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Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear
response to spin biasing and a temperature gradient, the spin-transport properties of normal-metal-insulating
antiferromagnet-normal-metal heterostructures are calculated. We focus on the thick-film regime, where the
AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach,
which is opposed to the thin-film limit considered by Bender et al. [Phys. Rev. Lett. 119, 056804 (2017)],
where a stochastic approach is justified. We obtain the temperature and thickness dependence of the structural
spin Seebeck coefficient S and magnon conductance G. In their evaluation, we incorporate effects from field-
and temperature-dependent spin conserving intermagnon scattering processes. Furthermore, the interfacial spin
transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the
sublattice symmetry breaking at the interface. We find that while intermagnon scattering does slightly suppress
the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined
by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural
spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the
normal metal magnet interfaces.
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I. INTRODUCTION

Spin-wave excitations in magnetic materials are a corner-
stone in spintronics for the transport of spin-angular mo-
mentum [1,2]. The usage of antiferromagnetic materials has
gained a renewed interest due to their high potential for
practical applications. The most attractive properties of anti-
ferromagnets (AFs) are the lack of stray fields and the fast dy-
namics that can operate in the THz frequency range [3]. Those
attributes have the potential to tackle current technological
bottlenecks, like the absence of practical solutions to generate
and detect electromagnetic waves in the spectrum ranging
from 0.3 THz to 30 THz (the terahertz gap) [2]. Nevertheless,
the control and access to the high-frequency response of AFs
is challenging. Certain proposals circumvent one of these
obstacles by manipulating metallic AFs with charge currents,
through the so-called spin-orbit torques [4–6]. Antiferromag-
netic insulators, however, offer a compelling alternative since
the Joule heating caused by moving electrons is absent. In
such systems, the study of transport instead focuses on their
magnetic excitations.

In insulating AFs, the spin-angular momentum is trans-
ferred by their quantized low-energy excitations, i.e.,
magnons. Since the AF in its ground state is composed
of two collinear magnetic sublattices, magnons carry oppo-
site spin-angular momentum. The transport of magnons has
been experimentally achieved through the longitudinal spin
Seebeck effect in AF|NM [7–13] (NM, normal metal) and
FM|AF|NM [14–18] (FM, ferromagnets) heterostructures, in
which magnons were driven by a thermal gradient across the

AF. Alternatively, thermal injection of magnons in AFs has
been studied [19,20] by a spin accumulation at the contact
with adjacent metals. In addition, it was shown that thermal
magnon transport takes place at zero spin bias when the
sublattice symmetry is broken at the interfaces, e.g., induced
by interfacial magnetically uncompensated AF order [21].
Complementarily, coherent spin transport induced by spin
accumulation was considered earlier and predicted to result
in spin superfluidity [22,23] or Bose-Einstein condensates of
magnons [24]. Recently, it has been shown via nonlocal spin
transport measurements that magnons remarkably propagate
at long distances in insulating AFs: α-Fe2O3 [25], Cr2O3 [26],
MnPS3 [27], and also in NiO via spin-pumping experiments
with YIG [14]. Their exceptional transport properties, as well
as those reported in Refs. [7–11], are governed by the spin
conductance and spin Seebeck coefficients. Rezende et al.
[28] theoretically discussed the spin Seebeck effect in AFs
in contact with a normal metal. They obted the Seebeck
coefficient in terms of temperature and magnetic field, finding
a good qualitative agreement with measurements in MnF2/Pt
[7]. In addition, it was found that magnon scattering processes
significantly affect the spin Seebeck coefficient. Hitherto there
have been no complete studies on the underlying mechanism
for spin transport coefficients, e.g., their thickness, temper-
ature, and field dependence, effects derived from magnon-
magnon interactions or when the sublattice symmetry is bro-
ken at the interfaces.

In this paper, we describe spin transport though
a left-normal-metal-insulating AF right-normal-metal
(LNM|AF|RNM) heterostructure. As depicted in Fig. 1,
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FIG. 1. A normal-metal-insulating antiferromagnet-normal-
metal heterostructure. An external field H is applied along the z
direction. A spatially dependent temperature T (x) and a spin bias μ

is considered. As a result, a magnon spin current j flows through the
AF of thickness d .

magnon transport is driven by either a temperature gradient
or spin biasing. We focus on the thick-film limit, where the
thickness d of the AF is greater than the internal equilibration
length l for the magnon gas. This limit implies a diffusive
regime where magnons are in a local equilibrium described
by a local temperature and chemical potential. This is in
contrast to our earlier, stochastic treatment of thin films
(d � l) where spin waves do not establish a local equilibrium
[19]. Specifically, we study the spin transport by evaluating,
via a phenomenological theory, the structural spin Seebeck
coefficient S and magnon conductance G. Furthermore, we
investigate their temperature and magnetic-field dependence
by computing the interfacial conductance coefficients in a
microscopic model for the NM|AF interface and evaluating
the various coefficients using a Boltzmann approach.

The paper is outlined as follows. In Sec. II, we introduce
the microscopic Hamiltonian for the bulk AF and its interac-
tion with the metallic contacts. In Sec. III, we formulate the
phenomenological spin diffusion model, including scattering
between magnon branches, and obtain expressions for the
structural Seebeck coefficient and magnon conductance. In
Sec. IV, we compute the coefficients for interfacial magnon
transport from the microscopic model for the contacts. Based
on this result, we estimate bulk transport coefficients as-
suming the interaction parameters are field and temperature
independent. We conclude in Sec. VI with a discussion of our
results. In the Appendices, we detail various technical aspects
of the calculations.

II. MODEL

We begin by defining the microscopic model for the
LNM|AF|RNM heterostructure. The total Hamiltonian is
Ĥ = ĤAF + ĤI + Ĥe, where ĤAF describes the AF spin sys-
tem while ĤI represents their interfacial contact with the
normal metals. The Hamiltonian Ĥe describes the electronic
states at the left and right leads. The coupling with LNM and
RNM is modeled by a simple interfacial exchange Hamilto-
nian,

ĤI = −
∫

dx
∑

i

Jiρi(x)ŝi · Ŝ(x), (1)

where Ji is the exchange coupling between the electronic spin
density Ŝ(x) and the localized spin operator ŝi at site i that

labels the lattice along the interface. Here ρi(x) is the density
of the localized AF electron orbital representing effective spin
densities at the interface. We will return to the study of ĤI in
Sec. IV to determine the contact spin conductance.

The AF spin Hamiltonian is introduced by labeling each
square sublattice site by the position i. The nearest-neighbor
Hamiltonian is

ĤAF = J
∑
〈ij〉

ŝi · ŝj − H
∑

i

ŝiz + κ

2s

∑
i

(
ŝ2

ix + ŝ2
iy

)
, (2)

with ŝi the spin operator at site i, J > 0 the antiferromagnetic
exchange biasing, H the magnetic field, and κ the uniaxial
easy-axis anisotropy. We are interested in small spin fluctu-
ations (magnons) around the collinear bipartite ground state.
The latter is the relevant ground state to expand around for
magnetic fields below the spin-flop field Hsf. Magnons are
introduced by the Holstein-Primakoff transformation [29],

ŝiz = s − â†
i âi, ŝi− = â†

i

√
2s − â†

i âi, (3a)

ŝiz = −s + b̂†
i b̂i, ŝi− =

√
2s − b̂†

i b̂ib̂i, (3b)

and ŝi+ = ŝ†
i−, when i belongs to sublattice a and b, respec-

tively. We expand the spin Hamiltonian, Eq. (2), in powers of
magnon operators that includes magnon-magnon interactions,
up to the fourth order, ĤAF = Ĥ (2)

AF + Ĥ (4)
AF . To lowest order in

s, excitations of Ĥ (2)
AF are diagonalized through the Bogoliubov

transformation (see Appendix A for definition), by the oper-
ators α̂q and β̂q that carry spin angular momentum +h̄ẑ and
−h̄ẑ, respectively:

Ĥ (2)
AF =

∑
q

[εα (q)α̂†
qα̂q + εβ (q)β̂†

qβ̂q]. (4)

We refer to the magnons described by the operator α (β)
as α and (β)magnons, respectively. The dispersion rela-

tion is εα,β (q) = ±H +
√

(6Js)2(1 − γ 2
q ) + H2

c in a three-

dimensional lattice, where ± stands for the α- and β-magnon
branches, respectively. Here, H2

c ≡ κ2 + 2κ6Js is the critical
field corresponding to the spin-flop transition, while γq =
(1/3)

∑3
n=1 cos(qna), where a is the lattice spacing. Magnon-

magnon interactions are represented by the interacting Hamil-
tonian Ĥ (4)

AF . In the diagonal basis, the interacting Hamiltonian
becomes a lengthy expression that is detailed in Eq. (A7)
(Appendix A). It consists of nine different scattering processes
among α and β magnons. Some of these processes allow for
the exchange of the population of α and β magnons, see Fig. 6.

