [30].

To obtain a fit for the interaction coefficients in the cluster
expansion from DFT data, we follow a standard methodology
designed for the automated generation of phase diagrams
[19,31]. First, we enumerate symmetrically distinct collinear
and spin-wave configurations compatible with supercells up
to size 4. We refine this data set by identifying the least
constrained correlation vectors in the input data as the eigen-
vectors of the correlation covariance matrix with the smallest
eigenvalues. We then obtain spin configurations correspond-
ing to these correlation vectors and add them to the fitting
data set. Finally, we fit the cluster expansion interaction co-
efficients using least-squares regression, while using a genetic
algorithm to eliminate basis functions from the Hamiltonian
so as to maximize the cross-validation score.

B. Monte Carlo sampling and ground-state search

We use a Hamiltonian Monte Carlo approach to sample
the finite-temperature behavior given by the cluster expan-
sion Hamiltonian. Our Monte Carlo implementation exactly
follows the formalism described by Wang et al. [32], with tra-
jectory sampling based on the No U-Turn Sampler/Dynamic
Multinomial Sampling methods [33,34]. All Monte Carlo
runs reported here are constant-field heating runs, where each
temperature step first rejects 800 uncorrelated samples for
equilibration and then saves 2000 uncorrelated samples for
production. To ensure that the obtained samples are uncor-
related, we set the number of Monte Carlo passes between
samples to exceed the estimated autocorrelation decay time.

To identify ground-state spin configurations, we first gen-
erate candidate structures using simulated annealing starting
from a random configuration and representative configura-
tions of known phases. We then relax each configuration to
its local minimum using conjugate gradient minimization and
save the lowest-energy structure.

C. Density functional theory calculations

DFT calculations are performed using the Vienna
Ab Initio Simulation Package (VASP) [35], using the
projector-augmented-wave method [36] with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [37].
We do not apply a Hubbard-U correction because our previous
benchmarks on GaV4Se8 revealed that the standard on-site
Hubbard-U approach leads to an incorrect electronic config-
uration and magnetic behavior [15]. All calculations account
for spin-orbit coupling and are converged to 10−6 eV in total
energy. We use a reciprocal space discretization of 100 k
points per Å−3 and a smearing width of 0.05 eV based on
a convergence of total energy across all distinct supercells
containing 2 formula units of GaMo4S8 to 0.5 meV/f.u. To
further reduce error arising from changes in the k-point mesh
across different supercells, we reference all magnetic con-
figuration energies to that of a c-axis ferromagnet computed
using the same supercell. In all cases, DFT calculations are
done statically, based on the experimentally observed low-
temperature structure.

III. RESULTS

A. Magnetic cluster expansion Hamiltonian

We begin by defining an effective spin Hamiltonian for the
magnetic behavior of a GaM4X8 lacunar spinel in the form of
a cluster expansion, which is a summation over interaction
correlation functions ϕ with interaction coefficients J . The
correlation functions ϕ are determined by the lattice type and
symmetry of the material, while the interaction coefficients J
are specific to each chemistry. Thus, we can systematically
explore the magnetic behavior of GaM4X8 by establishing
which magnetic phase diagrams are likely to arise given the
overall form of the Hamiltonian, across possible choices of
interaction parameters J .

The full form of a cluster expansion Hamiltonian is

E =
∑

�

∑

α

J�
α

∑

ω∈�

p̂ω

[
φ�

α

] =
∑

i

Jiϕi,

where φ are interaction basis functions and J are interaction
coefficients. Each interaction is defined with respect to a
cluster of sites ω, where symmetrically equivalent clusters are
grouped into orbits �. The interaction basis functions contain
all spin couplings consistent with the symmetry of the cluster,
which include conventional Heisenberg exchange, DMIs, and
anisotropy interactions, as well as any higher-order terms.
The symmetry operation p̂ω generates the cluster ω from a
reference cluster for its orbit �. The total contribution of a
basis function φ for the symmetrically equivalent clusters in
� defines the correlation function ϕ.

