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We formulate a dynamical model to describe a photoinduced charge density wave (CDW) quench transition
and apply it to recent multiprobe experiments on LaTe3 [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach
relies on coupled time-dependent Ginzburg-Landau equations tracking two order parameters that represent
the modulations of the electronic density and the ionic positions. We aim at describing the amplitude of the
order parameters under the assumption that they are homogeneous in space. This description is supplemented
by a three-temperature model, which treats separately the electronic temperature, temperature of the lattice
phonons with stronger couplings to the electronic subsystem, and temperature of all other phonons. The
broad scope of available data for LaTe3 and similar materials as well as the synergy between different time-
resolved spectroscopies allow us to extract model parameters. The resulting calculations are in good agreement
with ultrafast electron diffraction experiments, reproducing qualitative and quantitative features of the CDW
amplitude evolution during the initial few picoseconds after photoexcitation.
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I. INTRODUCTION

Dynamics of phase transitions associated with spontaneous
symmetry breaking remains an interesting subject both theo-
retically and experimentally. Thanks to the advances in time-
resolved pump-probe techniques, it is now possible [1–9] to
perturb an ordered state and then monitor its fast nonadia-
batic recovery. For strong perturbations, one can observe a
passage through an ordering transition, register the emergence
of ordered phases, and measure time evolution of diverse
system parameters with a subpicosecond resolution. The re-
sponses of ordered phases, such as superconducting phase
[1,6,10,11], spin density wave [2,7,9] and charge density wave
[3–5,8,12–26] phases, have been studied this way.

The focus of the present work is on the nonequilibrium
dynamics across a CDW transition. Despite long and thor-
ough scrutiny [27,28], the CDW state continues to generate
ample amount of research activity motivated by interesting
many-body physics (collective transport phenomena [28–31],
non-mean-field critical exponents [32–34], exotic metastable
“hidden” states [35–38]), and large number of experimentally
available model systems. In particular, one can mention the
“classical” CDW materials, such as [39–42] NbSe3, NbSe2,
TaS2, blue bronzes K0.30MoO3 and Rb0.30MoO3. CDW phase
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was also observed and actively investigated in the family of
rare-earth tritellurides RTe3 [3–5,24,33,43–52].

Recently, we reported [8] results of an experimental mul-
tiprobe study of a photoinduced CDW transition in a member
of the rare-earth tritelluride family LaTe3. In these exper-
iments, the post-pump relaxation was monitored with the
help of three different time-resolved techniques: ultrafast
electron diffraction (UED), transient reflectivity, and time-
and angle-resolved photoemission spectroscopy (tr-ARPES).
These measurements delivered a wealth of complementary
information about both electronic and lattice degrees of
freedom, and, at the same time, highlighted the need for
advancing a quantitative theoretical description of the far-
from-equilibrium dynamics in CDW materials and beyond.
In the present paper, the experiments of Ref. [8] will serve
as the primary testing ground for a rather general theoretical
approach.

The CDW order is characterized by the amplitude and the
phase of charge modulations. Both can strongly fluctuate in
time and space. The amplitude fluctuations are sometimes
referred to as “the Higgs modes,” while the phase fluctuations
are associated with the appearance of phasons and topological
defects, e.g., dislocations. The experiments of Ref. [8] pro-
duced evidence that the relaxation of the phase is significantly
slower than that of the amplitude. The slowness of the phase
relaxation was interpreted as being due to the presence of
topological defects. Modeling the latter, however, is rather
expensive computationally, because it requires space-resolved
simulations. It is, therefore, reasonable to ask first what part
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of the observed phenomenology can be accounted for by the
amplitude relaxation only. This is what we do in the present
work. The phase relaxation is to be investigated elsewhere.

In what follows, we develop a theoretical framework for
describing the time evolution of space-averaged CDW ampli-
tude in response to a strong quench induced by a femtosecond
laser pulse. In the course of the ensuing nonequilibrium evo-
lution, electrons relax much faster than the lattice. Therefore
the modulation of the electronic density and the modulation
of the lattice should be treated as two distinct components of
the CDW order. We do this using time-dependent Ginzburg-
Landau (TDGL) equations [3,4,23,24,53–57] with two order
parameters [54,55]. We also approximate energy redistribu-
tion between different degrees of freedom using the so-called
“three-temperature model” [58–63], which assigns separate
temperatures to (i) electrons, (ii) phonons efficiently coupled
to the electronic subsystem, and (iii) all other phonons. Both
TDGL equation with two order parameters and the three
temperature model were previously considered in the above-
mentioned references but not in combination with each other.
The former was also tested only in the small-oscillations
regime [54,55], which characterizes the response of the sys-
tem to a weak quench.

Fusing together the two-order-parameter TDGL equations
and the three-temperature model into a single capable formal-
ism is the main agenda of this paper. Our analysis indicates
that the combination of the above two ingredients constitutes
a quantitatively adequate and yet efficient theoretical frame-
work for treating strong photoinduced quenches in CDW
materials. This framework should also be applicable to other
materials, where electronic order is coupled to the lattice.

The paper is organized as follows. In Sec. II, we present
the theoretical formalism. The values of parameters for the re-
sulting equations are fixed in Sec. III. Numerical simulations
are compared with experimental data in Sec. IV. Emergent
timescales are summarized in Sec. V. Section VI contains
discussion. Finally, the conclusions are presented in Sec. VII.
Technically involved derivations are relegated to Appendices.

II. THEORETICAL FORMALISM

A. Preliminary qualitative considerations

In an experiment, a laser pumping pulse initially excites
mostly electronic degrees of freedom, while keeping the lat-
tice unaffected. The ensuing internal thermalization of the
electronic subsystem is much faster than that of the lat-
tice. It occurs via electron-electron interactions. Given our
assumption of a strong laser pulse, the resulting electronic
temperature is significantly higher than the initial tempera-
ture of the system—possibly higher than the CDW transi-
tion temperature. To be specific, let us focus on the latter
possibility. In such a case, if the system were completely
in equilibrium, then electronic density modulations would
quickly disappear. However, since the ions had no time to
respond yet, the lattice modulation associated with CDW
remains intact, which imposes an external periodic potential
on the electronic subsystem. Therefore, once the electronic
density relaxes, the electronic order parameter starts tracking
the lattice order parameter. During the subsequent evolution,

the lattice, on the one hand, experiences a diminished push
from electrons to assume a modulated structure; hence the
amplitude of the lattice modulation gradually decreases. This
happens in an oscillatory way due to the motion of heavy
ions near their equilibrium positions. On the other hand, the
electronic subsystem, whose heat capacity is much smaller
than that of the lattice, rapidly loses energy to the lattice. As
a result, the electronic temperature also decreases and eventu-
ally falls below the temperature of the CDW phase transition.
Once this happens, both the electronic and the lattice orders
start recovering, while the electronic temperature continues to
decrease until it reaches the temperature of the lattice.

Below we develop a theoretical model capturing the above
nonequilibrium evolution. It describes the electronic and the
lattice CDW amplitudes via the TDGL formalism. For a
nonequilibrium state, we employ the so-called three temper-
ature model, where the electronic and the two lattice subsys-
tems are are assumed to thermalize internally to quasiequilib-
rium distributions characterized by different temperatures. We
then use rate equations to describe the energy flow between
these subsystems.

B. TDGL sector

Among theoretical tools [27,64–73] capturing the
dynamics of an order parameter, the TDGL equation
[3,4,23,24,53–57] is one of the most popular. Despite the
known issues with its microscopic justification [74], TDGL
formalism remains in wide use due to its simplicity and
intuitive appeal. Below, we introduce the ingredients of this
formalism adapted to a setting with two order parameters.

1. Static Landau functional

The CDW state is characterized by both the modulation of
the electronic density

δρe(r) = A exp(iQ · r) + c.c. (1)

and the displacements of ions

δrn = [iu exp(iQ · rn) + c.c.]êCDW (2)

from high-symmetry lattice positions rn. Here, Q is the CDW
wave vector; êCDW is the unit vector along the CDW dis-
placements. Quantities A and u describe complex electronic
and lattice order parameters. In Appendix A, we discuss
the connection between the lattice order and the diffraction
measurements.

To describe equilibrium properties of the CDW system, one
can introduce a Landau-type functional [75], which depends
either exclusively on A, or exclusively on u, because in
equilibrium A is proportional to u (for sufficiently small A and
u). However, to account for the nonequilibrium properties of
the CDW during photoinduced transition, we need both A and
u. We thus consider the Landau functional of the following
form [54,55]:

F[A, u] = −a|A|2 + b

2
|A|4 − η(Au∗ + A∗u) + K|u|2, (3)

where a, b, η, and K are the expansion parameters. The first
two terms in Eq. (3) are of purely electronic origin. The last
term corresponds to the elastic lattice energy, which increases
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if the ions are shifted from their most symmetric positions.
Finally, the term proportional to η describes the electron-
lattice coupling – often the main driving force behind the
CDW transition.