III. SPIN TRANSPORT: PHENOMENOLOGICAL THEORY

We now outline the phenomenological spin transport the-
ory for magnons across the LNM|AF|RNM heterostructure.
In the subsections that follow, we estimate the structural spin
Seebeck coefficient and structural magnon conductances. The
basic assumption is that the equilibration length for magnon-
magnon interactions is much shorter than the system length
d , so that the two magnon gases are parametrized by local
chemical potentials μα and μβ and temperatures Tα and Tβ . In
keeping with our treatment of ferromagnets [30], we assume
that strong, inelastic spin-preserving processes fix the local
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magnon temperatures to that of the local phonon temperature.
This assumption is reasonable since the rate at which magnon
temperature equilibrates with the phonon bath is dominated by
both magnon-conserving and magnon-nonconserving scatter-
ing processes [31]. Thus, the magnon temperature reaches its
equilibrium faster than the magnon chemical potential. The
local phonon temperature, in turn, is assumed to be linear
across the AF, and to be equal to the electronic temperatures
in each of the metallic leads. Only the magnon chemical
potentials μα and μβ are then left to be determined.

We then express phenomenologically the spin conservation
laws in terms of the chemical potentials. Its microscopic
derivation can be established from the Boltzmann equation as
is explained in Appendix B. Defining the magnon densities nα

and nβ , these read

ṅα + ∇ · jα = −rαμα − gααμα − gαβμβ, (5a)

ṅβ + ∇ · jβ = −rβμβ − gβαμα − gββμβ . (5b)

Here, ri describes relaxation of spin into the lattice result-
ing from inelastic magnon-phonon interactions that do not
conserve magnon numbers. In addition, gi j describes inelastic
spin-conserving processes that accounts for, e.g., magnon-
magnon and magnon-phonon scattering, where the total num-
ber of magnons nα + nβ may change but the spin ∼nα − nβ is
constant. In what follows, the coefficients gi j , by assumption,
have their origin in the coupling between magnons. The cur-
rents of α and β magnons, denoted as jα and jβ , are given by
jα = −σα∇μα − ςα∇T and jβ = −σβ∇μβ − ςβ∇T , where
σα,β and ςα,β are the bulk magnon spin conductivities and
Seebeck coefficients, respectively. In writing the particle cur-
rents in the form above, we have neglected magnon-magnon
drag, which stems from magnon-magnon interactions that
transfer linear momentum from one magnon band to another
in such a way that the total spin current is conserved. Such
drag gives rise to cross terms like jα ∝ ∇μβ . We shall simply
limit the discussion to the regime in which such momentum
scattering in subdominant to, e.g., elastic disorder scattering.
The bulk continuity equations, Eqs. (5a) and (5b), are comple-
mented by the boundary conditions at the NM|AF interfaces
on the spin currents j(s)

α = h̄jα and j(s)
β = −h̄jβ ,

x · j(s)
α (x = −d/2) = Gα[μL − μα (−d/2)], (6a)

x · j(s)
β (x = −d/2) = Gβ[μL + μβ (−d/2)], (6b)

x · j(s)
α (x = d/2) = −Gα[μR − μα (d/2)], (6c)

x · j(s)
β (x = d/2) = −Gβ[μR + μβ (d/2)], (6d)

with x the unit vector along the x axis and where we have
chosen the left and right interfaces to correspond to the planes
x = −d/2 and x = d/2. Inside the left and right normal met-
als the respective spin accumulations, the difference between
spin-up and spin-down chemical potential, are μL and μR.
Here Gα,β are the contact magnon spin conductances of each
interface. The contact Seebeck coefficient does not appear,
as we are assuming a continuous temperature profile across
the structure, i.e., there is no temperature difference between
magnons at the interface and normal metal leads. For fixed
spin accumulations μL/R, Eqs. (5a)–(6d) form a closed set of

equations with the parameters g, rα,β , ςα,β , σα,β , and Gα,β to
be estimated from microscopic calculations (see Sec. IV).

The inelastic spin-conserving terms gi j can be signifi-
cantly simplified by additional considerations. Imposing spin
conservation one finds that gαα = gβα and gαβ = gββ . This
result is obtained from Eqs. (5a)–(6d) by equating ṅα − ṅβ =
0 in the absence of magnon currents and disregarding the
relaxation term ri. In addition, we can estimate the field- and
temperature-dependence of the coefficients gαα and gββ , in
particular near the spin-flop transition. For this purpose, we
use Fermi’s golden rule to calculate the transition rate of α-
magnons (β-magnons), defined as 
αβ (
βα), that represents
the instantaneous leakage of magnons due to the conversion
between α- and β-magnons. Among the different scattering
processes displayed in Fig. 6, few of them conserve the
number of α- or β-magnons and thus do not contribute to the
transition rate. As detailed in Appendix B, we sum over all
the scattering rates and find that 
αβ = 
βα , which derives
as a consequence of conservation of spin-angular momen-
tum. Moreover, and more importantly, up to linear order
in the chemical potential 
αβ = −g(μα + μβ ). Therefore,
gαα = gαβ ≡ g, meaning that a single scattering rate describes
the inelastic spin-conserving process. The coefficient g is
expressed in terms of a complex integral, given in Eq. (B7),
that can be estimated in certain limits. In the high temperature
regime, where the thermal energy is much higher than the
magnon gap, we obtain g = (2πN�/h̄s2)(kBT /Jsz)3 with �

a dimensionless integral defined in Appendix B.
In the steady-state limit, the magnon chemical potentials

are described by Eqs. (5a) and (5b), and are of the general
form μα ∼ μβ ∼ e±x/λ. The collective spin decay length λ

admits two solutions,

2λ−2
1 = �−2

α + �−2
β −

√
4λ−2

β λ−2
α + (

�−2
α − �−2

β

)2
, (7)

2λ−2
2 = �−2

α + �−2
β +

√
4λ−2

α λ−2
β + (

�−2
α − �−2

β

)2
, (8)

where λ−2
β = g/σβ , λ−2

α = g/σα , �−2
α = (g + rα )/σα and

�−2
β = (g + rβ )/σβ . In the absence of magnetic field, the

magnon bands are degenerate and therefore α and β have
equal properties. Thus the collective spin diffusion lengths
become λ−2

1 = r/σ and λ−2
2 = (2g + r)/σ that differ due to

the inelastic spin-conserving scattering (∼g). In the following
sections, we evaluate the structural spin Seebeck coefficient
and structural magnon conductance. We will consider sep-
arately two scenarios, a temperature gradient and spin bias
across the LNM|AF|RNM heterostructure in Secs. III A and
III B, respectively.