We take the symmetry of the crystal to be R3m as shown in
Figure. 1(a), which results from a low-temperature distortion
of the F 4̄3m vacancy-ordered spinel structure along the 〈111〉
direction. The magnetic sublattice consists of a distorted face-
centered-cubic (FCC) arrangement of M4 tetrahedral clusters,
shown in Fig. 1(b), where each M4 tetrahedron can be treated
as a single spin vector. As the distance between M4 clusters is
large, we approximate the magnetic energy with only on-site
and nearest-neighbor couplings. For the three symmetrically
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FIG. 1. (a) Low-temperature structure of a GaM4X8 lacunar spinel in the R3m conventional unit cell. (b) Model for the magnetic structure,
treating M4 tetrahedra as magnetic units forming a face-centered-cubic lattice, where the magnetic Hamiltonian consists of single-site and
nearest-neighbor interaction energies. Lattice vectors (ap, bp, cp) shown form the primitive lattice used to define the cluster expansion
Hamiltonian. (c) Example configurations of helimagnetic phases observed in lacunar spinels, where q denotes a propagation wave vector
and colors correspond to spin orientations.

distinct couplings present (on-site, out-of-plane pair, and in-
plane pair), we derive spin-interaction basis functions consis-
tent with the symmetry of each cluster. The basis functions are
polynomials of the spin-vector components, up to sixth order
for the on-site term and bilinear order for the pair terms. These
interactions, listed in Table I, form a complete basis set for
the magnetic Hamiltonian that is applicable to any material
with a relatively sparse FCC magnetic sublattice and R3m
symmetry.

The coefficients J of each correlation function ϕ

parametrize the variation of the Hamiltonian across different
chemistries. Thus, in order to understand the phase behavior
of all GaM4X8 lacunar spinels with R3m symmetry, it is
sufficient to evaluate how the field-temperature phase diagram
evolves with the components of J . We limit ourselves to J vec-
tors appropriate for locally ferromagnetic materials (J7 > 0,
J12 > 0), allowing for strong spin-orbit coupling. This regime
is characteristic of the behavior of skyrmion-hosting lacunar
spinels with M = V, Mo and X = S, Se, where the observed
magnetic phases are ferromagnet, cycloid, canted cycloid, and
skyrmion. Example configurations of these phases are shown
in Fig. 1(c).

B. Derivation of an example phase diagram for GaM4X8

Our strategy for exploring phase behavior in this system
is to construct a full field-temperature phase diagram for
one choice of J vector and then calculate how perturbations
in J translate to changes in phase transitions. While this
approach is only strictly valid for small deviations from the
initial choice of J , the degree to which extrapolation is valid
is determined by whether the form of the phase diagram is
more determined by the values of J or by which correlation
functions ϕ are present in the Hamiltonian. In this case, we
argue that given an appropriate normalization, the form of the
correlation functions ϕ plays the more important role, leading
to a universal behavior of the phase diagram.

We choose our initial J vector, J (0), by fitting the Hamil-
tonian to reproduce the magnetic behavior of GaMo4S8 as
computed from DFT. We choose GaMo4S8 as a convenient
reference point, as a recent report has suggested that this

material exhibits cycloid and skyrmion phases with partic-
ularly short wavelengths [14], which allows us to directly
study these phases with the periodic-cell Monte Carlo. Fur-
thermore, the electronic structure of GaMo4S8 appears to be
reasonably captured by the standard PBE functional, while
the better-known V-based analogs require more sophisticated,
computationally expensive methods such as RPA [15]. Fol-
lowing a state-of-the-art cluster expansion fitting procedure,
as well as a DFT calculation scheme designed to minimize
spurious sources of error (details available in the methods),
we obtain the J (0) vector listed in Table I with an RMSE
of 0.3 meV/formula unit (f.u.) across a total energy range
of 7 meV/f.u. The low absolute value of the error justifies
our choice of truncating the Hamiltonian at nearest-neighbor
interactions and bilinear pair couplings, as the inclusion of
any additional basis functions would likely only be capturing
noise in the DFT data. While both the total error and the
uncertainty on the components of J (0) are small, the sig-
nificance of these error bars in relation to phase behavior
is not immediately clear. However, as our objective is to
obtain a reasonable initial J (0) for our perturbative analysis,
we proceed to characterize the phase diagram given by this
fit and address the role of uncertainty, as well as general
perturbations to J , in a later section.