Below we assume that parameters of the Landau functional
are temperature independent, except for

a = α(T0 − T ), (4)

where α is a positive proportionality coefficient, T is the
temperature, and T0 is the “bare” transition temperature for a
hypothetical situation of vanishing electron-lattice interaction.
(In principle, the parameter T0 is not a physical temper-
ature but simply a parameter characterizing the structure of
the Landau functional; hence, it can be negative.) Due to
finite coupling between A and u, the actual transition into the
ordered phase occurs at the critical temperature

Tc = T0 + η2

αK . (5)

For LaTe3, Tc ≈ 670 K [8]. As for T0, it can be estimated as

T0 = Tc(1 − ζ ), (6)

where

ζ = η2

αTcK
(7)

characterizes the strength of the electron-phonon interaction.
For the parameters chosen in Sec. III to represent LaTe3, we
obtained T0 = −67 K.

Minimizing the functional (3) for T < Tc, one finds equi-
librium values of the order parameters:

Aeq =
√

α

b
(Tc − T ), ueq = η

KAeq. (8)

For our calculations, it is convenient to work with the dimen-
sionless quantities:

x = A

Aeq(T = 0)
, y = u

ueq(T = 0)
. (9)

For T � Tc, equilibrium values of x and y are

xeq = yeq =
√

�, (10)

where � = (Tc − T )/Tc.

2. Time-dependent equations

The next step is to generalize the static Landau theory to
nonequilibrium situations. We will describe the dynamics of
the electronic degree of freedom A as

�
dA

dt
= − ∂F

∂A∗ = aA − b|A|2A + ηu, (11)

where � is a damping parameter. In dimensionless variables
(9), Eq. (11) reads

τ0
dx

dt
− �x + |x|2x + ζ (x − y) = 0, (12)

where τ0 = �
αTc

is the electronic density relaxation time.
From the viewpoint of the true microscopic kinetics,

Eq. (12) is a crude approximation. However, for the purposes

of the present work, this approximation should be sufficient
given that we are mainly interested in the dynamics of variable
y, which unfolds on the timescale much longer than τ0. This
longer timescale is associated with the motion of ions, which
are much heavier and, thus, much slower than electrons. It is
only important for us that, on fast timescale of τ0, variable x
relaxes to the “instantaneous equilibrium” value x̄ given by
the real-valued root of the equation

�x̄ − x̄3 + ζ (y − x̄) = 0. (13)

To model the evolution of u, we keep in mind that u is
associated with displacements of heavy ions, which can be
viewed, approximately, as classical objects. The forces acting
on the ions are

fu = − dF
du∗ = −Ku + ηA. (14)

The term proportional to K in Eq. (14) describes elastic force
that pulls ions back to their high-symmetry positions. The
term proportional to η originates from the interaction with
the modulated electron density (1). By adding damping, we
arrive at a classical equation of motion for u. In the rescaled
variables (9), it reads

1

ω2
0

d2y

dt2
+ γy

ω0

dy

dt
+ (y − x) = 0, (15)

where ω0 = √
K/m is unrenormalized frequency of a phonon

mode actively involved in the CDW formation (we call this
mode “the CDW phonon”); m is the ion mass parameter; γy

describes damping. Equations (12) and (15) constitute the
desired TDGL equations in a dimensionless form.

Previously TDGL formalism [54,55] with two order pa-
rameters was applied to describe small deviations from equi-
librium in a CDW material. However, in the present work,
we deal with a far-from-equilibrium response, which requires
an additional ingredient in the theory. This additional ingre-
dient is the three-temperature model introduced in the next
subsection.

C. Three-temperature model

Temperature T that appears in Eq. (4) is the electronic
temperature which, from now on, we denote as Te. We need
this change of notation to distinguish the electronic tempera-
ture from the temperature (or temperatures) of the lattice. The
TDGL Eq. (12) thus depends on Te.

Let us expand on the qualitative scenario given in Sec. II A
using the numbers specific for the experiment of Ref. [8].
According to that scenario, all photons from the pumping laser
pulse are mostly absorbed by the electronic subsystem. Right
after the laser pulse, the electronic subsystem is far from equi-
librium. However, it quickly reaches quasistationary thermal
state with temperature Te(0) ∼ 1000 K, which significantly
exceeds the initial lattice temperature of about 300 K. Lattice
phonons, whose heat capacity is much larger than that of the
electrons, then act as a heat sink gradually absorbing energy of
the hot electrons. Let us emphasize that, during this process, it
can happen that phonon distribution function becomes highly
nonthermal.
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The simplest approach to capture the above dynamics
would be to introduce a two-temperature model [76–78] track-
ing the electronic and the lattice temperatures. However, given
all available experimental data—including (i) heat capacity
measurements [46] in LaTe3, (ii) UED data (in particular, the
time dependence of the crystal Bragg peaks intensity [8]),
(iii) short-time transient-reflectivity dynamics [8], and (iv)
tr-ARPES data [8], which allows to estimate electronic heat
capacity (see Sec. III below)—we were unable to adequately
reproduce the observed behavior using the two-temperature
model.

We attribute the above discrepancy to an intrinsic limita-
tion of the two-temperature model. Namely, such a model
describes the entire lattice by a single temperature, while,
in reality, not all phonons are thermalized simultaneously.
Instead, we expect that the electronic energy is preferentially
absorbed by a smaller subset of the phonon ensemble. Such a
selective coupling was discussed for rare-earth tritellurides in
Refs. [79,80] and, in a broader context, in Refs. [61,63,81,82].
In particular, the authors of Ref. [60] argued that layered
structure makes preferential electron coupling to a subset of
phonon modes more likely. For LaTe3, we can identify two
factors that increase the selectivity of the electron-phonon
coupling. First, electronic states forming the Fermi surface
are located in the tellurium-only layers [43] and, hence, are
weakly coupled to the lattice degrees of freedom localized
in the RTe layers. Second, at sufficiently low excitation en-
ergies of the electronic quasiparticles, the momentum con-
servation law implies that the probability of emission (or
absorption) of a phonon with momentum q is proportional to∑

k δ(εk − εF)δ(εk+q − εF), where εF is the Fermi energy,
and εk is the electron dispersion. In the rare-earth tritellurides,
due to proximity to the Fermi surface nesting condition, the
latter sum is a strongly nonuniform function of the momentum
q, see Eq. (2) and Fig. 6(a) of Ref. [83]. This nonuniformity
imposes additional selection criteria on the phonon modes
participating in the electron scattering.

In order to account for the selectivity of the electron-
phonon coupling, we split the lattice phonons into two sub-
groups: (i) the “hot phonons,” the ones strongly coupled to
the electrons, and (ii) “cold phonons,” i.e., the rest of the
lattice modes. The hot phonons are to be characterized by
temperature TL2, while cold phonons by temperature TL1. To
simplify the model, we neglect the direct energy transfer
between the electronic subsystem and the cold phonons.

The post-pulse temperature dynamics is then described by
the three-temperature model [58,59]:

Ce(Te )
dTe

dt
= −GeL(Te − TL2), (16)

CL1
dTL1

dt
= −GLL(TL1 − TL2), (17)

CL2
dTL2

dt
= −GeL(TL2 − Te ) − GLL(TL2 − TL1). (18)

Here, CL1 and CL2 are the heat capacities of the cold
phonons and of the hot phonons, respectively; Ce(Te ) is the
temperature-dependent electronic heat capacity whose func-
tional form is specified in Sec. III B. Parameters GeL and GLL

describe energy exchange rates.

The initial conditions for Eqs. (16)–(18) are to be chosen
as follows. For the lattice, TL1(0) = TL2(0) = Tenv, where Tenv,
is the prepulse equilibrium temperature of all three subsys-
tems. For electrons, Te(0) is defined as the temperature right
after the laser pulse and the ensuing fast electronic self-
thermalization. The value Te(0) is, therefore, a function of
absorbed electromagnetic energy per mole, which is, in turn,
proportional to (i) the photoexcitation density F (the number
of absorbed photons per unit volume), (ii) the pump photon
energy h̄ωγ , and (iii) the molar volume V of LaTe3. The
energy balance condition then gives the equation determining
Te(0):

h̄ωγVF =
∫ Te (0)

Tenv

Ce(T )dT . (19)

III. CHOICE OF PARAMETERS FOR LaTe3

Overall, our formalism includes five equations: (12)
and (15) for the TDGL sector, and (16)–(18) for the
temperature-evolution sector. To perform simulations, one
needs to select specific values for the model parameters: ω0,
τ0, ζ , and γy in the TDGL sector; and CL1, CL2, GeL, and
GLL in the temperature-evolution sector. One also needs a
concrete functional form of the temperature dependence of the
electronic heat capacity Ce(Te ).