A. Spin Seebeck effect

Let us assume a linear temperature gradient, with no spin
accumulation in the normal metals. We solve for the spin
current at the right interface, js = x · j(s)

α (d/2) + x · j(s)
β (d/2)

in presence of the temperature gradient �T . Then, the spin
current flowing through the right interface is related to the
thermal gradient by js = S�T , where S is the structural spin
Seebeck coefficient. The general solution for S is found in
Appendix C [Eq. (C4)]. In what follows we examine several
regimes of interest.
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First, we consider the zero applied magnetic field case,
but allow for sublattice symmetry breaking at the normal
metal|magnet interfaces. Here, we have that the dispersion
relations for the α and β magnons are identical. Furthermore,
the bulk transport properties becomes independent of the
magnon band, i.e., σ = σα = σβ and ς = ςα = ςβ . In this
limit, one finds

S = 2σς (Gβ − Gα )

(Gα1Gβ2 + Gα2Gβ1)dλ1
coth

[
d

2λ1

]
, (9)

with Gin the effective conductances defined by Gin ≡ Gi +
(σi/λn)coth[d/2λn] for i = α, β and n = 1, 2. We see that S
is proportional to the bulk spin Seebeck conductivity ς . In
the absence of symmetry breaking at the interfaces, Gα = Gβ ,
the spin Seebeck effect vanishes as expected. When there is
no magnetic field, it is thus essential to have systems with
uncompensated interfaces to get a finite Seebeck effect.

To understand the dependence of Eq. (9) on the film
thickness d , it is useful to distinguish two thickness
regimes. Let us first introduce a “thin” film regime, d �
din ≡ λnCoth−1(Giλn/σ ) for n = 1, 2 and i = α, β. In this
limit Gni ≈ (σ/λn)Coth[d/2λn]. The spin Seebeck coefficient
becomes

S ≈ λ2
(Gβ − Gα )

dCoth[d/2λ2]

ς

σ
, (10)

which in the extreme thin film limit (d � λ2), becomes inde-
pendent of d , S → (Gβ − Gα )2ς/σ . This can be understood
as the sum of two independent parallel channels, each with
effective conductances renormalized by the bulk transport
parameters. When Gi > σ/λn, we may also define a “thick”
regime (d 
 din ≡ λnCoth−1(Giλn/σ ) for all i, n) in which
the contact resistance dominates, i.e., Gin ≈ Gi (thick film).
In this case, one obtains

S ≈ Coth

[
d

2λ1

]
σς

dλ1

(
G−1

α − G−1
β

)
, (11)

and S ∼ (σς/dλ1)G−1
T at long distances d 
 λ1. In this case,

the net interfacial conductance behaves as the sum of a series
spin-channels, each with conductance Gα and Gβ . Note that
as the Seebeck coefficient is defined through the relation
js = S�T , the ∼1/d-dependence means that js ∝ ∂xT is
independent of d; a Seebeck effect can thus originate for
a thick AF due to a difference between the impedances of
the magnon bands just at the interface where the signal is
measured.

Second, we consider effects of a finite applied magnetic
field. In addition, we assume no symmetry-breaking at inter-
faces, Gα = Gβ = G. In the “thick” film regime, we obtain
S ≈ −(ςα − ςβ )/d , which is simply the bulk value of the
Seebeck coefficient. However, allowing symmetry breaking at
the interfaces, we can obtain S in the weak coupling regime,
i.e., g � rα, rβ , corresponding to slow scattering between the
magnon branches (compared to Gilbert damping). Expanding
the collective spin decay length, Eqs. (7) and (8), to linear
order in g/rα,β , we get λ1 ≈ √

σβ/rβ (1 − g/rβ ) and λ2 ≈√
σα/rα (1 − g/rα ). This expansion lead to corrections in the

structural Seebeck coefficient, S ≈ S (0) + O(g/r), where

S (0) = S (0)
β + S (0)

α = Gβςβ

dG (0)
β1

− Gαςα

dG (0)
α2

, (12)

with G (0)
ni the lowest order of the effective conductances. It

is interesting to note that Eq. (12) consists of two com-
pletely decoupled parallel channels. In the particular thick
film regime (d 
 din), it reduces to S(0) ≈ −(ςα − ςβ )/d ,
which is consistent with the result obtained at finite field in
the “thick” film regime and Gα = Gβ .Although we allow for
symmetry-breaking at the interface here, all of the interfacial
properties are washed out in the thick film regime.

Last, consider the regime in which interactions are strong:
g 
 rα, rβ and d 
 λ2. Naively, one might expect interac-
tions to greatly reduce the spin Seebeck effect. In fact, one
finds that all dependence on g drops out:

S = Gα + Gβ

d

⎡
⎣

(
σα

σβ

)2
ςβ − ςα(

σα

σβ

)2
ςβ + ςα

⎤
⎦ . (13)

Thus, even with strong interactions between magnon
bands, the spin Seebeck effect becomes independent of g and
nonzero. The effects of interband interactions are shown in
Fig. (4 a); while there is a slight suppression of the signal,
the spin Seebeck effect is qualitatively unchanged by large
scattering.

B. Spin biasing

Aside from a temperature gradient, a spin current may
be generated by means of an electrically driven spin biasing
across the spin (usually via the spin Hall effect in a normal
metal contact) [25]. To model this, we consider the temper-
ature constant throughout the structure, but a spin accumu-
lation μ = μẑ is applied at the left interface, giving rise to
a spin current j = Gμ flowing out of the opposite interface,
parametrized by the structural conductance coefficient G. The
full steady-state solution to Eqs. (5a) and (5b) is given by
Eq. (C7) in Appendix C. To find simple relations for the spin
conductance, we focus on three regimes.

First, we consider the case of sublattice symmetry and zero
magnetic field. At the interfaces, this entails Gα = Gβ = G. In
the bulk, this implies that bulk magnon spin conductivities and
Seebeck coefficients are identical for each magnon branch.
Here we find that only one collective spin decay length, λr =√

σ/r, plays a role in transport. One obtains

G = 2G2σ/λr[
σ 2/λ2

r + G2
]
sinh

(
d
λr

) + 2(σ/λr )Gcosh
(

d
λr

) . (14)

(Note that as the field—or symmetry breaking at the
interfaces—is turned on, the magnon-magnon interactions
start to play a role). In the thin film regime (d � λr), G ≈ G,
which is just the series conductance of two parallel chan-
nels, each with interfacial conductance G/2 (due to the two
interfaces through which the spin current must pass). In the
opposite limit, d 
 λr , we find

G ≈ 4(σ/λr )G2

(σ/λr + G)2
e−d/λr , (15)
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exhibiting an exponential decay over the distance λr .
Second, we consider the strongly interacting case where

g 
 rα, rβ and d 
 λ2. Here, one finds that while the conduc-
tance generally depends on g, in this regime the conductance
is finite and independent of g,

G = GS + GB, (16)

where

GS =
(
Gασ 2

β + σ 2
α Gβ

)2
(σα + σβ )/λr

sinh
(

d
λr

) ∏
η=±

(
G (η)

αr σ 2
β + σ 2

αG
(η)
βr

) (17)

reduces to Eq. (14) at zero field, while

GB = 1

2

(
σ 2

β − σ 2
α

) ∑
η=±

η
G (η)

βr Gα − G (η)
αr Gβ

G (η)
αr σ 2

β + σ 2
αG

(η)
βr

(18)

is nonzero only when the magnetic field is applied;
here G (−)

ir ≡ Gi + (σi/λr )tanh[d/2λr] while G (+)
ir ≡ Gi +

(σi/λr )Coth[d/2λr]; the decay length λr is given by the limit
of λ1 in the large g limit, yielding λ−2

r = (rα/σα + rβ/σβ )/2.
Thus, we find that strong interactions do not radically alter
the structural spin conductance in the sense that the spin
conductance neither vanishes or diverges in this regime. When
d 
 λr , Eq. (16) simplifies to

G = 2
(σα + σβ )

λr

(
Gασ 2

β + σ 2
α Gβ

)2

(
Gαrσ

2
β + σ 2

αGβr
)2 e−d/λr . (19)

Thus we find that for large interband scattering, the nonlocal
signal does not depend on g but only on the decay processes
(e.g., Gilbert damping) via ri.