We first establish the ground states of the J (0) Hamiltonian
as a function of the total magnetization, which include cy-
cloid, canted cycloid, skyrmion, and ferromagnet phases. The
dominant periodicity of a helimagnet is set by the competi-
tion between DMIs and exchange, which typically remains
close to the period of the cycloid phase. The lowest-energy
commensurate cycloid in this system has wave vector q =
[ 1

n 00] for n = 12, as shown in Fig. 2(a). We thereby choose
a (12,12,3) supercell of the conventional unit cell (1296 M4

units) for a full ground-state enumeration, as this supercell
is compatible with all low-energy cycloid variants, as well
as the typical sixfold skyrmion lattice phase. We obtain the
internal energy profile shown in Fig. 2(b), which, as a function
of the magnetization along the c-axis, proceeds through the
cycloid phase at low magnetization, the skyrmion phase at
intermediate magnetization, and the ferromagnet phase at high
magnetization. Repeating the ground-state search for other
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FIG. 2. (a) Energy of an ideal cycloid relative to that of a ferromagnet magnetized along the c-axis, as a function of n, which defines
the cycloid propagation wave vector qn = [ 1

n 00]. (b, c) Formation energies of ground-state configurations as a function of the average
magnetization along the c-axis, constrained to an (n, n,3) periodic supercell of the R3m unit cell shown in Fig. 1(a). Formation energies
are given with respect to the n = 12 cycloid and c-axis ferromagnet (b) and the full n = 12 ground-state energy profile (c). (d, e) Magnetic
phase diagram arising from the J (0) parametrization of the cluster expansion Hamiltonian, as a function of the magnetic field magnitude (d) and
total magnetization (e). Colors denote the number of q points for which the structure factor S(q) is nonzero. Phase labels correspond to the
ferromagnet (FM), cycloid (Cyc), canted cycloid (C. Cyc), skyrmion (Sk), Brazovskii region (BR), and paramagnet (PM). The locations and
orders of phase boundaries are drawn based on Monte Carlo data to best agree with changes in S(q), the topological index (see Supplemental
Fig. 1 [30]), discontinuities in internal energy and magnetization, and peaks in fluctuation data. Tc denotes the Curie temperature. Note that
“other” denotes a change in the structure factor S(q) not accompanied by any discernible discontinuities in free energy.

(n, n, 3) supercells, we find that while the commensurate
cycloid and canted cycloid phases are always minimized
for n = 12, the skyrmion phase relaxes from n = 12 to n =
13 at high magnetization (≈8% change in wavelength), as
shown in Fig. 2(c). This result is intriguing from the per-
spective of experimentally detecting skyrmions in diffraction
data by means of a shift in the q-vector of the magnetic
structure away from that of a cycloid and is consistent with
observed changes in the q vector in the skyrmion phase of
GaV4S8 [13]. However, for the purposes of thermodynamic
stability calculations, the difference in energy between the
n = 12 and the n = 13 skyrmion is small enough to be
negligible.

The finite-temperature phase diagram of the J (0) Hamil-
tonian is shown in Figs. 2(d) and 2(e) as a function of
the applied field and observed magnetization, respectively.
The locations and orders of phase transitions are estimated
based on changes in the magnetic structure factor, topological
index, discontinuities in internal energy and magnetization,
and peaks in fluctuation data.

The low-field phase up to the Curie temperature (Tc) is a
cycloid. Magnetization in the (ab) plane leads to a continuous
transition into a canted cycloid phase, followed by a transition
to a ferromagnet. At low temperatures (approximately T <

0.5Tc), the transition from canted cycloid to ferromagnet is
first order, while at higher temperatures this transition be-

comes second order. We conclude that the order of the phase
transition changes because we observe a peak in the magnetic
susceptibility at this point at all temperatures, but the disconti-
nuity in magnetization only exists below 0.5Tc. Magnetization
along the c-axis leads to the formation of the skyrmion phase,
followed by the ferromagnet phase. The formation of the
topologically nontrivial skyrmion phase is also confirmed
by a change in the topological index from 0 to −1 as the
c-axis magnetization is increased (see Supplemental Fig. 1
[30]). Both transitions are first order at most temperatures,
becoming second order only close to Tc (approximately T >

