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Time dynamics of Bethe ansatz solvable models
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We develop a method for finding the time evolution of exactly solvable models by Bethe ansatz, with Hilbert
space linear in excitation number. The dynamical Bethe wave function takes the same form as the stationary
Bethe wave function, except for time-varying Bethe parameters and a complex phase prefactor. From this, we
derive a set of first-order nonlinear coupled differential equations for the Bethe parameters, called the dynamical
Bethe equations. We find that this gives the exact solution to particular types of exactly solvable models,
including the Bose-Hubbard dimer. The developed formalism allows us to demonstrate analytically that time
dynamics of the detuning-quenched Bose-Hubbard dimer occurs in the subspace which dimensionality is less
than that of the physical Hilbert space. This allows for calculation of the time dynamics within a reduced problem
dimensionality.
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I. INTRODUCTION

Exact methods of mathematical physics have substantially
increased our understanding of many paramount nonlinear
phenomena. One such method is the quantum inverse method
(QIM), which was developed almost 40 years ago by Sklyanin
et al. and others [1–3]. The QIM, together with the algebraic
version of the Bethe ansatz [4–6], has been successfully
applied to various problems from different areas of physics
such as one-dimensional BECs [7,8], spin chains [9–12], (1 +
1) models of quantum field theory [13], the (2 + 1) model
of classical statistical physics [14], conformal field theory
and string theory [15], quantum optics [16], and quantum
dots [17].

Obtaining the time dynamics of quantum many-body sys-
tems remains an important but very challenging problem due
to the high computational and calculational demands. In the
case of the QIM, the dynamics of the system after a quench of
one or several parameters has been successfully studied for
some cases [18,19]. However, in general, the QIM without
modifications cannot be applied to the system with time-
dependent parameters. Recently, several exact methods for
time-dependent Hamiltonians were proposed. In Ref. [20],
a set of conditions under which the Schrodinger equation
can be solved exactly was presented. It was also shown in
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Ref. [20] that among Hamiltonians satisfying these conditions
are the multistate Landau-Zener model and the generalized
Tavis-Cummings model. Earlier in Ref. [21], Barmettler et al.
proposed a generalization of the Bethe wave function for
the dynamical case and presented its explicit form for the
detuning-driven Tavis-Cummings model. There has also been
progress in studies of the exact dynamics of periodically
driven systems [22]. However, a general formulation of how
to perform the time evolution of an integrable system has not
been shown.

In this paper, we study the generalization of the Bethe wave
function for the time-dependent case. Specifically, consider
that we are dealing with an integrable system with Bethe wave
function

M∏
j=1

B(λ j )|vac〉, (1)

where B(λ) is an operator which depends on complex param-
eter λ and |vac〉 is the pseudovacuum reference state, specific
to the model being considered. For a model which Hilbert
space is small enough, we show that its time evolution can be
described exactly using the dynamical Bethe wave function:

eip(t )
M∏

j=1

B(λ j (t ))|vac〉, (2)

where p(t ) is a complex phase. The time-dependent wave
function has exactly the same structure as the Bethe wave
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function, but its parameters are functions of time and it has
a time-varying prefactor. One of the most important features
of the Bethe vectors is that it allows for the determinant
representation for computing local observables [23], which
is widely used in calculations of the Bethe ansatz [24,25].
The fact that the time-dependent wave function (2) has the
structure of a Bethe vector allows us to transfer all the Bethe
ansatz machinery to the time-dependent case.

When a system is exactly solvable by the QIM, one can
always make (1) an eigenfunction by choosing special values
of the parameters λ j , which satisfy the Bethe equations.
In this paper, we formulate a set of conditions for when
the dynamical Bethe wave function (2) satisfies the time-
dependent Schrodinger equation. The set of conditions is a
set of nonlinear coupled differential equations, which we call
the dynamical Bethe equations. The time-dependent wave
function can always be represented by the dynamical Bethe
wave function (2) for an arbitrary smooth time dependence of
the model parameters if the Hilbert space of the model under
consideration is small enough.

We provide an explicit example of the dynamical Bethe
equations for a detuning-driven Bose-Hubbard dimer. We
show analytically that the evolution of the detuning-quenched
Bose-Hubbard dimer happens in the subspace which dimen-
sionality is smaller than that of the original Hilbert space. This
effect is preserved in the thermodynamic limit for an arbitrary
long time, which is an important feature of such nonergodic
phenomena.