Third, we consider a finite magnetic field and the limit
when magnons are noninteracting. In the zero coupling
regime, g = 0, one finds that the structural conductance is the
sum of the parallel channels, G = Gα + Gβ . Here,

Gi = (σi/λir )G2
i[

σ 2
i /λ2

ir + G2
i

]
sinh

(
d
λir

) + 2(σi/λir )Gicosh
(

d
λir

) , (20)

where λ−2
ir = ri/σi is determined by decay processes. For d 


λir , we find that

Gi = 2(σi/λir )G2
i

((σi/λir ) + Gi )2
e−d/λir , (21)

which shows an exponential decay over distance. When α-
and β-magnons are identical at the bulk and interfaces, both
Eqs. (21) and (19) reduce to Eq. (14).

In the following sections, we calculate and estimate the var-
ious parameters that enter into the phenomenological theory
above.

IV. TRANSPORT COEFFICIENTS: MICROSCOPIC
THEORY

In this section, we compute the interfacial spin conduc-
tances from a microscopic model for the interface. In addition,
the bulk magnon conductance, as well as the bulk Seebeck
coefficient, are obtained in linear response from transport
kinetic theory. Based on these results, the structural Seebeck
coefficient is evaluated and plotted in Fig. 4.

FIG. 2. Effective spin densities of AF|NM interface as experi-
enced by normal metal electrons scattering off of the interface, for
the compensated and uncompensated cases.

A. Contact magnon spin conductance

In this section, we compute interface transport coefficients
appropriate to our bulk drift-diffusion theory above, allowing
for the boundary conditions, Eq. (6a) to be computed.

Let us suppose that the spin degrees of freedom of the AF
are coupled to those of the normal metals by the exchange
Hamiltonian Eq. (1). Here it is understood that i labels the
lattice along the interface (see Fig. 2). Specifically, the lat-
tice is the set of vectors R2 = {naẑ + maŷ}. The integers n
and m are such that i corresponds to a and b atoms when
n + m are even and odd, respectively. In this model, we
assume that a and b atoms are evenly spaced, which is not
essential in what follows. Besides, the itinerant electronic
density, corresponding to evanescent modes in the x direction,
decays over an atomistic distance inside the AF. The spin
density of itinerant electrons in the normal metal is Ŝ(x) =
(h̄/2)

∑
σσ ′ �̂†

σ (x)τσσ ′�̂σ ′ (x), where �̂σ (x) is the electron
operator and τ the Pauli matrix vector. The exchange coupling
Ji = Ja, if i ∈ a, and Ji = Jb, if i ∈ b, while the local spin
density at each lattice site i is modulated by the function
ρi(x) = |φi(x)|2, with φi the localized orbital at position i.
Note that, in general, the orbitals for the a and b sublattices
may be different.

Based on the model represented by the contact Hamilto-
nian Eq. (1), we wish to obtain the magnonic spin current
across the interface using Fermi’s golden rule. We expand
ĤI in terms of magnon operators up to order ni/s, obtaining
ĤI = Ĥ (‖)

I + Ĥ (sf )
I . The first term is the coherent Hamilto-

nian Ĥ (‖)
I = ∑

kk′ Ukk′ (ĉ†
k↑ĉk′↑ − ĉ†

k↓ĉk′↓), with ĉkσ (ĉ†
kσ ) the

fermionic operator that annihilate (create) and electron with
spin σ and momentum k. The term Ĥ (‖)

I gives rise to coherent
spin torques, and magnonic corrections to it, ∼n × μ. Since
we are assuming a fixed order parameter n and focus only on
thermal magnon spin currents, we need not consider this term.
The second contribution, Ĥ (sf )

I , is the spin-flip Hamiltonian
that describes processes in which both branches of magnons
are annihilated and created at the interface by spin-flip scat-
tering of electrons. This term reads

Ĥ (sf)
I =

∑
qkk′

(
V α

qkk′ α̂
†
qĉ†

k↓ĉk′↑ + V β

qkk′ β̂
†
q ĉ†

k↑ĉk′↓
) + H.c., (22)
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where the matrix elements are

V α
qkk′ ≡ −

√
8S

N

∫
dx�∗

k (x)�k′ (x)

× (ρ∗
a (q, x)Jacoshθq − ρ∗

b (q, x)Jbsinhθq) (23)

and

V β

qkk′ ≡ −
√

8S

N

∫
dx�∗

k (x)�k′ (x)

× (ρb(q, x)Jbcoshθq − ρa(q, x)Jasinhθq). (24)

Here, the function �k(x) represent the eigenstates of the
nonmagnetic Hamiltonian. Specifically, in the yz directions,
the wave function is a delocalized Bloch state of the interfacial
lattice, which we assume here for simplicity to be common
to the both the metal and insulators (as is common in such
heterostuctures); in the x direction, the state is an evanescent
mode on the insulator side of the interface, and a Bloch-like
state of the metallic lattice on the other, which reduces to
the usual 3D metallic Bloch state far inside the metal. The
quantities ρa and ρb are defined by ρa(q, x) = ∑

i∈a ρi(x)eiq·i

and ρb(q, x) = ∑
i∈b ρi(x)eiq·i, with ρi(x) = |φi(x)|2 as the

density of the localized AF electron orbital at site i. The
quantities coshθq and sinhθq originate from the Bogoliubov
transformation that diagonalizes the noninteracting magnon
Hamiltonian [32].

It is instructive to consider the simplest case of in-
terfacial spin transport. This occurs when the interface is
fully compensated, i.e., ρi∈a(x) = ρi∈b(x + i)) and Ja = Jb,
see right side of Fig. 2. Because the normal metal elec-
tronic states �k(x) are Bloch states of the interfacial non-
magnetic Hamiltonian, then translation by the lattice spac-
ing a in the y (or z) direction transform, �k → eikya�k.
Using ρa(b)(q, x) = eiqyaρb(a)(q, x + aŷ) = ei2qyaρa(b)(q, x +
2aŷ), it follows that V α

qkk′ = ei2a(q+k−k′ )yV α
qkk′ . Applying trans-

lational invariance on the full Hamiltonian, under x → x +
aŷ, one has that this is independent of q + k − k′, and it
follows that V α

qkk′ = eiφ (V β

qk′k )
∗
, with the phase factor defined

by φ = a(qy + ky − k′
y). Since all of the interfacial transport

coefficients are proportional to |V |2, we establish that they
become identical for both magnonic branches, at zero field,
for the case of fully compensated interface.

It is also interesting to note the role played by Umk-
lapp scattering processes at the interface. Suppose again a
fully compensated interface. Then, in the small q limit, one
finds coshθq ≈ sinhθq, and the matrix elements V α

qkk′ and

V β

qkk′ vanish when (q − k + k′)⊥ = 0 (specular scattering of
electrons), where the subscript ⊥ designates the in-plane
components. However, when (q − k + k′)⊥ = Gmn, where
Gmn = n(π/a)ŷ + m(π/a)ẑ is the reciprocal lattice vector,
the matrix elements do not vanish for odd values of m + n,
and transport for each species becomes possible. We therefore
expect Umklapp scattering processes to play a crucial role in
the low temperature behavior of the magnon conductance, as
well as other interfacial linear transport coefficients. This is
consistent with Takei et al. [22], where Umklapp scattering is
found to be responsible for a finite spin-mixing conductance,
describing coherent spin torques, at an AF|NM interface.
Umklapp processes, however, may only happen when part of

the yz cross section of the normal metal |k| = 2kF surface lies
outside the magnetic Brillioun zone of the lattice interface, for
instance in a spherical Fermi surface this conditions becomes
2kF > π/a.