0.8Tc). At low temperatures, skyrmions are stabilized with
respect to cycloids enthalpically, consistent with the behavior
of the ground-state configurations. However, above approxi-
mately 0.67Tc the skyrmion region expands at the expense of
the cycloid region, indicating that at elevated temperatures,
skyrmions are additionally stabilized entropically. Immedi-
ately above Tc, the cycloid, canted cycloid, and skyrmion
phase regions extend into a partially disordered phase dom-
inated by fluctuations in the (ab) plane at the cycloidal q
vectors, as a two-dimensional analog of the Brazovskii region
described in cubic helimagnets [38,39]. Note that despite
having a structure factor similar to that of the skyrmion phase,
the two-dimensional Brazovskii region is topologically trivial
as can be seen in Supplemental Fig. 1 [30]. Finally, at higher
temperatures, the system fully disorders to form a paramagnet.
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TABLE I. Clusters and symmetrized basis functions for the
GaM4X8 magnetic cluster expansion Hamiltonian and the J (0) vector
fitted to GaMo4S8 DFT data. Cluster site coordinates and basis func-
tions are given for the reference cluster, in lattice coordinates with
respect to the primitive lattice vectors (ap, bp, cp) given in Fig. 1(b).
The number of equivalents for each cluster refers to the number
of symmetrically equivalent clusters of this type per primitive cell.
Basis functions are defined in terms of spherical harmonics |l, m〉 for
the on-site terms and Clebsch-Gordan functions |l1, l2; L, M〉 for pair
clusters (r1, r2), as described under Methods. The Cartesian form of
the basis functions is available in Supplemental Table 1 [30]. Basis
function superscripts denote whether the interaction corresponds to
exchange (E), DMIs (D), or anisotropy (A). Parentheses in the J (0)

vector components denote uncertainty in the last digit.

Cluster type Basis function J (0)(meV)

On-site φA
1 = √

2|2, 0〉 0

r = (0, 0, 0) φA
2 = −i(|4,−3〉 + |4, 3〉) 0.03(5)

(1 equiv.) φA
3 = √

2|4, 0〉 0

φA
4 = |6,−6〉 + |6, 6〉 0

φA
5 = −i(|6,−3〉 + |6, 3〉) 0

φA
6 = √

2|6, 0〉 0

Out-of-plane φE
7 =

√
2

3 |1, 1; 0, 0〉 0.62(5)

r1 = (0, 0, 0) φD
8 = i

3 (|1, 1; 1, 1〉 − |1, 1; 1, −1〉) 0.88(9)

r2 = (−1, 0, 0) φA
9 = − i

3 (|1, 1; 2, 1〉 + |1, 1; 2, −1〉) 0

(3 equiv.) φA
10 =

√
2

3 |1, 1; 2, 0〉 0

φA
11 = 1

3 (|1, 1; 2, 2〉 + |1, 1; 2, −2〉) 0

In-plane φE
12 =

√
2

3 |1, 1; 0, 0〉 1.07(5)

r1 = (0, 0, 0) φD
13 = ( 1

6 + i√
12

)|1, 1; 1, 1〉 0.20(9)

r2 = (−1, 0, 1) +( 1
6 − i√

12
)|1, 1; 1, −1〉

(3 equiv.) φD
14 = −i

√
2

3 |1, 1; 1, 0〉 0.08(7)

φA
15 =

√
2

3 |1, 1; 2, 0〉 0

φA
16 = ( 1√

12
− i

6 )|1, 1; 2, 1〉 0

−( 1√
12

+ i
6 )|1, 1; 2, −1〉

φA
17 = ( 1

6 − i√
12

)|1, 1; 2, 2〉 0.1(1)

+( 1
6 + i√

12
)|1, 1; 2, −2〉

C. Variation in phase stability with changes in the Hamiltonian

Having established the finite-temperature phase diagram
for one parametrization of the Hamiltonian, J (0), we evaluate
how the phase diagram may change as the J coefficients
are varied. We first identify normalization factors for the
phase diagram to account for changes in the Hamiltonian that
amount to rescaling the field and temperature axes. We then
use generalized Clausius-Clapeyron relationships to identify
which components of the J vector may alter the locations of
first-order transitions seen in the phase diagram.