The form of the wave function (2) first appeared in
Ref. [21] for the Tavis-Cummings model, where the set
of dynamical Bethe equations for λ j (t ) was found, and its
connection of trajectories λ j (t ) with classical motion in a
potential was established. So far, all the examples of the dy-
namically integrable models considered in [20,21,26] belong
to the Gaudin class [27] of integrable models or models with
a classical R matrix. Here we show that (2) can be applied
to a wider class of integrable models, which goes beyond the
Gaudin class. The Bose-Hubbard dimer example that we show
here belongs to the so-called rational XXX R-matrix class.

II. DYNAMICAL BETHE EQUATIONS

We first discuss the general method of finding the dynam-
ical Bethe wave function. The model under consideration is
assumed to be solvable by an algebraic Bethe ansatz. We
also assume that the set of these Bethe vectors forms a
complete orthogonal set. This condition should be checked
for every specific model separately, but for the vast majority
of physically relevant models, it is known to be satisfied. Also
for simplicity, we restrict the considered models to be those
with a rational R matrix and XXX- or XXZ-like R matrices.
In practice, these three classes cover most physically relevant
models.

A central quantity in integrable models is the trace of
the monodromy matrix τ (λ). For more details on this and
the Bethe ansatz technique in general, see the Appendices,
where the essential points have been summarized, or the
extensive review of Ref. [28]. This operator has many use-
ful algebraic properties provided by the integrability of the
model; its specific form should be defined for each model

separately. By construction, τ (λ) is explicitly connected with
the Hamiltonian Ĥ of the model under consideration. Usually
the Hamiltonian Ĥ can be expressed as some elementary
function or a residue of τ (λ) at some certain point λ0. Because
of the connection between Ĥ and τ (λ), we will see that
it is beneficial to consider the following Schrodinger-like
equation:

i
d

dt
|�(t )〉 = τ (λ)|�(t )〉. (3)

This will allow us to learn the complete information about the
time dynamics of the system.

We look for the solution of (3) of the form

∣∣�σ
M (t )

〉 = eipσ (t )
M∏

j=1

B
(
λσ

j (t )
)|vac〉, (4)

where M is the number of excitations in the system and
σ enumerates the eigenstates. At t = 0, the vectors (4) are
eigenvectors which form a complete orthogonal set and the
set of parameters �σ

M (t ) = {λσ
1 (t ), λσ

2 (t ), . . . , λσ
M (t )} satisfies

the stationary Bethe equations for each σ . We demand time-
dependent wave functions to also form a complete set,∑

σ

|�({λσ (t )})〉〈�({λσ (t )})| ∝ Î, (5)

where we have a proportionality because the wave functions
are not normalized. The expansion of the Bethe vectors (4)
over a convenient basis is a difficult problem and, in general,
is not solvable because of the complex structure of (4). For
example, B(λ) can be represented as a series of exponential
length in M.

Thus, instead of studying the Schrodinger equation (3)
directly, we demand that

〈�({λσ ′
(t )})|�({λσ (t )})〉 = 0, (6)

for σ < σ ′, where σ ∈ [1, L] and L is the dimensionality of
the Hilbert space under consideration. This states that the
Bethe vectors are mutually orthogonal for all t . We also
demand that

〈�̇({λσ ′
(t )})|�({λσ (t )})〉 + 〈�({λσ ′

(t )})|�̇({λσ (t )})〉 = 0,

(7)

which must be satisfied for any solution of (3).
We now would like to write (6) and (7) as a set of coupled

differential equations. Equation (6) may be reexpressed in this
form by writing |�({λσ (t )})〉 in terms of its derivative, which
for Bethe vectors always take a special form. To show this, we
start by finding the result of operator τ (μ) on the Bethe wave
function (4), giving the well-known result

τ (μ)
M∏

j=1

B
(
λσ

j

)|vac〉 = �
(
μ,

{
λσ

j

}) M∏
j=1

B
(
λσ

j

)|vac〉

+
M∑

n=1

φn
(
μ,

{
λσ

j

})
B(μ)