We return to the general case to obtain the contact magnon
conductances Gα,β . This can be done by a straightforward
application of Fermi’s golden rule to calculate the magnonic
spin current flowing across the interface. The magnon current
is expressed as [30]

ji = 2D2
F

∫
dεg(i)

ε |Vi(ε)|2(ε − μ′
i )[ fim(ε) − fie(ε)], (25)

and, therefore, the magnon spin current through the interface
becomes js = h̄( jα − jβ ). Here we have defined for i = α, β,

|Vi(ε)|2 = πdAF

D2
F

∑
qkk′

1

g(i)
ε

∣∣V i
qkk′

∣∣2
δ(εk − εF )

× δ(εk′ − εF )δ(ε − εq), (26)

with DF as the normal metal density of states and g(i)
ε the

i magnon density of states. In Eq. (25) μ′
α,β = ∓μ, where

we recall that μ is the spin accumulation. The Bose-Einstein
distribution for the i magnons is fim(ε) = 1/[e(ε−μi )/kBTi −
1], and fie(ε) = 1/[e(ε−μ′

i )/kBTe − 1] corresponds to the ef-
fective electron-hole-excitation density experienced by the i
magnons.

In a simple model, we may take the atomic densities
for both sublattices as ρi(x) = δ(x − ri ) and the normal-
metal wave functions �k(x) = eik⊥·xFk(x)/

√
VNM. Here the

function Fk(x) describes the decay within the AF and VNM

the normal metal volume. Then, defining the spin-mixing
conductance g↑↓

i ≡ 16πNdAFVAF(sηDF Ji/VNM)2, where η =∫
dxFk′ (x)F ∗

k (x), which we take to be momentum indepen-
dent for simplicity, one may write the i magnon spin current
h̄ ji in Eq. (25) as

h̄ ji = 1

16π

(
g↑↓

a ξ (i)
aa + g↑↓

b ξ
(i)
bb + 2

√
g↑↓

a g↑↓
b ξ

(i)
ab

)
, (27)

where the functions ξ
(i)
ll ′ , which carry units of energy, are given

by

ξ
(i)
ll ′ = 1

D2
F (sVAF)

∑
q,k,k′

∑
m,n

F (ll ′ )
mnq (εq − μi )(nim − nie)

× δ(εF − εk )δ(εF − εk′ )δk′−k−q,Gmn , (28)

with F (aa)
mnq = cosh2θq, F (bb)

mnq = sinh2θq and F (ab)
mnq = F (ba)

mnq =
(−1)m+n+1coshθqsinhθq. The motivation for expressing the
spin current in the form of Eq. (27) is that in the case of
particle-hole symmetry at the interface, h̄ ji = (g↑↓/4π )ξ ∼
(g↑↓/4π )(h̄ω − μi )(ni/s). In particular, the m = n = 0 term
in Eq. (28) gives spectral scattering processes, while all others
(m �= n �= 0) correspond to Umklapp scattering.

The contact spin conductances Gα and Gβ are obtained by
the linearization of the i-magnon current given by Eq. (27),
i.e., Gi = (∂ ji/∂μi )|μi=0. The ratio of interfacial conduc-
tances of the two magnon branches α and β is shown in
Fig. 3 at zero field and as a function of ratios of interfacial
sublattice exchange constants Ja/Jb. The ratio Gα/Gβ reaches
a maximum value to later saturates when Ja/Jb is increased.
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FIG. 3. Ratio of interfacial conductances of the two magnon
branches α and β at zero field for different ratios of interfacial sub-
lattice exchange constants. Sublattice symmetry breaking (Ja �= Jb) is
necessary to obtain a structural spin Seebeck effect in the absence of
magnetic fields [see Eq. (9)]. Inset: Temperature dependence of Gα

including and excluding Umklapp scattering [m �= 0 and/or n �= 0 in
Eq. (28)]. All curves are obtained for kF = 4/a, and 6Js2 = 2Hc.

In particular, we note that Gα = Gβ when the interfacial
exchange constants are equal. Thus, the breaking of sublattice
symmetry (Ja �= Jb) is necessary in realizing a structural spin
Seebeck effect in the absence of a field, as is seen from Eq. (9).
In the inset of Fig. 3, we display the temperature dependence
of Gα . In this plot we have included (solid line) and excluded
(dashed line) Umklapp scattering.

B. Bulk magnon conductances and spin Seebeck coefficients

In this section, we evaluate the bulk magnon conduc-
tances σα,β and bulk spin Seebeck coefficients ςα,β . These
are obtained from standard kinetic theory of transport. Unlike
previous works [28,33,34], here we consider the magnonic
transport driven, in addition to thermal gradients, by spin
biasing. The generic expressions for the magnon current in
the bulk are

ji = −
∫

dq

(2π )3 τiv
2
i

∂ fi

∂x
, (29)

where the integration is over the Brillouin zone and i = α, β.
The magnon relaxation time is τi and the magnon group
velocity along the x direction is vi = ∂εi/h̄∂kx. The number of
i magnons with momentum q is denoted by fi and given by the
Bose-Einstein distribution function. This yields the transport
coefficients,

σi = 4J̃4H2
c

9h̄2

∫
dq

(2π )3

τi sin2(aqx )γ 2
q

1 + J̃2
(
1 − γ 2

q

) βeβεi

(eβεi − 1)2
, (30)

ςi = 4J̃4H2
c

9h̄2

∫
dq

(2π )3

τi sin2(aqx )γ 2
q

1 + J̃2
(
1 − γ 2

q

) εiβ
2eβεi

(eβεi − 1)2
, (31)

where J̃ ≡ 6Js2/Hc is roughly the Néel temperature in units
of Hc and β = 1/kBT . Similarly, we may obtain expressions
for the damping rates ri from ṅi|α = (2π )−3

∫
dq ni/τig with

τig the Gilbert damping lifetime. From the above relation, ri is

FIG. 4. (a) Structural Seebeck coefficient S and (b) structural
spin conductance G as functions of temperature T/Hc for a field H =
0.2Hc. The temperature dependence of the intermagnon scattering
is given by g = �(T/Tc )3 (see Appendix B). Shown for both plots
are � = 0, 1, 10, 103, 105, corresponding to a shift from blue to red
coloring. While increased scattering slightly diminishes the SSE, it
has no discernible effect on the spin conductance for these particular
parameters. For these plots, the parameters g↑↓

a = 1/100a2 (which
for a = 1 Å corresponds to g↑↓ ∼ 1/nm2), kF = 1/a, 6Js2 = 2Hc,
α = 10−3 and d = 100a were used.

extracted and obeys

ri = 2α

h̄

∫
dq

(2π )3

βε2
i eβεi

(eβεi − 1)2
, (32)

and α is the Gilbert damping constant.
The momentum relaxation rate, entering in the transport

coefficients obtained in Eqs. (30) and (31), has contributions
from different sources; Gilbert damping, disorder scattering,
magnon-phonon scattering, and α-magnon–β-magnon scat-
tering. For simplicity, we consider the regime in which Gilbert
damping dominates transport,

τ̃−1
i ≈ τ̃−1

ig , (33)

where τ̃−1
ig = 2αεi/Hc. Note that the tilde represents units of

Hc.
In Figs. 4(a) and 4(b), we show the temperature depen-

dence of the spin Seebeck coefficient and structural spin con-
ductance, respectively using the interface and bulk transport
coefficients above. The interaction parameter g grows with
temperature (see Appendices B and C). As shown in Fig. 4(a),
however, the effects of g are minimal, suppressing the spin
Seebeck signal slightly and negligibly affecting the structural
conductance.

V. SPIN-FLOP TRANSITION

The spin-flop transition occurs as |H | → Hc from below.
Here, the magnon spectrum becomes gapless and quadratic
at low energies for one of the two magnon bands (say, the
β band, for purposes of discussion). When Gilbert damping
dominates the transport time [Eq. (33)], the bulk conductance
σβ in Eq. (30) demonstrates an infrared divergence, while ςβ ,
rβ , and Gβ are finite. It is straightforward to show that the
Seebeck coefficient, Eq. (C4), does not diverge in this case,
consistent with Ref. [19].