Figure 3(a) shows the phase diagram obtained for J (0),
in units of the characteristic temperature and field for this
system. The red circles highlight the three first-order tran-
sitions that define the low-temperature region of the phase
diagram. The normalization factor for temperature is |J|/kB,

as any homogeneous rescaling of the Hamiltonian must also
rescale the temperature. The normalization factor for the field
is given by the characteristic difference in energy between the
low-field and the high-field ground states, which are the cy-
cloid and ferromagnet phases, respectively. In units of the
magnetic field, this factor is 2π2q2|J|/μBgMs, where q is the
magnitude of the cycloid wave vector in lattice coordinates
and Ms is the magnetic moment per spin. A full derivation is
available in Supplemental Note 2 [30]. Note that this factor is
identical to the D2/A normalization used in previous literature,
where D and A are the effective DMI and exchange constants,
respectively.

Figure 3(b) plots how the locations of the three low-
temperature first-order transitions change with variation in
the components of J (0). The left panels account for the
correlation functions corresponding to conventional bilinear
spin couplings, while the right panels illustrate the effect of
higher-order on-site anisotropy terms, plotted schematically
in Fig. 3(c). Note that ϕ1 corresponds to quadratic single-spin
anisotropy, while ϕ10 and ϕ15 are equivalent to XXZ anisotropy
for out-of-plane and in-plane exchange, respectively. In this
case, these terms yield exactly the same behavior and are
plotted as a single line. The change in the phase boundary
location H†/

2π2q2|J|
μBgMs

is given by the generalized Clausius-
Clapeyron relation,

2π2q2|J|
μBgMs

∂
(
H†/

2π2q2|J|
μBgMs

)

∂J
= �〈ϕ〉

�M
− 2H†

q

∂q

∂J
− H†J,

where �〈ϕ〉 and �M are the change in the correlation func-
tions and magnetization across the first-order phase transition.
Note that this expression explicitly accounts for the variation
in q and |J| for the purposes of normalizing H†, while the
change in J is expressed in units of (2π2q2|J|)�J=0.

The perturbation data shown in the left panel in Fig. 3(b)
reveals that the low-temperature region of the phase diagram
is largely invariant to changes in most of the J coefficients
in the Hamiltonian, save for changes in |J| and q, which
amount to rescaling the temperature and field axes. By far the
most important correlation functions are those corresponding
to uniaxial anisotropy (ϕ1,3,6,10,15), which have a qualitatively
similar impact on the phase boundaries, and higher-order
in-plane anisotropy ϕ4 (right panels). The uniaxial terms
ϕ1,3,6,10,15 shift the skyrmion/ferromagnet boundary, penal-
izing skyrmion formation in the easy-axis regime. The ϕ4

anisotropy function is unique in that it only alters the phase
boundaries left unaffected by the uniaxial terms, shifting
the cycloid/skyrmion and canted cycloid/ferromagnet bound-
aries but leaving the skyrmion/ferromagnet boundary un-
changed. Fortuitously, the only anisotropy function included
in the J (0) simulation is ϕ2, which has no impact on the
phase boundaries, so that the J (0) results are equivalent to
a zero-anisotropy regime where all helimagnetic phases of
interest appear at all temperatures. Finally, the only impact of
exchange and DMI terms beyond varying q and |J| is to alter
the field at which a canted cycloid in the (ab) plane transforms
to a ferromagnet.
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FIG. 3. (a) Normalized magnetic phase diagram derived using the J (0) Hamiltonian, marking three first-order phase transitions: cycloid to
ferromagnet in the (ab) plane, [HC→F

(ab) ], and cycloid to skyrmion and skyrmion to ferromagnet along the c-axis (HC→S
c and HS→F

c , respectively).
Phase labels are defined in the caption to Fig. 2. (b) Change in the normalized phase transition fields HC→F

(ab) , HC→S
c , and HS→F

c upon variation of
the Hamiltonian parameters J . Note that the field normalization factor 2π2q2|J|/μBgMs varies with �J , while the units of �J [(2π 2q2|J|)�J=0]
are taken to be constant. (c) Magnetocrystalline anisotropy functions ϕ1,...,6 shown relative to an M4 tetrahedron, where the color and distance
from the tetrahedron center along a certain direction represent the value of ϕi for that spin orientation.