Since the total number of free parameters is large, ex-
tracting their values through an indiscriminate fitting might
produce misleading results. To circumvent this issue, we split
the whole task into several steps to be presented in the fol-
lowing subsections. In each step, only a small number of the
unknowns are fixed. This approach relies on the availability
of a broad array of experimental results for the rare-earth
tritellurides RTe3, in particular LaTe3 [8]. For convenience of
the readers, the final values of all parameters are collected in
Table I.

A. TDGL parameters

Here we fix the TDGL parameters by matching the
frequency ωAM and the damping constant γAM of the
CDW amplitude mode (AM) obtained theoretically with
the values measured experimentally. Theoretically, we ap-
ply small-oscillations formalism [54,55] to the TDGL equa-
tions (12) and (15), see Appendix B for detailed deriva-
tions. On the experimental side, the phonon spectrum in
RTe3 and its temperature dependence were reported in many
works [8,47,49,79,80].

From the average frequency and the frequency width of the
measured transient reflectivity oscillations, we know that [8],
at T = 300 K,

ωAM

2π
= νAM = 2.2 THz, γAM = 1.26×1012 s−1. (20)

We use the above values to define a complex parameter
λ = −γAM + iωAM, which is then substituted into Eqs. (B7)
and (B6) describing the small-oscillation eigenvalue problem.
This leads to two constraints on parameters ω0, τ0, ζ , and
γy expressed by Eqs. (B10) and (B11). Thereby, we reduce
the total number of adjustable TDGL parameters from four
to two. For our analysis, it is convenient to treat Eqs. (B10)
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TABLE I. Parameters used for numerical simulations of Eqs. (12) and (15), and Eqs. (16)–(18).

TDGL sector Temperature-evolution sector

Parameter Value Physical meaning Parameter Value Physical meaning

ω0/(2π ) 3.1 THz Unrenormalized frequency c0 1.1 mJ mol−1 K−2 Coefficient in the low-temperature
of the CDW phonon electronic heat capacity, Eq. (23)

τ0 20 fs Electronic density c 4 mJ mol−1 K−2 Coefficient in the high-temperature
relaxation time, Eq. (15) electronic heat capacity, Eq. (24)

ζ 1.1 Critical temperature renormalization Ctot 99.7 J mol−1 K−1 Total heat capacity of the lattice
parameter, Eq. (6)

γy 0.04 Damping parameter for κ 0.2 Fraction of “hot phonons” with
the CDW phonon respect to all phonons

Tc 670 K Temperature of the CDW GeL 5.5 J ps−1 K−1 mol−1 Energy exchange rate between
phase transition electrons and “hot phonons”

GLL 7.25 J ps−1 K−1 mol−1 Energy exchange rate between “hot
phonons” and the rest of the lattice

τDW 2.2 ps Time constant for the second stage
of the temperature relaxation, Eq. (27)

Tenv 300 K Equilibrium temperature of the entire
system before the laser pulse

and (B11) as definitions of the implicit functions γy(ω0, τ0)
and ζ (ω0, τ0), which specify the dependence of ζ and γy on
ω0 and τ0. Thus, once ω0 and τ0 are fixed, the TDGL sector
contains no unknown parameters.

Estimating ω0 and τ0, one must be mindful of several
relevant theoretical and experimental restrictions. The first of
them is the physical requirement γy(ω0, τ0) � 0. It limits the
allowed space for ω0 and τ0 to the region left and below the
red curve in Fig. 1.

The next restriction is related to whether the AM frequency
ωAM softens to zero close to the CDW transition tempera-
ture Tc or not. In Refs. [54,55], the former regime is called
“adiabatic” and the latter “nonadiabatic” (see examples in
Appendix B). Although the behavior of the AM in LaTe3 near
Tc is not accessible experimentally, we rely on the reported
universality of the AM characteristics for several members
of the RTe3 family [48]. (The most noticeable aspect of this
universality is the same low-temperature value of the AM
frequency νAM ≈ 2.2 THz.) Specifically, experiments suggest
that the AM in TbTe3 (see Figs. 3(b) and 3(c) in Ref. [79])
and DyTe3(see Figs. 8(a) and 8(c) in Ref. [80]) softens to
zero close to the transition temperature. Thus we assume the
adiabatic regime for LaTe3 as well. As shown in Fig. 1, such
an assumption further confines ω0 and τ0 to the region above
the dashed line. Together with the previous constraint, this
implies that τ0 � 30 fs.

Now we note that the Heisenberg uncertainty principle
suggests that

τ0 � 1

2�
≈ 1 fs, (21)

where 2� ≈ 700 meV is the CDW gap at 300 K [51]. Given
the above constraints, we assign τ0 = 20 fs. The dynamics

of the CDW order parameters obtained from our numerical
simulations is not very sensitive to the specific choice of τ0 as
long as we are interested in timescales much longer than τ0.

FIG. 1. Constraints on the allowed values of the TDGL pa-
rameters τ0 and ω0 formulated in Sec. III A. The area above the
solid red curve is physically inaccessible because it corresponds to
γy(ω0, τ0 ) < 0. The available parameter space to the left and below
the solid curve hosts two regimes of small oscillations, adiabatic
(above the dashed line) and nonadiabatic (below the dashed line),
see Sec. III A and Appendix B. These two regimes are exemplified
by two points, (a) and (b), for which the mode softening is illustrated
in Fig. 11. The dashed line is determined by equation D = 0, where
D is defined by Eq. (B9). The parameters ω0 and τ0 for LaTe3 are
assumed to represent the adiabatic regime.
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Finally, to set ω0, we use the relation

ωAM(T = 0) = λ
1/2
CDWω0, (22)

where λCDW is the electron-phonon coupling constant [84]
responsible for the CDW instability. It is assumed both for the
rare-earth tritellurides [49] and for a broader class of materials
(see, e.g., discussion after Eq. (5) in Ref. [27], and Table 3.1 of
Ref. [84]) and that λCDW ≈ 0.5. When this value together with
ωAM given by Eq. (20) is substituted into Eq. (22), we obtain
an estimate ω0/(2π ) ≈ 3.1 THz. Here we assumed that ωAM

is the same at T = 0 and at T = Tenv. Indeed, since Tenv is
significantly below Tc, it is permissible to treat ωAM as being
temperature-independent in the range T � Tenv.

Once τ0 and ω0 are determined, both γy = γy(ω0, τ0) and
ζ = ζ (ω0, τ0) are obtained. The final values are summarized
in Table I.

B. Three-temperature model parameters

In the context of LaTe3 experiments of Ref. [8], we assume
that the equilibrium prepulse temperature of all three subsys-
tems is Tenv = 300 K. For each value of the photoexcitation
density F , the electronic temperature right after the initial
self-thermalization of the electronic subsystem Te(0) is to be
calculated using Eq. (19) with h̄ωγ = 1.19 eV = 1.9×10−19 J
and V = 76.8 cm3/mol.

Let us now turn to the temperature dependence of Ce(Te ).
At sufficiently low temperatures, electronic heat capacity is a
linear function of temperature

C0
e (Te ) = c0Te, (23)

where [46] c0 = 1.1 mJ mol−1 K−2 for LaTe3. In the prox-
imity to and above Tc = 670 K, we do not expect Eq. (23) to
remain valid. It would imply that the electronic temperature
following the maximum intensity laser pulse reaches the
value ≈4000 K, while the analysis of our tr-ARPES data
presented in Appendix C 2 reveals that Te � 2000 K. The
deviation from the linear temperature dependence (23) is also
expected on the basis of purely theoretical reasoning outlined
in Appendix C 1. Following that reasoning, we approximate
Ce(Te ) by a piecewise linear ansatz:

Ce(Te )=
{

c0Te, if Te < Tenv,

c0Tenv + (Te − Tenv)c, if Tenv < Te,
(24)

where c = 4 mJ mol−1 K−2 is a parameter extracted from tr-
ARPES experiments in Appendix C 1.

Next we turn to lattice heat capacities CL1 and CL2. Since
these parameters are associated with two complementary
groups of phonons, we express

CL1 = (1 − κ )Ctot, CL2 = κCtot, (25)

where Ctot is the total heat capacity of the lattice, and κ is
the coefficient determining the fraction of the phonon modes
contributing to CL2. We approximate Ctot by the Dulong-Petit
value 99.7 J mol−1 K−1 for LaTe3, which is permissible in
the temperature range of interest and consistent with exper-
iment [46]. The value of κ is fixed to be equal to 0.2 in
Sec. IV B on the basis of our model fitting to the UED Bragg
peak intensities.

0 1 2 3 4 5
300

500

700

900

FIG. 2. Typical example of the time evolution of electronic tem-
perature Te (solid red line), temperature of hot phonons TL2 (dashed
blue line), and temperature of cold phonons TL1 (dash-dotted black
line). The curves are computed numerically on the basis of Eqs. (16)–
(18) with the initial value of Te corresponding to the photoexcitation
density F = 2×1020 cm−3 and with parameters given in Table I.