M∏
j=1
j �=n

B
(
λσ

j

)|vac〉, (8)

where �(μ, {λσ
j }) and φn(μ, {λσ

j }) are eigenvalues and
the off-shell functions defined in (A14) and (A15)

054305-2



TIME DYNAMICS OF BETHE ANSATZ SOLVABLE MODELS PHYSICAL REVIEW B 101, 054305 (2020)

correspondingly. By combining (3), (4), and (8), we obtain

i

(
i
d p

dt
− �

(
μ,

{
λσ

j (t )
})) M∏

j=1

B
(
λσ

j (t )
)|vac〉

= −i
d

dt

M∏
j=1

B
(
λσ

j (t )
)|vac〉

+
M∑

n=1

φn
(
μ,

{
λσ

j (t )
})

B(μ)
M∏
j=1
j �=n

B
(
λσ

j (t )
)|vac〉. (9)

Demanding that the right-hand side is proportional to the left-
hand side,

f
({

λσ
j (t )

}) M∏
j=1

B
(
λσ

j (t )
)|vac〉 = −i

d

dt

M∏
j=1

B
(
λσ

j (t )
)|vac〉

+
M∑

n=1

φn
(
μ, {λσ

j (t )})B(μ)
M∏
j=1
j �=n

B
(
λσ

j (t )
)|vac〉, (10)

where f ({λσ
j (t )}) is a smooth function. If (10) is satisfied, we

can solve (3) with (4) by choosing a special form of phase
factor pσ (t ),

pσ (t ) = −
∫ t

0

[
i�

(
μ,

{
λσ

j (t ′)
}) + f

({
λσ

j (t ′)
})]

dt ′. (11)

Although it is possible to explicitly find both f ({λσ
j (t )}) and

pσ (t ), in practice this is not necessary because the phase factor
eipσ (t ) cancels for any observable due to normalization.

After substitution of (10) into (6), the conditions (6) trans-
fer to the set of differential equations:

i〈�({λσ ′
(t )})|�̇({λσ (t )})〉

= 〈�({λσ ′
(t )})|

M∑
n=1

φn
(
μ,

{
λσ

j (t )
})

B(μ)

×
M∏
j=1
j �=n

B
(
λσ

j (t )
)|vac〉. (12)

Now conditions (7) and (12) are a set of L2 − L nonlinear
differential equations, with ML variables, where M is the
number of parameters which parametrize Bethe wave function
(4). The solution of (7) and (12) is a set of trajectories �σ (t ) =
{λσ

1 (t ), . . . , λσ
M (t )}, for each wave function enumerated by σ .

When M = L − 1, the number of equations coincides with the
number of variables and (6) and (7) always have a solution.
The dynamical Bethe wave function can always be con-
structed if the Hilbert space of the system under consideration
is small enough, for arbitrary smooth time dependence of the
parameters of the model.

In a Bethe ansatz, it is typical for the Bethe wave function
to be parameterized by a number of parameters which is
much smaller than the size of the Hilbert space. For example,
while the Hilbert space of the XXZ Heisenberg magnet has
an exponentially large dimension, its Bethe wave function is
parametrized by a number of parameters linearly proportional
to the number of excitations, which provides a great advantage

in terms of computational complexity. The equations (7) and
(12), however, become overdetermined if the dimensionality
of Hilbert space L > M + 1. The existence of solutions for
(7) and (12) when it is overdetermined is not prohibited
because the equations are nonlinear. A trivial example of such
a solution is adiabatic evolution when {λσ

1 (t ), . . . , λσ
M (t )} is a

solution of static Bethe equations at every moment.

III. DETUNING-DRIVEN BOSE-HUBBARD DIMER

Let us now illustrate the above technique by calculating
the time dynamics of the interacting Bose-Hubbard dimer.
This is equivalent to a two-site Bose-Hubbard model and
can be described by the following Hamiltonian [29,30] (note
that longer Bose-Hubbard chains are proven to be nonintegr-
able [31]):

Ĥ = 	b†b + a†b + ab† + c2a†ab†b, (13)

where a, b are bosonic annihilation operators for the two sites,
	 is the detuning, and c2 is the interaction strength. This
model provides both a simple and nontrivial example of a
dynamically integrable model from the XXX class.