D. Skyrmion stability determined by uniaxial anisotropy

At low temperatures, the stability of skyrmions in this
system is largely controlled by the presence of uniaxial
anisotropy in the form of the ϕ1,3,6,10,15 correlation functions,
as well as high-order in-plane anisotropy in the form of ϕ4. As
uniaxial anisotropy is the most common form of anisotropy
observed in uniaxial magnets, we now derive the impact of
this term on the skyrmion region at all temperatures, using
ϕ1 as a proxy for all uniaxial anisotropy functions in the
Hamiltonian. We note, however, that in rare cases where
higher-order anisotropies (ϕ2,...,6) are strong, more complex
phase behavior is possible.

The evolution of the phase diagram with the coefficient
of ϕ1, J1, as a function of the field along the c-axis and
temperature, is shown in Fig. 4(a). The phase diagram exhibits
three broad regions, corresponding to easy-axis, easy-plane,
and isotropic scenarios. The skyrmion and cycloid regions are
highlighted in blue and red, respectively, for representative
slices in each region. We obtain this phase diagram using a
linear extrapolation of the Helmholtz free energy A,

A = A(0) + ∂A

∂J1
�J1 = A(0) + 〈ϕ1〉�J1,

where A(0) is the Helmholtz free energy obtained for J (0).
As this extrapolation is only applicable at a constant tem-
perature, we neglect any changes in Tc due to changes in
J1. Similarly, as variation in J1 has a negligible impact on
|J| and no impact on q, the normalization factors for field,
temperature, and J are taken to be constant. To check the
validity of this extrapolation, we confirm that the extrapolated
phase diagrams highlighted in the easy-axis and easy-plane
regions in Fig. 4(a) agree with Monte Carlo data for the same
conditions.

The impact of uniaxial anisotropy on skyrmion stability
is largely determined by the stabilization of the competing
out-of-plane and in-plane ferromagnetic and canted cycloid
phases. Easy-axis anisotropy favors the out-of-plane ferro-
magnet configuration and thus suppresses the skyrmion phase
and, eventually, the cycloid phase. Easy-plane anisotropy
destabilizes the out-of-plane ferromagnet and thus enhances
the skyrmion stability region, up to the point where the easy-
plane anisotropy is sufficient to stabilize canted cycloids and
in-plane ferromagnetic configurations at zero field, at which
point the skyrmion region remains stable only at high c-axis
fields, consistent with phenomenological solutions [40,41].
Elevated temperatures suppress the effect of anisotropy while
preserving the qualitative trends, leading to a much wider
range of anisotropy constants for which skyrmions and cy-
cloids are stable than in the low-temperature limit. The pro-
found impact of anisotropy constants on skyrmion stability
at low temperatures is reminiscent of recent reports of low-
temperature skyrmion stabilization in Cu2OSeO3, where the
role of anisotropy is to suppress the competing canted spin-
wave phases [42,43].

Uniaxial anisotropy also varies in the range of field direc-
tions for which skyrmions may be observed, with easy-axis
anisotropy favoring skyrmions over a wide range of field
orientations and easy-plane anisotropy allowing for skyrmions
only for fields close to the c-axis. Figure 4(b) shows the
evolution of the cycloid and skyrmion phase boundaries as
a function of the applied field direction. The color of the
phase boundaries corresponds to the field angle, shown in
the legend in terms of the angle with respect to the c-axis
and high-symmetry directions in the structure. In the isotropic
case, the skyrmion region moves to slightly higher fields with
increasing θ , up to θmax ≈ 40◦, beyond which only cycloid,
canted cycloid, and ferromagnet phases are stable. In the
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FIG. 4. (a) Variation in the normalized magnetic phase diagram with the uniaxial anisotropy parameter J1, focusing on the cycloid and
skyrmion phase transitions with an applied field along the c-axis. Representative phase diagrams for the easy-axis, easy-plane, and isotropic
cases (J1/2π 2q2|J| = −0.9, +0.9, 0, respectively) are highlighted. Phase labels are defined in the caption to Fig. 2. (b) Variation in skyrmion
phase boundaries with the field orientation, for the easy-axis, easy-plane, and isotropic cases. The colors of the phase boundaries denote the
angle of the field with respect to the c-axis.

easy-plane case, the skyrmion region quickly narrows with
increasing θ , disappearing above θmax ≈ 20◦. In the easy-axis
case, the skyrmion stability region is much smaller in field
magnitude, but wider in field angle, with a high-temperature
skyrmion phase appearing up to θmax ≈ 70◦. These results,
as well as the broad impact of uniaxial anisotropy, confirm
the conclusions reached in the phenomenological analysis
reported by Leonov and Kezsmarki [44].