A typical post-pulse time evolution of the three tempera-
tures calculated on basis of Eqs. (16)–(18) is shown in Fig. 2.
Here we assume that the initial rise of the electronic tempera-
ture occurs on a very short timescale, which we approximate
as instantaneous. The remaining evolution can be divided into
two stages. During the first stage, Te relaxes to TL2 on the
timescale of 1–2 ps. The second stage unfolds for t � 1.5 ps,
where the common temperature of the electrons and the hot
phonons (Te ≈ TL2) approaches TL1.

For sufficiently strong laser pulses, such that
Te(0) � TL1,L2, the first stage can be accurately described by
the approximate equation

Ce(Te )
dTe

dt
≈ −GeLTe, (26)

which is governed by a single parameter GeL. Its value can
be estimated by assuming that, at high excitation densi-
ties, the initial decay of the transient reflectivity, measured
in Ref. [8], is controlled by Te(t ). This way, we obtain
GeL = 5.5 J ps−1 K−1 mol−1, see Sec. IV A for further details.

During the second stage, the temperature relaxation pro-
cess is exponential, characterized by the time constant

τDW = κ (1 − κ )Ctot/GLL. (27)

Here, following the notation of Ref. [8], we use the subscript
“DW,” which stands for ‘Debye-Waller’, because the above
time constant controls the evolution of the Bragg peak inten-
sity in the late-time regime. Expression (27) can be derived
with the help of Eqs. (17) and (18) in the limit Te = TL2 (cor-
responding to t > 1.5 ps in Fig. 2). From the measured relax-
ation of the Bragg peak intensity [8], we have τDW = 2.2 ps.
Thereby, Eq. (27) defines GLL = 7.25 J ps−1 K−1 mol−1.
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FIG. 3. Electronic temperature dynamics for different photoex-
citation densities F , as described by the three-temperature model.
The in-plot legend explains the correspondence between F and
the curves. Horizontal dash-dotted line marks the CDW transition
temperature Tc = 670 K. The crossing of this line with an individual
temperature evolution curve Te(t ) defines time τc(F ) introduced
by Eq. (29).

IV. COMPARISON OF THE EXPERIMENTS
WITH THE NUMERICAL SIMULATIONS

In this section, we present the results of the simulations and
compare them with experiments of Ref. [8]. The simulation
parameters are given in Table I.

A. Comparison to the short-time transient
reflectivity measurements

Laser pulse initially excites electronic degrees of freedom,
which, in turn, excite the lattice. Both the electrons and the
lattice contribute to the change in the transient reflectivity
signal. We expect that the monotonically decaying part of
the transient reflectivity (measured transient reflectivity with
the oscillating contribution from the amplitude mode sub-
tracted [8]) tracks the dynamics of the electronic temperature
Te(t ).

The computed time dependence Te(t ) is shown in Fig. 3
for different excitation densities F . The crossover between the
first rapid stage to the second slow stage is clearly seen. For
longer times Te(t ) approaches some photoexcitation-density-
dependent base temperature, which only slightly exceeds Tenv

for all excitation densities used.
To compare the computed temperature evolution with ex-

periment, we introduce time τe by condition

Te(τe ) − Tenv = Te(0) − Tenv

e
, e = 2.718 . . . . (28)

It characterizes the timescale of the electronic temperature
cooling down during the first rapid stage. In Fig. 4, we
compare τe with the relaxation time τR, extracted from the
transient reflectivity experiment [8]. Given the simplicity of
our model, the agreement between the theory and the experi-
ment is reasonable. It was attained by adjusting the parameter
GeL in Eq. (26), while other parameters affecting the latter
equation were fixed as described in Sec. III B.

1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

FIG. 4. Time scales τe, Eq. (28), and τc, Eq. (29), as func-
tions of photoexcitation density F . Crossed points correspond to
the quasiparticle time τR, extracted from the transient reflectivity
measurements [8].

B. Dynamics of the order parameters

1. Melting of the CDW order

In Fig. 5, the plots of x2(t ) and y2(t ) illustrate the typ-
ical dynamics of the electronic and the lattice CDW order
parameters after the arrival of a laser pulse. For low excitation
densities, such as that of Fig. 5(a), the laser pulse does not
completely destroys the CDW order—it only excites damped
AM oscillations around the equilibrium values of the order
parameters. For stronger pulses, as in panels (b)–(d), both x(t )

0 1 2 3
0

1

0 1 2 3
0

1

0 1 2 3
0

1

0 1 2 3
0

1

(a) (b)

(c) (d)

FIG. 5. Time evolution of the CDW order parameters. Four
panels correspond to different photoexcitation densities F (shown
in each panel in units of 1020 cm−3). Dashed blue lines show the
time dependence of the electronic CDW order x2(t ) normalized to
its prepulse value x2(0

−
). Similarly, solid red lines show the time

evolution of the lattice CDW order represented as y2(t )/y2(0
−

).
Vertical dashed lines mark t = τc(F ) defined by Eq. (29).
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and y(t ) cross zero, which, despite the lack of equilibrium,
indicates the proximity to the melting of the CDW order.

To investigate the onset of the CDW melting, it is useful
to look back at the corresponding temperature evolution Te(t )
shown in Fig. 3, where we see that Te(t ) stays above Tc for a
finite time τc(F ). This time is defined by the condition

Te(τc) = Tc, (29)

which is indicated in Fig. 3 by the dash-dotted horizontal
line. Once F is larger than a certain threshold, τc grows
monotonically with F , as shown in Fig. 4.

In Figs. 5(b)–5(d), the time t = τc is indicated by vertical
dashed lines. We see that τc indeed gives the correct estimate
of the time when the CDW order ceases to decay and starts
to recover. We also note that for panel (d), where τc � 1 ps,
the order parameters demonstrate multiple passages through
zero with decreasing amplitude. After the oscillations fade,
the order parameters remain suppressed for about 0.5 ps.

In general, the notion of melting in the course of a nonequi-
librium evolution is not sharply defined. Here we adopt the
criterion that the CDW order undergoes melting when the
electronic and the lattice order parameters do not simply cross
zero but rather approach zero in a damped oscillatory (or
nonoscillatory) fashion. From such a perspective, Fig. 5(d)
represents the melting behavior, while Fig. 5(b) does not, and
Fig. 5(c) is the border case. On the basis of the above analysis,
we conclude that the critical excitation density Fc, defined
as the lowest border for melting, satisfies the following
inequality

1×1020 cm−3 � Fc < 4×1020 cm−3. (30)

Experimentally [8] Fc ∼ 2.0×1020 cm−3, in agreement with
the above constraints.

All plots in Fig. 5 exhibit prominent oscillatory behavior
of the order parameters. At lower photoexcitation densities,
such as in Fig. 5(a), the oscillations are clearly related to the
appearance [11] of the AM observed in the transient reflectiv-
ity experiments. However, the experiment indicates significant
reduction of the oscillation amplitude for F � 2×1020 cm−3.
This discrepancy can be attributed to our assumption that
the order parameters are homogeneous in space, while in the
real system, the spatial configuration of the order parameters
following the melting and the subsequent reemergence of the
CDW is likely strongly inhomogeneous due to the appearance
of topological defects in the order parameter texture. As a
result of this inhomogeneity, the system has relatively small
coherent CDW domains of varying size with different size-
dependent frequencies ω0, which, in turn, leads to the strong
dephasing of the oscillations, once the signal is averaged over
the entire sample.

Further analyzing oscillations in Fig. 5(d), we observe that
the frequency of transient oscillations for t � 1.5 ps is twice
the AM frequency ωAM. Such a doubling occurs because of
the interplay of two factors: (i) in Fig. 5, we plot x2(t ) and
y2(t ) instead of x(t ) and y(t ) and (ii) the order parameters
oscillate near x = y = 0. The experiments of Refs. [57,85]
indicate that such a frequency doubling may, actually, occur
in real systems.

As for the UED experiments of Ref. [8], they have in-
sufficient time resolution to detect the order parameters os-
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FIG. 6. Time evolution of the lattice order parameter y2(t )/
y2(t < 0)—see Fig. 5—filtered with Gaussian function in Eq. (31) in
order to mimic finite resolution in the UED experiment, for several
values of F .

cillations. To represent the experimental observations, we
use the quantity (y2 ∗ g)(t ), where the asterisk denotes time
convolution, and

g(t ) = 1√
2πw

exp

(
− t2

2w2

)
(31)

is the Gaussian filter, with parameter w representing the
time resolution of the experiment. For the UED experiment
of Ref. [8], w = 0.42 ps. The results of the convolution
are shown in Fig. 6 for different F ’s. We can see that the
oscillations present in all panels of Fig. 5 were smeared out
by the filter.