In contrast to Ref. [19], however, the structural conduc-
tance G does not diverge in the diffusive regime. Here, it is
instructive to consider the noninteracting case, Eq. (20), which
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FIG. 5. Main figure: Behavior of conductance G near spin flop.
While the spin diffusion length λr diverges as |H | → Hc, the con-
ductance G, though sharply increasing, does not actually diverge
because of bottlenecking by the interface impedances; for noninter-
acting magnons it has a maximium value of max (Gα/2, Gβ/2) [see
Eq. (34)]. The colors and parameters are identical to those shown in
Fig. 4.

reduces to

G = G2
β

(σβ/λβr )(d/λβr ) + 2Gβ

, (34)

which shows an algebraic, rather than exponential, decay in
film thickness, due to a diverging decay length λβr (∼√

σβ).
For a thin film, this becomes G = Gβ/2; while the AF bulk
shows zero spin resistivity (σ−1

β = 0) due to the Bose-Einstein
divergence at low energies, structural transport is bottlenecked
by the interface resistance G−1

β , which is only well defined
in the diffusive regime. (The effect is similar to a supercon-
ducting circuit, which with perfectly conducting components,
shows a finite resistance due to normal metal contacts.) While
the signal does not diverge, there is a clear enhancement due to
the diminished spin resistivity, as well as long-distance trans-
port (algebraic in d), manifesting as a peak in the signal near
the spin-flop transition [25] (see Fig. 5). A full calculation
for nonlocal spin injection—including spin Hall/inverse spin
Hall effects absent here—would show additional impedances
to spin flow due to spin resistance in the normal metal injector
and detector.

VI. CONCLUSION AND DISCUSSION

In summary, we have presented a study of spin transport
of magnons in insulating AFs in contact with normal metals.
We focus on the thick-film limit, wherein a diffusive regime
can be assumed and magnons are in a local thermodynamical
equilibrium. The excitation of magnon currents is considered
in linear response and driven by either a temperature gradient
and/or spin biasing. The spin transport is studied by evalu-
ating the structural magnon conductance and spin Seebeck
effect within a phenomenological spin-diffusion transport the-
ory. These parameters were calculated in terms of bulk trans-
port coefficients as well as contact magnon conductances.
While the former were computed through kinetic theory of
transport, the latter are obtained from a microscopic model
of the NM|AF interface. Furthermore, we allowed for the

breaking of sublattice symmetry at the interface assuming
an uncompensated magnetic order. In addition, the field and
temperature dependence of the intermagnon scattering rates,
which redistribute angular momentum between the magnon
branches, were estimated. We find that the effects of inter-
magnon scattering, which lock the two magnon bands to-
gether, is negligible. Furthermore, we show that even as the
bulk spin resistivity vanishes near the spin flop transition,
normal metal|magnet interface spin impedance ultimately bot-
tleneck transport, irrespective of interactions, in contrast to the
stochastic theory [19] for thin films.

The phenomenological approach above ultimately breaks
down for strong interactions (which occur near the spin-flop
transition), where the individual α and β clouds are no longer
internally equilibrated with well-defined chemical potentials
an interactions. Instead, a treatment of the interacting clouds
(e.g., a kinetic theory approach) beyond the quasiequilibrium
approach that is adopted here is needed. In addition, more
sophisticated treatments of the transport time τi have been
shown to more realistically reproduce experimental results
[33]; such quasiempirical transport times could be incorpo-
rated directly into our phenomenology. Most importantly,
our somewhat artificial assumption that the magnetic field
is applied along the easy axis in not necessarily realized in
experiment. Instead, even simple bipartite AFs such as those
modeled by our phenomenology above show complex param-
agnetic behavior in response to a field applied along different
axes. In these scenarios, heterostuctures may manifest both
antiferromagnetic and ferromagnetic transport behaviors [25].
Future work, such as the drift-diffusion approach discussed
above, is needed to fully understand such scenarios at a more
fundamental level.

Note added. Recently, we became aware of another related
article [35] that considers magnon transport in AFs.
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APPENDIX A: MAGNON-MAGNON INTERACTIONS

We start out by defining the AF Hamiltonian. Introducing
a square lattice, labeling the sites in the lattice by i, on
sublattices A and B, the nearest-neighbor Hamiltonian reads

ĤAF = J
∑

〈i∈A, j∈B〉
ŝi · ŝj − H

∑
i∈A,B

ŝiz − κ

2s

∑
i∈A,B

ŝ2
iz, (A1)

where J > 0 is the exchange coupling, H the magnetic field,
and κ > 0 the uniaxial easy-axis anisotropy. Introducing the
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Holstein-Primakoff transformation, assuming a bipartite ground state, the spin operators in the limit of small spin fluctuations
reads

ŝAiz = s − a†
i ai, ŝBiz = −s + b†

i bi, (A2a)

ŝAi+ =
√

2sai − 1√
2s

a†
i aiai, ŝBi+ =

√
2sb†

i − 1√
2s

b†
i b†

i bi, (A2b)

ŝAi− =
√

2sa†
i − 1√

2s
a†

i a†
i ai ŝBi− =

√
2sbi − 1√

2s
b†

i bibi. (A2c)

The AF Hamiltonian Eq. (A1) is expanded up to fourth order in the magnon operators, Fourier transformed through the
relations ai = 1√

N

∑
i eik·iak and bi = 1√

N

∑
i eik· jbk and expressed as HAF = E0 + H (2)

AF + H (4)
AF where

Ĥ (2)
AF = (Jsz + κ )

∑
q

[(1 + h)a†
qaq + (1 − h)b†

qbq + ξγq(aqb−q + a†
qb†

−q)], (A3)

Ĥ (4)
AF = − Jz

2N

∑
q1q2q3q4

δq1+q2−q3−q4

[
2γq2−q4 a†

q1
b†

−q4
aq3 b−q2 + κ

2s
(a†

q1
a†

q2
aq3 aq4 + b†

q1
b†

q2
bq3 bq4 )

+ γq4 (b†
q1

b−q2 bq3 aq4 + b†
q3

b†
−q2

bq1 a†
q4

+ a†
q1

a−q2 aq3 bq4 + a†
q3

a†
−q2

aq1 b†
q4

)

]
, (A4)

with h = H/(Jsz + κ ), ξ = Jsz/(Jsz + κ ) and γq = 2
z

∑
δ cos [q · δ], where z is the coordination number. The quadratic part of

the Hamiltonian, Eq. (A3), is diagonalized by the Bogoliubov transformation

âq = lqα̂q + mqβ̂
†
−q, (A5)

b̂†
−q = mqα̂q + lqβ̂

†
−q, (A6)

with the coefficients lq = ( (Jsz+κ )+εq

2εq
)
1/2

, mq = −( (Jsz+κ )−εq

2εq
)
1/2 ≡ −χqlq and εq = (Jsz + κ )

√
1 − ξ 2γ 2

q , resulting in Eq. (4). In

the diagonal basis, the interacting Hamiltonian Eq. (A4) finally becomes

Ĥ (4)
AF =

∑
q1q2q3q4

δq1+q2−q3−q4

[
V (1)

q1q2q3q4
α†

q1
α†

q2
αq3αq4 + V (2)

q1q2q3q4
α†

q1
β−q2αq3αq4 + V (3)

q1q2q3q4
α†

q1
α†

q2
αq3β

†
−q4

+ V (4)
q1q2q3q4

α†
q1

β−q2αq3β
†
−q4

+ V (5)
q1q2q3q4

β−q1β−q2αq3β
†
−q4

+ V (6)
q1q2q3q4

α†
q1

β−q2β
†
−q3

β
†
−q4

+ V (7)
q1q2q3q4

α†
q1

α†
q2

β
†
−q3

β
†
−q4

+ V (8)
q1q2q3q4

β−q1β−q2αq3αq4 + V (9)
q1q2q3q4

β−q1β−q2β
†
−q3

β
†
−q4

]
, (A7)

where the scattering amplitudes are V (a)
q1q2q3q4

= −( Jz
N )lq1 lq2 lq3 lq4�

(a)
1234. The functions �(a) are the following expressions:

�
(1)
1234 = γq2−q4χq2χq4 − 1

2
(γq2χq2 + γq4χq4 + γq2χq1χq3χq4 + γq4χq1χq2χq3 ) + κ

2Jzs
(1 + χq1χq2χq3χq4 ) (A8)