The formation of skyrmions in easy-axis systems over a
wide range of field orientations is important in the context of
resolving skyrmion formation experimentally. The easy-axis
scenario leads to skyrmion formation for fields applied along
the [101] family of Miller indices of the unit cell shown
in Fig. 1(a). These directions correspond to the 〈001〉 axes
of variants of the lacunar spinel distorted along directions
equivalent to the 〈111〉 axis of the high-temperature F 4̄3m
phase. In a real material, where all symmetrically equivalent
variants of the 〈111〉 distortion are likely to be present, we
would thus expect skyrmion phase boundaries following both
the black and the green curves, even if the field is applied
parallel to the c-axis of one of the variants. This is precisely
the scenario observed in GaV4S8 [13], which we estimate
corresponds to the strongly easy-axis J1/2π2q2|J| = −1.00
slice of the phase diagram.

E. Predicted phase diagrams for V and Mo systems

Finally, we use the phase diagram shown in Fig. 4 to
evaluate the magnetic phase diagrams of several V- and Mo-
based spinels. Our estimates for the value of the reduced
anisotropy J1/2π2q2|J| for GaV4S8, GaV4Se8, GaMo4S8,
and GaMo4Se8 are listed in Table II, with phase diagrams
given by field-temperature slices in Fig. 4(a) at the given

level of anisotropy. The magnetic phase diagrams of GaV4S8

and GaV4Se8 have been studied in-depth experimentally and
offer a direct comparison to our results. We similarly rely on
experimental data to obtain Tc, q, and J1 for the V systems
[11,13]. Experimental data on GaMo4S8 and GaMo4Se8 are
more sparse, but as these systems are well represented by
DFT, we use computational data to obtain estimates for the
magnetic parameters. Given the small energy scale and critical
importance of the anisotropy constants to phase behavior, we
obtain the value of the anisotropy constants independently of
other terms in the magnetic Hamiltonian, using data computed
within the same unit cell so as to minimize numerical noise
arising from k-point discretization error. Specifically, the en-
ergy of orienting a ferromagnetic configuration along various
crystallographic directions, computed using the primitive cell
of the structure, fully constrains J1,...,6 independently of any
exchange or DMI terms. Thus, we are able to refine the
cluster expansion fit by first fitting J1,...,6 to this high-accuracy
anisotropy data and then fitting all other terms to the full
data set. As a result, we are able to reduce the fitting error

TABLE II. Behavior of V- and Mo-based lacunar spinels based
on the phase diagram shown in Fig. 4. Tc, q, and J1 data for the
V systems is based on experimental data from Refs. [13] and [11],
while data for the Mo systems is based on our DFT calculations.

Tc (K) q J1 (μeV) J1/2π 2q2|J|
GaV4S8 13 1/26 −25 −1.00
GaV4Se8 18 1/27 2 0.06
GaMo4S8 23 1/12 −34 −0.17
GaMo4Se8 27 1/20 25 0.29
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of the anisotropy energy to the level of μeV, as can be seen
in Supplemental Fig. 2 [30], sufficient to reliably resolve the
anisotropy constants.