For the case that the coupling constant c is time inde-
pendent whereas the detuning 	(t ) continuously depends
on time, the dynamical Bethe equations can be written in
a particularly simple form. The time-dependent Bethe wave
function can then be written following (4) using the above
definitions. The dynamical Bethe equations then are found
to be

i

(
	̇

c
− λ̇σ

n (t )

)
= ϕn({λσ })λσ

n (t ), ∀n = 1, . . . , N, (14)

where ϕn({λσ }) are the so-called off-shell functions defined as

ϕn({λσ }) =
(

	

c
− λσ

n

) N∏
j=1
j �=n

(
1 − c

λσ
n − λσ

j

)

+ 1

cλσ
n

N∏
j=1
j �=n

(
1 − c

λσ
j − λσ

n

)
. (15)

When ϕn({λ}) = 0, ∀n = 1, . . . , N , where N is the number
of particles, these reduce to the static Bethe equations.
The dynamical Bethe equations are a set of first-order
coupled ordinary differential equations. As the initial
condition for (14), we need to pick a set of parameters
{λ(0)} = {λ1(0), . . . , λN (0)}, which parametrizes the initial
state |�N (0)〉. For example, if the initial state is an eigenstate,
the set {λ(0)} should satisfy the static Bethe equations. Also
note that such initial states can be connected with some
product states [32], which can provide additional physical
interpretation.

We numerically solve the set of equations (14) for a
detuning with time dependence 	(t ) = 	0 + t cos(t2), which
has a rather nontrivial, nonlinear, and aperiodic dependence.
The initial condition was chosen to be the solution of static
Bethe equations which corresponds to the ground state of
(13). As the observable, we calculate the intersite coherence
|〈a†b〉|/N ; Fig. 1(a) shows our results. We find that the
method perfectly reproduces the time dynamics calculated by
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FIG. 1. (a) The intersite coherence |a†b|/N for the case of driven
	(t ) = 	0 + t cos(t2) (solid line) and quenched from 	0 to 	

detuning; the dotted line is obtained from the exact solution of (16),
and the dashed line is obtained from the approximate solution when
seven equations are truncated. (b) Stroboscopic maps for the case of
quenched detuning using (16), where each set of N points represents
a solution of the dynamical Bethe equations at some certain moment
of time t ∈ [0, 20]. N = 15, c = 0.531, 	0 = 0.697, 	′ = 1.569
throughout.

exact diagonalization, giving identical curves. The method is
computationally efficient in the sense that the the solution
requires the evolution of N coupled equations. In Fig. 1(c),
we show the stroboscopic maps of the solutions of dynamical
Bethe equations (14); the point of certain color corresponds to
the value of the component of the solution of (14) λ j (tk ) at the
moment tk . Instead of solving (14), one may solve the more
general system of Eqs. (7) and (12), which is applicable for an
arbitrary time dependence of both 	 and c2. We have verified
that the solutions of (7) and (12) perfectly coincide with the
solutions of (14), where only 	 has a time dependence.

IV. DIMENSIONALITY REDUCTION OF HILBERT SPACE

In the above example, we have reproduced the exact
time evolution of the Bose-Hubbard dimer by solving N
coupled dynamical Bethe equations. Since the dimension of
the Hilbert space is N + 1, this has the equivalent computa-
tional overhead as solving for the wave function using the
Schrodinger equation directly. We show here that for some
types of evolution, only a subset of the Bethe roots are time
varying to a good approximation, and hence the time evolution
can be calculated with reduced computational overhead.

We consider the case of a quench, where the parameters
are suddenly changed from c,	 to c′,	′. In this case, the
parameters of the model are constant and hence the set of
equations (14) becomes

−i
λ̇n(t )

λn(t )
= ϕn({λ}) ∀n = 1, . . . , N. (17)

The set of equations (16) describes the evolution of an initial
state |�N (0)〉 with a static Hamiltonian (13). The initial
state can be parameterized by a Bethe vector with the set
of parameters {λ0} satisfying static Bethe equations for the
initial parameters c,	. After the quench is performed, the
Hamiltonian parameters change to c′,	′, and hence we need
to establish the connection between the old wave function
expressed in terms of c,	, and the new one expressed in terms
of c′,	′.