�
(2)
1234 = − γq2−q4χq4 − γq1−q4χq1χq2χq4 + γq4χq1χq3 + γq4χq2χq4 + 1

2
(χq3χq4 (γq1 + γq2χq1χq2 ) + (γq2 + γq1χq1χq2 ))

− κ

Jzs
(χq2 + χq1χq3χq4 ) (A9)

�
(3)
1234 = − γq2−q4χq2 − γq2−q3χq2χq3χq4 + γq2χq1χq3 + γq2χq2χq4 + 1

2
(χq1χq2 (γq3 + γq4χq3χq4 ) + (γq4 + γq3χq3χq4 ))

− κ

Jzs
(χq4 + χq1χq2χq3 ), (A10)

�
(4)
1234 = γq2−q4 + γq1−q4χq1χq2 + γq2−q3χq3χq4 + γq1−q3χq1χq2χq3χq4 + 2κ

Jzs
(χq2χq4 + χq1χq3 )

− (χq1 (γq3 + γq4χq3χq4 ) + χq3 (γq1 + γq2χq1χq4 ) + χq4 (γq2 + γq1χq1χq2 ) + χq2 (γq4 + γq3χq3χq4 )), (A11)

�
(5)
1234 = − γq2−q4χq1 − γq2−q3χq1χq3χq4 + γq2χq2χq3 + γq2χq1χq4 + 1

2
((γq3 + γq4χq3χq4 ) + χq1χq2 (γq4 + γq3χq3χq4 ))

− κ

Jzs
(χq3 + χq1χq2χq4 ), (A12)

�
(6)
1234 = − γq2−q4χq3 − γq1−q4χq1χq2χq3 + γq4χq1χq4 + γq4χq2χq3 + 1

2
((γq1 + γq2χq1χq2 ) + χq3χq4 (γq2 + γq1χq1χq2 ))

− κ

Jzs
(χq1 + χq2χq3χq4 ), (A13)
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�
(7)
1234 = γq2−q4χq2χq3 − 1

2
(γq2χq1 + γq4χq3 + γq4χq1χq2χq4 + γq2χq2χq3χq4 ) + κ

2Jzs
(χq3χq4 + χq1χq2 ), (A14)

�
(8)
1234 = γq2−q4χq1χq4 − 1

2
(γq4χq3 + γq2χq1 + γq2χq2χq3χq4 + γq4χq1χq2χq4 ) + κ

2Jzs
(χq1χq2 + χq3χq4 ), (A15)

�
(9)
1234 = γq2−q4χq1χq3 − 1

2
(γq4χq4 + γq2χq2 + γq2χq1χq3χq4 + γq4χq1χq2χq3 ) + κ

2Jzs
(1 + χq1χq2χq3χq4 ), (A16)

where χq = −( 1−εq

1+εq
)
1/2

. Note the symmetry relations among these coefficients �
(3)
1234 = �

(2)
3412, �

(6)
1234 = �

(5)
3412, and �

(8)
1234 =

�
(7)
3412. The form of these expressions differ from Ref. [36], where a Dyson-Maleev transformation was considered.

APPENDIX B: SCATTERING LENGTHS

In this section, we compute the field and temperature
dependencies of gαα and gββ through Fermi’s golden rule.
To start with, we introduce the Boltzmann equation for the
distribution of α and β magnons, f α (x, q, t ) and f β (x, q, t ),
respectively,

∂ f α

∂t
+ ∂ f α

∂x
· ∂ωα

q

∂q
= 
α[q] + 
αβ[q], (B1)

∂ f β

∂t
+ ∂ f β

∂x
· ∂ω

β
q

∂q
= 
β[q] + 
βα[q], (B2)

where εα
q = h̄ωα

q . The right-hand sides are the total net rates
of scattering into and out of a magnon state with wave vector
q. The magnon spin diffusion equations [Eqs. (5a) and (5b)]
are obtained by linearizing the Boltzmann equations in terms
of the small perturbations, e.g., the chemical potential. This is
achieved, in addition, by integrating Eqs. (B1) and (B2) over
all possible wave vectors q.

The terms 
α and 
β originate from multiple effects
such as magnon-phonon collisions, elastic magnon scattering
with defects, and magnon number and energy-conserving
intraband magnon-magnon interaction. It is worth mention-
ing that the estimation of each of those contributions, as
was done in Ref. [31] for ferromagnets, is out of the
scope of our work. However, we implement the basic as-
sumption that the equilibration length for magnon-magnon
interactions is much shorter than the system size, so the
two magnon gases are parametrized by local chemical po-
tentials μα and μβ and temperatures Tα and Tβ . More-
over, as was pointed out in Sec. IV, the magnon relax-
ation into the phonon bath is parametrized by the Gilbert
damping.

Now we focus on the magnon-magnon collisions described
by 
αβ and 
βα . These terms describe interband interaction
between magnons that exchange the population of different
magnon species. To calculate 
αβ and 
βα , we consider the
interacting Hamiltonian given by Eq. (A7) that represents all
scattering processes among α and β magnons (depicted in
Fig. 6). We emphasize that those processes represented in
Figs. 6(b), 6(d) and 6(e) do not conserve the number of α

magnons or β magnons, even though the difference nα − nβ is
constant due to conservation of spin-angular momentum. This
inelastic spin-conserving processes contribute to the transfer
of one magnon mode into the other and thus determine the co-
efficients gi j . We quantify this effect evaluating perturbatively
the rate of change of magnons using Fermi’s golden rule.

Based on time-dependent perturbation theory, the tran-
sition rate between an initial |i〉 and a final state | f 〉
is given by Fermi’s golden rule, which reads 
 =
(2π/h̄)

∑
i, f Wi|〈 f |V̂ |i〉|2δ(ε f − εi ). The sum runs over all

possible initial and final states, Wi is the Boltzmann weight
that gives the probability of being in some initial state, V̂ is
the matrix element of the Hamiltonian corresponding to the
interactions, and the delta function ensures energy conserva-
tion.

We recognize that a final state can be either any of those
described in Eq. (A7). However, those processes that conserve
the number of particles, i.e., α magnons and β magnons, have
a null transition rate. Only the states described in Figs. 6(b),
6(d) and 6(e) will contribute to a finite transition rate. The net

FIG. 6. Diagrammatic representation for the scattering processes
experienced by α and β magnons. (a), (c), and (f) represent the pro-
cesses with scattering amplitudes V (1), V (4), and V (9), respectively.
(b), (d), and (e) show those inelastic processes that do not conserve
the number of magnons. These are scattered by the interacting
potential with amplitudes V (3), V (6), and V (7), respectively. Those
processes with amplitudes V (2), V (5), and V (8) are the Hermitian
conjugates of the above and thus are omitted.
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transition rate of scattering into and out of a magnon state with wave vector q, reads


αβ[q] = 2π

h̄

∑
q1q2q3

{∣∣V (3)
qq1q2q3

∣∣2[(
1 + f α

q

)(
1 + f β

−q1

)(
1 + f α

q2

)
f α
q3

− f α
q f β

−q1
f α
q2

(
1 + f α

q3

)]
δq−q1+q2−q3δ

(
εα

q + ε
β
−q1

+ εα
q2

− εα
q3

)

+ ∣∣V (6)
qq1q2q3

∣∣2[(
1 + f α

q

)(
1 + f β

−q1

)(
1 + f β

−q2

)
f β
−q3

− f α
q f β

−q1
f β
−q2

(
1 + f β

−q3

)]
× δq−q1−q2+q3δ

(
εα

q + ε
β
−q1

+ ε
β
−q2

− ε
β
−q3

)}
(B3)

and


βα[q] = 2π

h̄

∑
q1q2q3

{∣∣V (3)
qq1q2q3

∣∣2
[(

1 + f β
−q

)(
1 + f α

q1

)(
1 + f α

q2

)
f α
q3

− f β
−q f α

q1
f α
q2

(
1 + f α

q3

)]
δ−q+q1+q2−q3δ

(
ε

β
−q + εα

q1
+ εα

q2
− εα

q3

)

+ ∣∣V (6)
qq1q2q3

∣∣2
[(

1 + f β
−q

)(
1+ f α

q1

)(
1 + f β

−q2

)
f β
−q3

− f β
−q f α

q1
f β
−q2

(
1 + f β

−q3

)]
δ−q+q1−q2+q3δ

(
ε

β
−q + εα

q1
+ ε

β
−q2

− ε
β
−q3

)}
.