2. Two kinds of diffraction peaks in UED experiments

The UED experiments [8] observe two kinds of diffraction
peaks associated either with the underlying crystal structure of
LaTe3 or with the CDW order, see Fig. 7. The measurements
of Ref. [8] were done in the higher-order Brillouin zones,
which implies that the measured intensities of the CDW peaks
are determined [86] by the lattice CDW order y. Fundamen-
tally, the integrated intensity of a CDW peak is proportional to
y2. Therefore, at first sight, the direct way to test our modeling
is to compare the calculated y2(t ) with the time evolution
of the integrated CDW peak intensity measured in the UED
experiment.

(3 0 L)

L = 0 1 2 3-1-2-3
L

H

FIG. 7. Static electron diffraction pattern along (3 0 L). The
line cut is obtained by integrating the colored strip along the H
direction. The measured diffraction is a two-dimensional slice in
the three-dimensional reciprocal space. The bright yellow spots are
Bragg peaks while arrows mark the CDW superlattice peaks. Figure
reproduced from Ref. [8].
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However, the problem here is that the experiment [8] mea-
sured diffraction intensities only for a two- dimensional slice
(kx, kz ) of a three-dimensional reciprocal space (kx, ky, kz ), see
Fig. 7. In other words, Ref. [8] does not contain direct ex-
perimental information about the three-dimensional integrated
intensity of the CDW peaks.

At the same time, since, in the experiment [8], crys-
tal Bragg peaks are resolution-limited, the two-dimensional
integrals over the measured sections of these peaks are
proportional to the respective integrals over the full three-
dimensional reciprocal space. One can now take into account
the sum rule implying that the emergence of the CDW order
leads to the intensity transfer from the Bragg peaks to the
CDW peaks, see Appendix A. Therefore, in our case, the most
direct way to extract the value of y2(t ) from experiment is
to examine the integrated intensity by the Bragg peaks: the
suppression of the CDW order leads to increase of the Bragg
peak intensity. This relation is quantified in the next section.

3. Time evolution of the Bragg peaks for the underlying crystal
lattice from UED experiments

For the integrated Bragg peak intensity I in the presence of
the CDW order, we use the expression obtained in Ref. [87]:

I ∝ [J0(py)]2e−2W , (32)

where J0 is the zeroth-order Bessel function, and p is a
constant. Parameter W accounts for the Debye-Waller sup-
pression of the intensity due to thermal fluctuations of the
phonons.

We expect that W ∝ TL1, and, therefore, write

I (t )

I (0)
= J0(py(t ))

J0(py(0))
e−2[W (t )−W (0)]

≈ 1 − P
[
y2(t ) − y2

eq

] − S[TL1(t ) − Tenv], (33)

where P = p2/2, and S is a constant.
As in Sec. IV B 1, to account for the finite experimental

temporal resolution, we convolute the rhs of Eq. (33) with the
Gaussian filter (31). The final expression used to mimic the
actual Bragg peaks dynamics reads

I (t )

I (t0)
≈ {

1 − P
[
y2(t − t0) − y2

eq

]

− S[TL1(t − t0) − Tenv]
} ∗ g. (34)

Here, t0 is an adjustable parameter shifting the origin of the
time axis. This shift is another consequence of the limited time
resolution of the experiment [88].

Function I (t ), numerically evaluated with the help of
Eq. (34), together with the UED data points, are plotted in
Fig. 8. All eight plots in the latter figure were obtained by fit-
ting the experimental points using four adjustable parameters:
κ = 0.2, P = 0.1, S = 3×10−3, and t0 = 0.43 ps. The above
value of parameter κ was used for all simulations presented in
this paper.

Overall, the agreement between the fits and the experiment
in Fig. 8 is rather good. For higher excitation densities F , the
small discrepancy might be due to the fact that approxima-
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FIG. 8. Time evolution of the Bragg peaks intensity I (t ) for
different excitation densities. Solid lines are obtained from Eq. (34);
dots represent the experimental data [8]. The lines and the data points
for different excitation densities are vertically displaced for clarity.

tion (24) for the electronic heat capacity is less accurate at
higher temperatures.

4. Time evolution of the CDW peak from UED experiments

We now turn to the discussion of the CDW peak. As antici-
pated in Subsec. IV B 2, a straightforward attempt to approxi-
mate the experimentally measured (kx, kz )-integrated intensity
of a CDW peak by a theoretically computed y2(t ) [with the
appropriate convolution and time shift, as in Eq. (34)] reveals
large discrepancy. Indeed, as one can see from Fig. 9, the
calculated curves (red dashed lines) lie significantly higher
than the experimental UED data. Below, we test the propo-
sition formulated in Ref. [8] that the deviations between the
data and the simulations originate from the fact that the UED
measurements access only a two-dimensional (kx, kz ) slice of
the three-dimensional (kx, ky, kz ) space.

We assume that the intensity of the CDW peak in the recip-
rocal space can be reasonably approximated by a factorized
function

GCDW(k) ∝ y2sx(kx )sy(ky)sz(kz ), (35)

where sσ (kσ ) are the peak shape functions for the respective
k-space directions, with index σ taking values x, y, or z.
Following the convention of Ref. [8], axes x and z denote the
directions parallel to Te2 planes, while axis y is perpendicular
to these planes. (The notations x and y for the spatial axes
appear only as subscripts, and are not to be confused with
the variables x and y defined by Eq. (9) that represent the
electronic and the lattice order parameters.) Functions sσ (kσ )
are normalized by the condition

∫
dksσ (k) = 1. (36)

We also assume that these functions are nonnegative and
bell-shaped. (In experiment, these functions are fitted by
Lorentzians due to the intrisic profile of the electronic beam.)
The two-dimensional integral of the CDW peak reported in
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FIG. 9. Comparison of the simulated dynamics with the UED
data for the CDW peak. Two panels correspond to two different
photoexcitation densities: F = 9.4×1019 (top) and 2.8×1020 cm−3

(bottom). Quantity (y2 ∗ g)(t ), representing simulated filtered dy-
namics of the order parameter (see Fig. 6), is shown by dashed
(red) curve. Experimentally obtained [8] partially integrated UED
intensity ICDW

2D , Eq. (37), is shown by solid (cyan) curves. The data
points [8] for the CDW correlation length ξ are shown as (blue)
dots. For larger F (bottom), the CDW peak disappears for 1 ps �
t � 3.5 ps, consequently, the data points for ξ are absent in this
interval. To account for the theoretically unknown phase dynamics,
we multiply (y2∗ g) by ξ [as in Eq. (40)]. The resulting dependence
is shown by solid (green) line. For both F ’s, the agreement between
ICDW
2D and (y2∗ g) ξ is quite notable.

Ref. [8] can be written as

ICDW
2D ≡

∫
dkxdkzGCDW(k)|ky=0 = y2sy(0). (37)

Now we observe that, for common bell-shaped functions,
such as Lorentzian or Gaussian, sσ (0) ∝ ξσ , where ξσ is the
real-space correlation length in the respective direction. Using
this observation and adding explicit time dependencies of the
parameters involved, we arrive at the expression

ICDW
2D (t ) ∝ y2(t )ξy(t ). (38)

In this work, we assume that the order parameter is homo-
geneous is space. Thus we cannot obtain theoretically ξy(t ).
However, we can estimate it on the basis of the assumption
that all correlation lengths are determined by the same mech-
anism and hence are proportional to each other, i.e.,

ξy(t ) ∝ ξx,z(t ) ≈ ξexp(t ), (39)

where ξexp(t ) is the experimentally measured correlation
length in the x and z directions, obtained as the inverse of
the FWHM of the CDW peak after instrumental resolution
is taken into consideration, see Eq. (S4) of the Supplemental
Information to Ref. [8].

Finally, taking into account the finite experimental time
resolution, as in Eq. (34), the measured integrated intensity
can be approximated as ICDW

2D,exp(t ) = (y2∗ g)(t − t0) ξexp(t ). To
facilitate the comparison with experiments, we reexpress this
relation in the following manner:

ICDW
2D,exp(t )

ICDW
2D,exp(0− )

= (y2∗ g)(t − t0) ξexp(t )

(y2∗ g)(0− ) ξexp(0− )
, (40)

where the argument (0
−

) implies the prepulse values of the
respective parameters.

In Fig. 9, we test the relation (40) by substituting there
the theoretically calculated y2(t ). The agreement between
the direct measurement and the prediction of Eq. (40) is
rather encouraging. This is another consistency check of our
modeling.

V. OVERVIEW OF TIMESCALES

Here we would like to bring together various aspects of our
simulations by attaching concrete timescales to the general
nonequilibrium scenario described in Sec. II A. In order to
be specific, we choose the case of the photoexcitation density
F = 3, which is above the transient-melting threshold Fc = 2
determined in Sec. IV B 1. (Here and below, the units for F are
1020 cm−3.) Different stages of the nonequilibrium evolution
together with the relevant characteristic times are summarized
in Fig. 10.