For the case that only the detuning is quenched c′ = c, the
initial conditions for (16) can be found to be

λ j (0) = λ0
j + 	′ − 	

c
. (18)

It has been shown in Ref. [30] that for many eigenstates,
the first several roots of the static Bethe equations can be
approximated equidistantly. In particular, for the attractive
case c2 > 0 in the thermodynamic limit when N → ∞, the
ground state is a Fermi sea of Bethe roots, λ0

j = jc + 	/c,
∀ j = 0, . . . , N − 1. When N is finite, there are k + 1 roots
λk of the static Bethe equations which can be approximated
equidistantly with some precision ε such that |λk − 	

c −
kc| < ε. For the case of quenched detuning, the first sev-
eral roots λ j (0) of the initial conditions are also distributed
equidistantly since (17) causes just a constant shift of all the
roots λ0

j . It is clear from the form of (15) that as long as
the equidistant approximation is applicable, such a constant
shift may not drive the off-shell function away from zero,
ϕ j ({λ}) � 0. So, from (16), we can conclude that there are
k roots, λ j (t ) � jc + 	′/c for j = 0, . . . , k, where k is the
number of equidistantly distributed roots. This fact allows us
to reduce the number of equations we have to solve from N
to N − k. In other words, with quenching of the detuning, the
surface of the Fermi sea remains still and all the dynamics
occurs in the deep. The depth at which the disturbance of
the sea becomes noticeable defines the dimensionality of the
dynamics.

We have constructed an example of the system with a
dynamical wave function |�(t )〉 that is locked inside of a sub-
space of dimension that is lower than that of physical Hilbert
space. To illustrate this, we plot stroboscopic maps in Fig. 1(b)
for the solution of dynamical Bethe equations (16) which can
be interpreted as a trajectory in some phase space. It has been
shown in Ref. [30] that the equidistant approximation works
better for bigger N ; for example, the error for ground-state
energy decreases faster than linearly with N , which ensures
that the described reduction of dimensionality is not related
to any finite-size effects. The above result gives a rigorous
basis for the heuristic result that in a quench, the dynamics
takes place predominantly within a reduced Hilbert space.
For example, in a direct time evolution of the Schrodinger
equation for a quenched Bose-Hubbard dimer, one finds that
it is possible to truncate the Hilbert space in terms of a small
number of eigenstates with initial parameters c,	. While this
can be numerically verified for small systems easily, it is
difficult to claim this is generally true in the thermodynamic
limit. The use of our formalism allows one to clearly show
that this will remain true regardless of the dimensionality due
to the equidistant approximation becoming exact in the limit
N → ∞.

V. OUTLOOK AND CONCLUSIONS

We have described a method for evaluating the time dy-
namics of systems that are exactly solvable by the Bethe
ansatz. The method is based on the dynamical Bethe wave
function (2) which is a straightforward generalization of
the Bethe ansatz for the dynamical case, where the Bethe
parameters are time dependent and there is a time-varying
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complex phase. The main advantage of the dynamical Bethe
wave functions (2) is that they are mathematically manageable
thanks to the well-developed Bethe ansatz results which are
directly applicable.

The set of differential dynamical Bethe equations (7) and
(12) can be applied to any Bethe ansatz solvable model from
the XXX, XXZ, or Gaudin class which has a dimensionality
not bigger than N + 1, where N is the number of parameters
in the Bethe wave functions. What would be interesting is
if the dynamical Bethe wave function, being considered as a
variational ansatz, could describe, not necessarily exactly, the
diabatic evolution of a nontrivial model with a larger Hilbert
space than N + 1. We have shown explicitly in the case of
the Bose-Hubbard dimer that in addition to reproducing the
exact dynamics, such an approximate time evolution within a
reduced problem dimensionality is possible within the frame-
work. Importantly, it has provided a tool to analytically justify
that such reduction does not vanish in the large-N limit.
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APPENDIX A: ESSENTIAL NOTES ON ALGEBRAIC
BETHE ANSATZ

Here we briefly sketch the main aspects of the algebraic
Bethe ansatz technique which are necessary for the under-
standing of the mathematical details of the present paper. For
an extensive review of the Bethe ansatz, we refer the reader to
Refs. [6,28,33].