(B4)

We note that processes described by Fig. 6(e) do not contribute to the change of magnon density by invoking conservation of
energy. The total rates 
αβ and 
βα , obtained by summing up over all wave vectors q, are defined by


αβ = h̄
∑

q


αβ[q], (B5)


βα = h̄
∑

q


βα[q], (B6)

which describes the net imbalance of the magnon densities nα and nβ by the successive scattering events between both magnon
modes. Next, we will show that Eqs. (B5) and (B6) scale linearly with the magnon chemical potentials when the magnon
distribution are close to the equilibrium.

To calculate 
αβ and 
βα we consider that magnons are near thermodynamic equilibrium. Thus, their distributions are

parameterized by the Bose-Einstein distribution as f α
q = (e(εα

q −μα )/kBT − 1)
−1

and f β
q = (e(εβ

q −μβ )/kBT − 1)
−1

, where T is the
temperature of the phonon bath. At equilibrium, the rates obey 
αβ = 
βα = 0, which is established when the chemical potentials
satisfy μα + μβ = 0. This can be clearly seen when the distribution is expanded up to linear order on μα and μβ . Using this
expansion on Eqs. (B3) and (B4), is found that the total transition rates 
αβ and 
βα become equals and proportional to the sum
of the chemical potentials. Precisely, we obtain 
αβ = 
βα = −g(μα + μβ ) with the coefficient g given by

g = 2π

h̄kBT

∑
qq1q2q3

δq−q1+q2−q3

[∣∣V (3)
qq1q2q3

∣∣2
f α,0
q f β,0

q1
f α,0
q2

(
1 + f α,0

q3

)
δ
(
εα

q + εβ
q1

+ εα
q2

− εα
q3

)

+ ∣∣V (6)
qq1q2q3

∣∣2
f α,0
q f β,0

q1

(
1 + f β,0

q2

)
f β,0
q3

δ
(
εα

q + εβ
q1

+ εβ
q3

− εβ
q2

)]
, (B7)

where f α,0 and f β,0 denote the equilibrium distribution evaluated at the chemical potential μe
α = −μe

β . Comparing with the
phenomenological Eqs. (5a) and (5b), we obtain gαα = gαβ = gββ = gβα = g.

Despite the complex expression for the factor g, it can be estimated in certain temperature regimes. For instance, at high
temperatures the thermal energy is much higher than the magnon gap, therefore εα,β (q)/kBT ≈ (Jsz/kBT )a|q|, i.e., the exchange
energy is the only magnetic coupling that becomes relevant. Thus, at large temperatures we obtain

g = 2π

h̄

N

s2

(
kBT

Jsz

)3

�, (B8)

where � is a dimensionless integral defined as

� =
∫

dp1

(2π )3

dp2

(2π )3

dp3

(2π )3

dp4

(2π )3
δ(p1 + p2 − p3 − p4)

[∣∣v(3)
p1p2p3p4

∣∣2
f α,0
p f β,0

p1
f α,0
p2

(
1 + f α,0

p3

)
δ
(
p + p1 + p2 − p3

)

+ ∣∣v(6)
p1p2p3p4

∣∣2
f α,0
p f β,0

p1

(
1 + f β,0

p2

)
f β,0
p3

δ
(
p + p1 + p3 − p2

)]
. (B9)

To obtain Eq. (B8), the continuum limit was taken by the replacement
∑

q → V ((Jsz/kBT )a)−3
∫

dp/(2π )3 on Eq. (B7), where
the dimensionless wave vector p = (Jsz/kBT )a|q| was introduced. We notice that in the limit of very large temperatures, the Bose
factors approach the Raleigh-Jeans distribution, i.e., f α

q ∼ f β
q ∼ kBT/(Jsz)a|q|, and � becomes independent of temperature. The

dimensionless scattering amplitudes v(i)
q1q2q3q4

= V (i)
q1q2q3q4

/v0, with v0 = (Jsz)3/Ns(kBT )2, are evaluated and their asymptotic
behavior obeys v(3)

p1p2p3p4
= v(6)

p1p2p3p4
= −2v(7)

p1p2p3p4
with

v(3)
p1p2p3p4

≈ −2

(
1

p1p2p3p4

)1/2

. (B10)
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APPENDIX C: SEEBECK COEFFICIENT AND SPIN CONDUCTANCE

To find the structural spin Seebeck coefficient and spin conductance we first express the general solution for the magnon
chemical potential,

μα (x) = (A sinh [x/λ1] + B cosh [x/λ1]) + (D sinh [x/λ2] + E cosh [x/λ2]), (C1)

μβ (x) = C(A sinh [x/λ1] + B cosh [x/λ1]) + (D sinh [x/λ2] + E cosh [x/λ2]), (C2)

where C is a constant that is obtained from the eigenvalue problem that determines λ1 and λ2. From the boundary conditions,
Eqs. (6a)–(6d), we find the unknown coefficients A, B, D, and E . The net spin current crossing the right lead is

js = j (s)
α (d/2) + j (s)

β (d/2), (C3)

where j (s)
α = h̄ jα and j (s)

β = −h̄ jβ . In the absence of a spin accumulation, μL = μR = 0, we calculate the magnon currents jα
and jβ to obtain S = js/d . Thus, the structural spin Seebeck coefficient is

S = ν2(Gα2Gβςβ − Gβ1Gαςα ) + ν1(GβGα1ςβ − Gβ2Gαςα ) + (Gβ1 − Gβ2)Gβςα + ν1ν2(Gα2 − Gα1)Gαςβ(
Gα1Gβ2ν1 + Gα2Gβ1ν2

)
d

, (C4)

which is written in terms of the effective conductances

Gin ≡ Gi +
(

σi

λn

)
Coth

[
d

2λn

]
(C5)

for n = 1, 2 and i = α, β, and

ν1 = (g̃β − g̃α + r̃β − r̃α + δ)/2g̃β,

ν2 = (g̃α − g̃β + r̃α − r̃β + δ)/2g̃β, (C6)

where δ = √
4g̃β g̃α + (g̃α − g̃β + r̃α − r̃β )2, and r̃α = rα/σα , and g̃α = g/σα , with similar expressions for β parameters.

The structural conductance is obtained by following the same procedure as before. However, in this case, we assume that
μL �= μR and ∇T = 0. In the general case, G is given by

G = − 1

2λ1
(σαν1 + σβ )

G (+)
β2 Gα + ν2G (+)

α2 Gβ

ν1G (+)
α1 G (+)

β2 + ν2G (+)
α2 G (+)

β1

tanh

[
d

2λ1

]

+ 1

2λ2
(σβ − σαν2)

G (+)
β1 Gα − ν1G (+)

α1 Gβ

ν1G (+)
α1 G (+)

β2 + ν2G (+)
α2 G (+)

β1

tanh

[
d

2λ2

]

+ 1

2λ1
(σαν1 + σβ )

G (−)
β2 Gα + ν2G (−)

α2 Gβ

ν1G (−)
α1 G (−)

β2 + ν2G (−)
α2 G (−)

β1

coth

[
d

2λ1

]

+ 1

2λ2
(σαν2 − σβ )

G (−)
β1 Gα − ν1G (−)

α1 Gβ

ν1G (−)
α1 G (−)

β2 + ν2G (−)
α2 G (−)

β1

coth

[
d

2λ2

]
(C7)

where G (−)
in ≡ Gi + (σi/λn)tanh[d/2λn] while G (+)

in ≡ Gi + (σi/λn)coth[d/2λn].
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