The fastest time appearing in our description is τ0 = 20 fs.
It enters Eq. (12), and characterizes the relaxation time of
the electronic density [89]. Among timescales of the lattice
dynamics, the shortest one is the period of the amplitude
mode 2π/ωAM ∼ 0.5 ps. Next is the relaxation time of the
CDW phonon mode 1/γyω0 ∼ 1 ps. Another relevant time
having the value of approximately 1 ps is τe, which describes
the convergence of the electronic temperature Te and the
temperature of the hot phonons subsystem TL2 (see Fig. 4).

For the photoexcitation density F = 3, the electronic tem-
perature Te initially jumps to a value significantly higher than
Tc and then remains above Tc for a time longer than 1 ps. This
leaves enough time for the lattice CDW order to relax to zero,
which implies complete melting. By the time of about 2 ps,
two changes occur: (i) electronic temperature Te drops below
Tc, which leads to the reappearance of both the electronic
and the lattice CDW orders. (ii) Simultaneously, the char-
acter of the temperature relaxation changes—the electronic
temperature Te and the hot phonons temperature TL2, after
having approached each other, start decreasing towards the
temperature of the rest of the lattice TL1 with characteristic
time τDW ≈ 2 ps. The recovery of the electronic and the
lattice CDW amplitudes becomes eventually completed by the
time of about 6 ps. (Due to small overall heating, the CDW
amplitude recovers to a value, which is slightly smaller than
the pre-pulse one.)
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FIG. 10. Sketch of the stages of nonequilibrium time evolution
in the course of a photoexcited phase transition in LaTe3. The
characteristic times indicated in the figure are the estimates made
in Sec. V for F = 3×1020 cm−3.

Finally, as indicated in Fig. 10, the longest timescale is
supposed to be the one associated with the relaxation of the
phase of the CDW order parameter. Since our formalism
deals exclusively with the dynamics of the order parameter
amplitude, and not the phase, these slow relaxation processes
are not covered by our simulations.

VI. DISCUSSION

In this paper, we have shown that the combination of
the three temperature model and the TDGL equations with
two order parameters constitutes a quantitatively adequate
description of the amplitude response of CDW materials to
a strong femtosecond laser pulse. The successful description
of the time evolution of the crystal Bragg peaks intensities
shown in Fig. 8 is the testament of the model’s predictive
power. Indeed, we were able to simulate a family of eight
different time-dependent intensities corresponding to different
photoexcitation densities using only one physically important
parameter κ and three “technical” parameters P, S, and t0.
The values of other parameters required by the model were

obtained from independent experiments on CDWs in LaTe3

and in other rare-earth tritellurides. We thus demonstrated
how to use the available experimental knowledge to system-
atically extract the parameters for far-from-equilibrium CDW
simulations.

We further note that our simulations predict that electronic
and lattice modulations are supposed to exhibit an oscillatory
dynamics in the vicinity of the CDW melting transition with
a frequency which is two times larger than that of the weakly
perturbed CDW (see Fig. 5 and the discussion in Sec. IV B 1).
This dynamics would not be directly visible in experiments
of Ref. [8] due to finite time resolution but, otherwise, is
consistent with the experiments [57,85] with the blue bronze
K0.3MoO3 and a perovskite-type manganite Pr0.5Ca0.5MnO3.
In a related development, the application of the present sim-
ulation framework in Ref. [23] pointed at the existence of
a dynamical slowing down regime near the CDW melting
transition, where the order parameters become “caught” near
the metastable maximum of the free energy (3).

In terms of advancing the general knowledge about the
far-from-equilibrium CDW dynamics, our simulations shed
light on the transient CDW response that is difficult to ac-
cess experimentally. In particular, the necessity to use two
different lattice temperatures—one for hot phonons and the
other for the rest of the lattice—confirms previous conjectures
[61,63,79–82] that the energy transfer from the photoexcited
electrons to the phonon bath occurs unevenly among different
phonon modes. Overall, the developed theoretical framework
should be applicable to other CDW materials and other exper-
imental settings, such as three-pulse experiments of Ref. [3].

Although our treatment only deals with the amplitudes of
the order parameters, an important outcome of this work is
that, for experimental quantities affected by both the ampli-
tude and the phase relaxation of the CDW order, the lack of
the theoretical information about the phase dynamics may be
compensated, at least partially, using phenomenology-based
approach. An example here is the comparison between the
measured 2D-integrated UED intensity of the CDW peak
presented in Fig. 9 and the computed intensity. We interpret
the difference between the two as being caused by the phase
relaxation of the CDW order, which is slower than the am-
plitude relaxation due to the possible presence of topological
defects—in agreement with the analysis of Ref. [8]. The con-
sistency of this interpretation is further demonstrated in Fig. 9
by correcting the amplitude-dependent intensity with a factor
determined from the experimental knowledge of the peak
width, which is, in turn, determined by the phase fluctuations
of the order parameter.

As far as the weak points of our modeling are concerned,
one of them is its mean-field character. In realilty, many
CDW systems, including LaTe3, demonstrate pronounced
nonmean-field properties near the phase transition [32–34].
Fluctuations relative to the mean-field state can be split into
two groups: those of the order parameters amplitudes, and
those of the phase. The fluctuations of the amplitudes are less
worrisome: we expect them to be effectively included into
renormalization of the model’s coefficients by replacing some
(unknown) “bare” values with the “effective” (observable)
values. At the same time, phase fluctuations of the CDW
order parameter are of greater concern. They remain largely
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unaccounted in the present work, which focuses on the CDW
amplitudes.

Another limitation of proposed approach is related to the
fact that the three-temperature model greatly oversimplifies
the kinetic processes in the studied system. However, our
success in reproducing the experiments in general and the
transient reflectivity experiments in particular suggests that
this approximation captures essential physics of the system.

VII. CONCLUSIONS

We developed a theoretical framework to describe the
dynamics of the CDW amplitude after an intense laser pulse.
The framework consists of (i) the time-dependent Ginzburg-
Landau equations for the electron and lattice CDW amplitudes
and (ii) the three-temperature model. We tested the resulting
description by comparing the simulations with the available
experimental data. The agreement is good, suggesting that
the proposed framework can be applied to a broader class of
nonequilibrium settings.
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APPENDIX A: BRAGG AND CDW DIFFRACTION PEAKS

The purpose of this Appendix is to illustrate how the
presence of the CDW modifies electron diffraction peaks. We
then discuss the role of fluctuations of the phase of the order
parameter. The discussion here is a simplified version of a
more general treatment of Ref. [87].

We express modulation of the lattice site positions as

rn → rn + u cos(Q · rn), (A1)

where u and Q are the amplitude and the wave vector of the
modulation; rn are high-symmetry lattice points. Assuming
that the amplitude |u| is much smaller than the lattice spacing,
we write the density as

ρ(r) =
∑

rn

δ[r − rn − u cos(Q · rn)]

≈ ρ0(r) −
∑

rn

(u · ∇r )δ(r − rn) cos(Q · rn)

+ 1

2

∑
rn

(u·∇r )2δ(r − rn) cos2(Q · rn) + · · ·, (A2)

where ρ0(r) = ∑
rn

δ(r − rn) corresponds to the density of
unmodulated lattice. By performing the Fourier transforma-

tion, we obtain

ρk = ρ0k −
∫

d3re−ik·r ∑
rn

(u · ∇r )δ(r − rn) cos(Q · rn)

+1

2

∫
d3re−ik·r ∑

rn

(u · ∇r )2δ(r − rn) cos2(Q · rn) + · · · ,

(A3)

where ρ0k = Fk
∑

b δk,b is a sum of sharp peaks located at
reciprocal wave vectors b of the underlying crystal lattice.
Here, Fk is the lattice form-factor. Integrating by parts, we
obtain

ρk = ρ0k − i(u · k)
∑

rn

e−ik·rn cos(Q · rn)

− (u · k)2

4

∑
rn

e−ik·rn [1 + cos(2Q · rn)] + · · · (A4)

The terms in Eq. (A4) can be combined as follows:

ρk =
[

1 − (u · k)2

4

]
ρ0k + ρ

Q
k + ρ

2Q
k + · · · , (A5)

where

ρ
Q
k = −i(u · k)

∑
rn

e−ik·rn cos(Q · rn)

= − i

2
(u · k)Fk

∑
b

(δk,b+Q + δk,b−Q), (A6)

ρ
2Q
k = − (u · k)2

4

∑
rn

e−ik·rn cos(2Q · rn)

= − (u · k)2

8
Fk

∑
b

(δk,b+2Q + δk,b−2Q). (A7)

These terms describe appearance of the CDW peaks with
wave-vectors nQ, n = 1, 2, . . .