The cornerstone of any integrable model is the R matrix,
which in this paper always takes the form

R(λ,μ) =

⎛
⎜⎝

f (μ, λ) 0 0 0
0 g(μ, λ) 1 0
0 1 g(μ, λ) 0
0 0 0 f (μ, λ)

⎞
⎟⎠.

(A1)
Here the entries f (μ, λ) and g(μ, λ) are specified for each
model separately. In general, the R matrix is the solution of
the Yang-Baxter equation [28] and can take many different
forms. The specific form of the R matrix generates a family of
integrable models.

In order to construct an integrable model, we need to define
the monodromy matrix,

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
, (A2)

which depends on the complex spectral parameter λ. Here,
A(λ), B(λ),C(λ), and D(λ) are operators acting in the Hilbert
space of the model under consideration, and their explicit
representation depends on the model. The monodromy matrix
should also satisfy the Yang-Baxter equation

R(λ,μ) ⊗ T (λ) ⊗ T (μ) = T (μ) ⊗ T (λ) ⊗ R(λ,μ). (A3)

To construct the Hamiltonian of a particular integrable
model, we define the trace of the monodromy matrix,

τ (λ) = TrT (λ) = A(λ) + D(λ). (A4)

The Hamiltonian Ĥ of the model may be expressed via the
trace of the monodromy matrix τ (λ), or its derivative at
some specified λ = λ0. Usually it can be expressed as some
elementary function of τ (λ0) or as a residue of the τ (λ) at a
particular point λ0.

The pseudovacuum state |vac〉 is a state from the Hilbert
space of the model, which is annihilated by the opera-
tor C(λ)|vac〉 = 0. The conjugated operator also satisfies
〈vac|B(λ) = 0. We also define two eigenvalue functions a(λ)
and d (λ) according to

A(λ)|vac〉 = a(λ)|vac〉,
(A5)

D(λ)|vac〉 = d (λ)|vac〉.
The Bethe wave function is then defined as

∣∣�({
λσ

j

})〉 =
M∏

j=1

B
(
λσ

j

)|vac〉, (A6)

where {λσ
j } is the set of complex parameters {λσ

j } =
{λσ

1 , λσ
2 , . . . , λσ

M}, M is the number of excitations in the sys-
tem, and σ labels the wave function. The wave function (A6)
is an eigenfunction of the trace of monodromy matrix τ (λ),

τ (λ)
∣∣�({

λσ
j

})〉 = �
(
λ,

{
λσ

j

})∣∣�({
λσ

j

})〉
, (A7)

if the set {λσ
j } satisfies to the set of Bethe equations,

a
(
λσ

j

)
d
(
λσ

j

) M∏
n=1
n �= j

f
(
λσ

j , λ
σ
n

)
f
(
λσ

n , λσ
j

) = 1, j = 1, 2, . . . , M. (A8)

All the roots within one solution {λσ
j } should be different;

otherwise, |�({λσ
j })〉 cannot be an eigenfunction. The Bethe

equations (A8) are a set of coupled nonlinear algebraic equa-
tions. It has M equations and N solutions, where N is equal to
the amount of eigenstates in the system.

For our purposes, it is important to know the effect of
the transfer matrix τ (λ) acting on the Bethe vector (A6). For
notational simplicity, we omit the index σ henceforth, such
that {λ j} denotes the set {λσ

1 , λσ
2 , . . . , λσ

M}. From Ref. [28], it
is known that

A(λ)
M∏

j=1

B(λ j )|vac〉 = a(λ)�(λ, {λ j})
M∏

j=1

B(λ j )|vac〉

+
M∑

n=1

a(λn)�n(λ, {λ j})B(λ)
M∏
j=1
j �=n

B(λ j )|vac〉. (A9)

Here we defined the functions

�(λ, {λ j}) =
M∏

j=1

f (λ, λ j ),

(A10)

�n(λ, {λ j}) = g(λn, λ)
M∏
j=1
j �=n

f (λn, λ j ).
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For the D(λ) operator, we have the similar expressions

D(λ)
M∏

j=1

B(λ j )|vac〉 = d (λ)�̄(λ, {λ j})
M∏

j=1

B(λ j )|vac〉

+
M∑

n=1

d (λn)�̄n(λ, {λ j})B(λ)
M∏
j=1
j �=n

B(λ j )|vac〉, (A11)

where we defined

�̄(λ, {λ j}) =
M∏

j=1

f (λ j, λ),

(A12)

�̄n(λ, {λ j}) = g(λ, λn)
M∏
j=1
j �=n

f (λ j, λn).