IV. DISCUSSION

A. Broad applicability of the uniaxial skyrmion phase diagram

A direct comparison of our predicted phase diagram to
experimental results reported for GaV4S8 and GaV4Se8 lends
credibility to our analysis. In both cases, the phase diagrams
obtained using the reduced anisotropy values from Table II
are in qualitative agreement with experiment. We quantita-
tively reproduce the temperature behavior but predict phase
transitions at fields 1.5 to 2 times larger than those observed.
The most likely source for this error is a deviation in μBgMs

away from our assumed value of 2 μB. We also neglect
the impact of stray fields, which destabilize the cycloid and
Néel skyrmion states seen here in favor of a ferromagnetic
configuration with 180◦ domain walls [24]. In the strong DMI
regime relevant to lacunar spinels, this error does not qualita-
tively change the results. However, the impact of stray fields
becomes pronounced for cycloidal systems with weak DMIs,
limiting the applicability of Fig. 4(a) to systems well away
from the long-wavelength cycloid stability bounds derived
by Bogdanov and Hubert [24]. Furthermore, the agreement
between the phase behavior we derive in Fig. 4 and that ob-
tained phenomenologically for the same symmetry [40,41,44]
provides an important consistency check for our atomistic
model of the magnetic behavior of these skyrmion-host
materials.

The insensitivity of the skyrmion region of the phase
diagram to the values of DMIs and exchange suggests that the
phase behavior seen in Fig. 4(a) may generalize to other uni-
axial systems. We observe that high-moment Néel skyrmions
form preferentially to canted cycloids when the magnetic field
is orthogonal to the rotation axis of any cycloidal variant.
This mechanism is independent of any specific interaction
parameters and arises from the fact that canted cycloids only
develop a moment parallel to their rotation axis as shown
in Fig. 1(c). Thus, we speculate that a similar mechanism
may lead to Néel skyrmion formation over wide field and
temperature ranges in other systems where cycloid variants
have rotation axes constrained to a single plane. Based on
symmetry arguments alone, this behavior is most likely in
strong-DMI, low-anisotropy systems whose point group is
one of 6mm (C6v), 3m (C3v), 4mm (C4v), or mm2 (C2v) [45].
If we assume that a similar mechanism is applicable to the
formation of canted helices and antiskyrmions, materials with
4̄2m (D2d ) and 4̄ (S4) point-group symmetry may also exhibit
this behavior. Several phenomenological analyses of skyrmion
formation in Cnv , D2d , and S4 crystals [40,41,44] report similar
results, lending support to a broad applicability of these
trends.

B. Parametrization of magnetic cluster expansion Hamiltonians

An important implication of our results is that uncertainty
quantification is essential to the construction of magnetic clus-
ter expansion Hamiltonians. Conventional cluster expansion
fitting techniques rely on the minimization of the total error

against DFT energies. This methodology works well when
all interactions have similar energy scales and when working
with discrete degrees of freedom such as atomic configu-
rations [46]. However, this approach is not sufficient when
relatively small energy terms, such as the magnetocrystalline
anisotropy explored here, play a decisive role in determin-
ing which phases form. By analyzing the sensitivity of the
phase diagram to the values of the interaction coefficients
through generalized Clausius-Clapeyron relations and linear
free energy extrapolation based on ∂A/∂Ji = 〈ϕi〉, one can
identify terms in the cluster expansion which play an outsized
role in determining the phase behavior. In particular, one
can use this approach to evaluate the importance of terms
not included in the original Hamiltonian, due to either basis
set truncation or elimination during the fitting process. Once
all important terms are known, the fitting procedure must
be adjusted to ensure that these terms are fitted accurately
[47,48], which may increase the average error of the fit but,
nonetheless, yields more qualitatively correct predictions of
phase behavior.

V. CONCLUSION

We have demonstrated that skyrmion stability across a
wide range of fields and temperatures in GaM4X8 lacunar
spinels is a general consequence of the symmetry of the
material and the fact that magnetocrystalline anisotropy en-
ergy is typically small. We reproduce the complex magnetic
phase diagrams of these materials, including long-wavelength
magnetic order, without relying on empirical parameters, and
thus gain insight into the relationship between spin-orbit
coupling and skyrmion formation. We find that magnetic
cluster expansions parametrized using density functional the-
ory data can accurately predict this magnetic phase diagram
provided that the fitting procedure leads to a high-fidelity
form for the anisotropy energy. More generally, reliable mag-
netic phase diagram prediction requires an evaluation of the
impact of fitting error and uncertainty on phase stability.
As we find that the magnetic phase behavior here is deter-
mined by simple, transferable mechanisms dictated by point-
group symmetry, we speculate that our observations are likely
broadly applicable to uniaxial systems with Cnv , D2d , and S4

symmetry.
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