Of particular interest to us is the first term in Eq. (A5). We
note that the presence of the CDW suppresses the amplitudes
of the Bragg peaks by an amount

δρ
Bragg
k = − (u · k)2

4
ρ0k. (A8)

We use this relation in Sec. IV B.
It is important for our analysis that Eq. (A8) remains valid

also when CDW correlations are only short-ranged, while
the true long-range CDW order is absent. To show this, we
consider more general expression for the ionic density:

ρ(r) =
∑

rn

δ[r − rn − u cos (Q · rn + φ(rn))]. (A9)

Here, φ(rn) is the phase of the order parameter. We assume
that φ is a slowly varying function of rn. These variations are
often referred to as “phasons.” When φ(rn) varies as a function
of rn, the CDW order weakens, or disappears completely, and
becomes replaced by short-range correlations. Generalizing

054203-12



AMPLITUDE DYNAMICS OF THE CHARGE DENSITY WAVE … PHYSICAL REVIEW B 101, 054203 (2020)

Eq. (A4) to account for the hot phonons, we derive

ρk =
[

1 − (u · k)2

4

]
ρ0k

− i(u · k)
∑

rn

e−ik·rn cos (Q · rn + φ(rn))

− (u · k)2

4

∑
rn

e−ik·rn cos (2Q · rn + 2φ(rn)). (A10)

Thus, in the presence of the phase variation φ(rn), the am-
plitudes of the Bragg peaks remain unchanged, cf. Eq. (A5),
while the CDW amplitudes ρ

Q
k and ρ

2Q
k become equal to

ρ
Q
k = −i(u · k)

∑
rn

e−ik·rn cos (Q · rn + φ(rn)), (A11)

ρ
2Q
k = − (u · k)2

4

∑
rn

e−ik·rn cos (2Q · rn + 2φ(rn)). (A12)

We, therefore, conclude that the CDW-induced changes in
the Bragg peaks intensities carry information about the short-
range CDW correlations. In particular, by means of Eq. (A8)
one can extract the amplitude u experimentally.

APPENDIX B: SMALL OSCILLATIONS NEAR
EQUILIBRIUM STATE

The TDGL sector of our formalism, Eqs. (12) and (15),
contains several unknown coefficients. An important part of
our study is the evaluation of these parameters consistent with
the available data. An interesting possibility in this regard
is to investigate the regime of small oscillations of x and y
near the equilibrium state. The resulting theoretically deter-
mined frequency and damping factor can be compared with
experimental data for the AM oscillation spectrum, which
allows us to recover several parameters of our model. Since
the calculations for T < Tc and T > Tc differ, they will be
presented separately.

1. Oscillations for T < Tc

When T < Tc, both order parameters x and y have nonzero
values at equilibrium. In this regime, we parametrize small
oscillations as

x =
√

� + δx, y =
√

� + δy, (B1)

where both δx and δy are complex variables. Writing δx and
δy as sums of real and imaginary parts δx = δx′ + iδx′′ and
δy = δy′ + iδy′′, we derive the following system of linearized
equations:

τ0
dδx′

dt
+ 2�δx′ + ζ (δx′ − δy′) = 0, (B2)

1

ω2
0

d2δy′

dt2
+ γy

ω0

dδy′

dt
+ (δy′ − δx′) = 0, (B3)

τ0
dδx′′

dt
+ ζ (δx′′ − δy′′) = 0, (B4)

1

ω2
0

d2δy′′

dt2
+ γy

ω0

dδy′′

dt
+ (δy′′ − δx′′) = 0. (B5)

FIG. 11. Temperature dependence of the amplitude mode fre-
quency ωAM and damping parameter γAM obtained by solving
Eqs. (B6) and (B7). (a) Adiabatic regime: the parameters in Eq. (B7)
are ω0/(2π ) = 3.1 THz, τ0 = 20 fs, ζ ≈ 1.1, and γy ≈ 0.04. These
parameter values were used in our simulations, see Table I. They
correspond to point (a) marked in Fig. 1. In a small temperature range
around Tc, the amplitude oscillation mode turns into two overdamped
modes with ωAM = 0 and unequal values of γAM represented by
two split dashed lines. (b) Nonadiabatic regime: the parameters in
Eq. (B7) are ω0/(2π ) = 2.6 THz, τ0 = 40 fs, ζ ≈ 0.5, and γy ≈
0.033. This choice of parameters corresponds to point (b) marked
in Fig. 1.

In these equations, the dynamics of the real and imaginary
components are decoupled from each other.

We analyze first the frequencies of the real components in
Eqs. (B2) and (B3). The insertion of an ansatz δx′(t ) = Xeλt

and δy′(t ) = Yeλt leads to an equation for λ:

P(λ) = 0, (B6)

where P(λ) is a cubic polynomial defined as

P(λ) = τ0λ
3 + (2� + ζ + γyω0τ0)λ2

+ω0(2�γy + ζγy + ω0τ0)λ + 2�ω2
0. (B7)

Among three roots of P(λ), one is always real and negative.
Dependent on parameters, two other roots are either (i) both
complex and conjugated to each other or (ii) both real nega-
tive. In case (i), the pair of complex roots represents AM. We
identify Imλ with the frequency ωAM, while −Reλ is the AM
damping parameter γAM. The calculated values of ωAM and
γAM, as functions of temperature, are plotted in Fig. 11.

Examining panels (a) and (b) of Fig. 11, we notice that
the temperature dependence of the AM exhibits two different
qualitative regimes determined by the model parameters. Fre-
quency ωAM plotted in panel (a) remains zero in some finite
vicinity of Tc. As for panel (b), ωAM never vanishes. Following
Refs. [54,55], where this dichotomy was previously analyzed,
we refer to the behavior shown in panel (a) of Fig. 11 as
“adiabatic,” while the one shown is in panel (b) is to be called
“nonadiabatic.”

To determine the border between the adiabatic and nonadi-
abatic regimes, we need to analyze ωAM at T = Tc. This con-
dition corresponds to � = 0. As a result, Eq. (B6) becomes
easily solvable:

λ1 = 0, λ2,3 = − 1

2τ0
[γyω0τ0 + ζ ±

√
D], (B8)

where

D = (γyω0τ0 − ζ )2 − 4(ω0τ0)2. (B9)
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Quantity D is important for our analysis. Specifically,
Eq. (B8) implies that, if D > 0, then ωAM = 0, other-
wise, it is finite: ωAM = |Imλ2,3| = 1

2τ0

√−D. Therefore the
condition D = 0 separates the adiabatic and nonadiabatic
regimes. (In terms of experiment, it might be difficult to
detect the difference between a formally adiabatic case
ωAM(T = Tc) = 0, and a nonadiabatic case characterized by
inequality γAM(T = Tc) � ωAM(T = Tc).)

Since the values of ωAM and γAM at T = 300 K are
known from experiment, see Eq. (20), we can use them to
derive constraints on the TDGL parameters. To obtain the
constraints, we rewrite Eq. (B6) as two real-valued equations

Re P(iωAM − γAM) = 0, (B10)

Im P(iωAM − γAM) = 0. (B11)

These equations reduce the number of free TDGL coefficients
from four (ω0, τ0, ζ , and γy) to two. In the main text, we
treat τ0 and ω0 as free parameters. Within such a convention,
Eqs. (B10) and (B11) can be used to define two implicit
functions γy = γy(ω0, τ0) and ζ = ζ (ω0, τ0).

Damping parameter γy must always be non-negative, i.e.,

γy(ω0, τ0) � 0, (B12)

which further limits the available space for ω0 and τ0 as
discussed in the main text, see also Fig. 1.

Now we can analyze Eqs. (B4) and (B5), which describe
the oscillations of the imaginary components δx′′ and δy′′. One
can check that, in this case, we also have three modes whose
eigenfrequencies are given by Eq. (B8). The zero eigenfre-
quency represents a Goldstone mode. Within our model small
oscillations of δx′′ and δy′′ have temperature-independent
frequencies and damping parameters. This is a consequence
of our assumption that quantity a in the Landau functional (3)
is the only one dependent on temperature.

As with the real components, the dynamics of the imag-
inary components δx′′ and δy′′ is sensitive to the sign of D.
Specifically, in the adiabatic regime, the roots λ2,3 are both
real negative, i.e. the time evolution is overdamped. In the
nonadiabatic regime, the roots form a complex conjugate pair,
which corresponds to underdamped oscillations.