Combining these results, we can find the effect of acting τ (λ)
on the Bethe wave function, given by

τ (λ)
M∏

j=1

B(λ j )|vac〉 = �(λ, {λ j})
M∏

j=1

B(λ j )|vac〉

+
M∑

n=1

φn(λ, {λ j})B(λ)
M∏
j=1
j �=n

B(λ j )|vac〉.

(A13)

Here we defined the eigenenergy,

�(λ, {λ j}) = a(λ)�(λ, {λ j}) + d (λ)�̄(λ, {λ j}), (A14)

and the off-shell function,

φn(λ, {λ j}) = a(λn)�n(λ, {λ j}) + d (λn)�̄n(λ, {λ j}). (A15)

If we now demand that the off-shell function (A15) is zero,
it is evident that the wave function (A6) is an eigenfunction
for τ (λ). The roots of off-shell functions (A15) coincide with
the roots of Bethe equations (A8), but we should distinguish
between these since later we will encounter cases where the
off-shell function is not zero.

Finally, we mention several important properties of Bethe
wave functions. The dual Bethe wave functions are defined as

〈
�

({
λσ

j

})∣∣ = 〈vac|
M∏

j=1

C
(
λσ

j

)
. (A16)

In general, despite the notation, the wave function (A16) does
not coincide with the Hermitian conjugate of the function
(A6), i.e., 〈�({λσ

j })| �= |�({λσ
j })〉†. Dual vectors like this

must be introduced in order to evaluate scalar products and
averages of observables. Generally, in the literature devoted
to the Bethe ansatz, the left bracket 〈�| implies the dual
vector (A16).

For most of the integrable models, it has been proven that
Bethe vectors form a complete set [6,28],

N∑
σ=1

∣∣�({
λσ

j

})〉〈
�

({
λσ

j

})∣∣ ∝ Î, (A17)

where Î is the identity operator and N is the size of the Hilbert
space. In general, Bethe wave functions are not normalized.

One of the most important properties of Bethe wave func-
tions is that for many models, it is possible to evaluate the
scalar product of the Bethe wave functions and averages of
the operators by applying Slavnov’s formula [23]. This allows
one to express the scalar product as a determinant. We do
not reproduce the general form of the Slavnov’s formula here
because of its complexity, and it not very useful to consider
it without specifying the model. Application of Slavnov’s
formula to the models considered in this paper has been
studied in Refs. [34,35].

APPENDIX B: DYNAMICAL BETHE EQUATIONS FOR
THE BOSE-HUBBARD DIMER

Here we give more details of the derivation of the dynam-
ical Bethe equations for the detuning-driven Bose-Hubbard
dimer. A more detailed description regarding the Bethe ansatz
solution of this model can be found in Ref. [34], and we use
the same notations as this paper.

The Hamiltonian of the Bose-Hubbard dimer is

Ĥ = 	b†b + a†b + ab† + c2a†ab†b. (B1)

The diagonal elements of the monodromy matrix are, in
this case,

A(λ) = λ2 − λ

(
ca†a + cb†b + 	

c

)

+ 	b†b + a†b + c2a†ab†b, (B2)

D(λ) = ab† + c−2. (B3)

The Hamiltonian (B1) can then be expressed via trace of the
monodromy matrix (A4) according to

Ĥ = τ (0) − c−2. (B4)

According to the definitions (A5), the eigenvalue functions
are then

a(λ) = λ

(
λ − 	

c

)
, (B5)

d (λ) = c−2. (B6)

The elements of the R matrix are defined as

f (μ, λ) = 1 − c

μ − λ
, (B7)

g(μ, λ) = − c

μ − λ
. (B8)

We now wish to look for Bethe eigenfunctions of the form

∣∣�σ
N

〉 =
N∏

j=1

B
(
λσ

j

)|vac〉, (B9)

where the pseudovacuum state is |vac〉 = |0〉a ⊗ |0〉b. σ is the
index which labels the energy levels of the system; for the sake
of notational simplicity, we omit this below. We introduce
the generalized creation operator B(λ) which depends on a
complex parameter λ [34],

B(λ) =
(

λ − 	

c

)
b† − ca†ab† − c−1a†. (B10)
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The eigenvector depends on N complex parameters {λ} =
{λ1, λ2, . . . , λN }. By applying the Bethe ansatz machinery, we
can evaluate

Ĥ |�N 〉 = EN ({λ})
N∏

j=1

B(λ j )|vac〉

−
N∑

n=1

ϕn({λ})X
N∏
j=1
j �=n

B(λ j )|vac〉, (B11)

where we have defined

EN ({λ}) = − c−2 + c−2
N∏

j=1

(
1 − c

λ j

)
, (B12)

ϕn({λ}) =
(

	

c
− λn

) N∏
j=1
j �=n

(
1 − c

λn − λ j

)

+ 1

cλn

N∏
j=1
j �=n

(
1 − c

λ j − λn

)
. (B13)

Here, EN ({λ}) is the energy and ϕn({λ}) is the off-shell
function. From (B11), we can see that when set {λ} satisfies

ϕn({λ}) = 0, ∀n = 1, . . . , N, (B14)

the wave function (B9) becomes an eigenfunction of the
Hamiltonian (B1). The set of equations (B14) are known as
the Bethe equations.

We now look for a time-dependent wave function of the
form

|�N (t )〉 = eip(t )
N∏

j=1

B(λ j (t ))|vac〉. (B15)

If only the detuning 	 is time dependent, it is easy to see that
[ d

dt B, B] = 0, and the derivative of (B15) can be taken easily.
Substituting (B15) into the time-dependent Schrodinger equa-
tion, we obtain

[p′(t ) + EN ({λ})]
N∏

j=1

B(λ j )|vac〉

=
N∑

n=1

[
i

(
λ̇n − 	̇

c

)
b† + ϕn({λ})X

] N∏
j=1
j �=n

B(λ j )|vac〉.

(B16)

If we demand now that

i

(
	̇

c
− λ̇n(t )

)
= ϕn({λ})λn(t ), ∀n = 1, . . . , N, (B17)

the wave function (B15) will satisfy the time-dependent
Schrodinger equation. We call the set of conditions (14) the
dynamical Bethe equations. The dynamical Bethe equations
are a set of first-order coupled ordinary differential equations.
For the initial condition of (14), we need to pick a set
{λ(0)} = {λ1(0), . . . , λN (0)}, which parametrizes the initial
state |�N (0)〉. For example, if the initial state is an eigenstate,
the set {λ(0)} should satisfy the static Bethe equations (B14).
The phase factor p(t ) is given by

p(t ) =
∫ t

0
dt ′

[
−EN ({λ}) +

N∑
n=1

i

λn

(
λ̇n − 	̇

c

)]
. (B18)

To evaluate observables, one may use the determinant rep-
resentation as a general approach [23,34]. A more convenient
approach is to use the expansion of Bethe vectors (B9) over
the Fock space, which was developed in [30]:

|�N ({λ})〉 =
N∑

m=0

N−m∑
l=0

l∑
k=0

(−1)m
√

k!
√

(N − k)!D(l, k)

(
N − m

l

)
�lmk|k〉a ⊗ |N − k〉a,

〈�N ({λ})| =
N∑

m=0

N−m∑
k=0

(−1)m〈N − k|a ⊗ 〈k|b
√

k!

√
(N − k)!c−2k−m+N D(N − m, k)em, (B19)

where the coefficient �lmk is defined as

�lmk = 	N−m−l c−N+m+2l−2kem, (B20)

and D(M, k) are coefficients defined by the following recur-
rence relation:

D(M, k) = kD(M − 1, k) + D(M − 1, k − 1), (B21)

with the conditions D(1, 1) = 1 and D(M, k) = 0 if k > M.
This coefficient possesses the obvious property D(M, 1) =
D(n, n) = 1. The general expression for D(M, k) is given by

D(M, k) =
M−k∑
n1=0

M−k−n1∑
n2=0

M−k−n1−n2∑
n3=0

· · ·

· · · ×
M−k−n1−···−nk−1∑

nk−1=0

kn1 (k − 1)n2 . . . 2nk−1 . (B22)
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