2. Oscillations for T > Tc

When T � Tc, the equilibrium values of x and y are zero.
Thus, in the regime of linear oscillations in the disordered
phase one writes x(t ) = δx(t ) and y(t ) = δy(t ). The resulting
linearized equations for the real components coincide with the
equations for the imaginary components:

τ0
dδx

dt
− �δx + ζ (δx − δy) = 0, (B13)

1

ω2
0

d2δy

dt2
+ γy

ω0

dδy

dt
+ (δy − δx) = 0. (B14)

The eigenfrequencies then satisfy the equation

τ0λ
3 + (ζ − � + γyω0τ0)λ2

+ω0(γyζ − γy� + ω0τ0)λ − �ω2
0 = 0. (B15)

Naturally, at the transition (� = 0), Eqs. (B15) and (B6)
are identical. This ensures that all eigenfrequencies smoothly

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0
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FIG. 12. Sketch of DOS in the CDW state. It represents the
vicinity of a Fermi surface that has both metallic and gaped re-
gions. The gapped regions are responsible for the suppression of
the DOS at εF = 0 and the appearance of the maxima around
|ε| ∼ � ∼ 350 meV.

cross Tc. Figure 11 shows the numerically calculated eigenfre-
quencies for both adiabatic and nonadiabatic regimes.

APPENDIX C: ELECTRONIC HEAT CAPACITY

1. Temperature dependence of the electronic heat capacity

Here we further motivate Eq. (24) for the temperature
dependence of the electronic heat capacity. We already men-
tioned that LaTe3, despite the presence of the CDW order,
is not an insulator, but rather is a metal, with ungapped
fragments of the Fermi surface and finite density of states at
the Fermi energy εF = 0, cf. Fig. 14. Consequently, the low-
temperature heat capacity demonstrates [46] metallic behavior
expressed by Eq. (23). However, unlike a “classical” metal for
which deviations from linear relation Ce ∝ Te for Te � 2000 K
are generally weak [90], we expect that the CDW order in
LaTe3 affects the validity of Eq. (23) in the above temperature
range.

Available thermodynamic and ab initio data support [46]
this expectation: the CDW order suppresses coefficient c0 in
Eq. (23) almost twofold relative to its value in the hypothet-
ical situation without the CDW order. We assume that this
suppression is due to the “pseudo-gapped” single-electron
density of state (DOS) ν(ε) sketched in Fig. 12. In this
sketch, the uniform metallic DOS ν0 is modified by the
presence of the CDW order. At the Fermi energy εF , we
choose it for concreteness to be two times smaller than the
bare value ν0. This suppression is caused by the expulsion
of the electronic states from the gapped parts of the Fermi
surface to higher energies. Since coefficient c0 ∝ ν(εF ), the
value of c0 decreases together with ν(εF ). As for the states
excluded from the vicinity of εF , they accumulate at [51]
|ε − εF | ∼ � ∼ 0.35 eV. When |ε − εF | � 0.6 eV, the DOS
returns to its bare value ν0. The resulting function ν(ε) ex-
hibits pronounced variations on the scale of hundreds of meV,
which leads to a nonlinear temperature dependence of the heat
capacity shown in Fig. 13. This temperature dependence is
calculated using the expression:

Ce(Te ) =
∫ +∞

−∞

ν(ε)ε2dε

2T 2
e cosh2 (ε/(2Te ))

. (C1)
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FIG. 13. Dashed (red) line represents temperature dependence of
the electronic heat capacity for the DOS shown in Fig. 12. Solid
(blue) line corresponds to our approximation Eq. (23).

The plot in Fig. 13 indicates that Ce(Te ) departs from the
low-temperature linear dependence, Eq. (23), for T � 300 K.
Figure 13 also shows the plot of Ce(Te ) for a simple piecewise
linear function given by Eq. (24). It can be seen in this
figure that Eq. (24) adequately approximates Ce(Te ) in the
temperature range of interest.

We note that expression (C1) is formulated under the
assumption that ν(ε) is independent of Te. This assumption is,
likely, violated in LaTe3, because the actual DOS is sensitive
to the values of the order parameters x and y, both of which are
temperature- and time-dependent quantities. Thus, application
of Eq. (24) to the nonequilibrium situations should be taken
with caution. However, we do expect that the piecewise linear
function Eq. (24) would still constitute a reasonable approxi-
mation to the actual temperature dependence of the electronic
heat capacity. Let us also emphasize that accurate knowledge
of the electronic heat capacity is important only during the
first rapid stage of the electronic temperature relaxation. At
the second slow stage, only lattice contributions to the heat
capacity are relevant, see Eq. (27).

2. Estimate of electronic temperature from tr-ARPES

The generation of hot carriers after strong photoexcitation
is followed by thermalization within the electronic subsystem
on a timescale �100 fs [92]. Using time- and angle-resolved
photoemission spectroscopy (tr-ARPES), one can estimate
the electronic temperature after the initial thermalization by
fitting the energy distribution of quasiparticles to a Fermi-
Dirac distribution [93].

Figure 14(a) shows the Fermi surface in LaTe3 at
T = 15 K 
 Tc before the arrival of the pump laser pulse (see
Ref. [8] for measurement details). The tr-ARPES intensity
is absent for the most parts of the Fermi surface due to
the opening of the CDW gap. The remaining Fermi surface
is consistent with the previous reports [91,94]. In order to
minimize complications arising from the transient suppression
of the CDW gap, we focus on the ungapped part of the Fermi
surface at equilibrium. In Fig. 14(b), we present an energy-
momentum cut through the metallic part of the Fermi surface
where the Te 5px/pz bands cross the Fermi level εF . The same
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FIG. 14. Estimating electronic temperature Te after a photoexci-
tation. (a) Fermi surface map before arrival of a laser pulse (t < t0).
Intensities are integrated over ±10 meV around the Fermi energy
εF . Dashed curves represent calculated Fermi surface based on a
tight-binding model [91], in the absence of the CDW order. The
arrow marks the energy-momentum cut through the ungapped part
of the Fermi surface displayed in (b). In (b), the band dispersions
are shown at two representative pump-probe time delays: before
the laser pulse (left) and 250 fs after the pulse arrival (right). The
energy-distribution curves (EDCs) are obtained by integrating over
a window �k = 0.05 Å−1 at the momentum indicated by the arrow.
Blue curve is a fit by Eq. (C2) to a part of the EDC. The Fermi energy
is indicated by the dashed line. Data in (a) and (b) were obtained at
a photoexcitation density of 3.31×1020 cm−3. (c) Electronic temper-
ature Te plotted as a function of the pump-probe delay for the three
photoexcitation densities indicated in the plot legend. Curves are the
fits to a single-exponential decay model [8]. Error bars represent one
standard deviation of the fits.

cut is shown after photoexcitation at a pump-probe time delay
of t = 250 fs, where states above εF are transiently populated.

To quantitatively analyze the carrier redistribution af-
ter photoexcitation, we plot the energy distribution curves
(EDCs) at kz = 0.08 Å−1 indicated by the arrow in Fig. 14(b).
At t < t0, there is a sharp cutoff of EDC around εF ; this
feature is replaced by a long tail at ε > εF at 250 fs. The
temporal evolution of the EDC across εF can be captured by
the following model [93,95]:

I (ε, t ) = {ν(ε) f [ε, μ(t ), Te(t )]} ∗ g̃[ε, w̃(t )], (C2)

where ν(ε) is the density of states, f [·] is the Fermi-Dirac
distribution that depends on the chemical potential μ and
the electronic temperature Te. The terms in {·} are energy
convoluted with a Gaussian kernel g̃[·], cf. Eq. (31), whose
time-dependent [93,96] width parameter w̃(t ) arises from the
finite energy resolution of the instrument and from spectral
broadening due to increased scattering rate after photoex-
citation. The density of states ν(ε) is assumed to remain
unchanged over time; it is determined by the EDCs before
photoexcitation. This assumption is largely justified, because
that particular part of the Fermi surface is minimally affected
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by the transient suppression and recovery of the CDW gap.
To limit the number of free parameters, we adopt a linear
approximation ν(ε) ≈ ν(εF) + (ε − εF)αν , where αν is an
adjustable parameter. This, in turn, limits the fitting range
as indicated in Fig. 14(b), since the strong intensity of a
separate band at high binding energy cannot be captured with
a linear density of states. In summary, the time-dependent
fitting parameters include μ(t ), Te(t ), and w̃(t ); the value of Te

before the arrival of the laser pulse is fixed to be 15 K, which
is the base temperature of the sample during the measurement.

Figure 14(c) shows the extracted Te throughout the pho-
toexcitation event for three different excitation densities given
in terms of the number of absorbed photons per unit volume.

Though electronic temperature obtained within a few τ0 after
photoexcitation is less reliable due to the nonthermal nature
of the carrier distribution [92], values at longer time delays
are indicative of the quasithermal state of the electronic sub-
system with effective electronic temperature Te and a Fermi-
Dirac distribution [see the fits in Fig. 14(b)]. As one expects,
higher transient Te is reached at higher excitation density.

Now, using Eq. (19) with the temperature dependence
Ce(Te ) given by Eq. (24) and with the values of h̄ωγ ,
V , F , Tenv, and Te corresponding to the experiment-based
plots in Fig. 14(c), we obtain the possible range of values
3–5 mJ mol−1 K−2 for the parameter c entering Eq. (24). In
the actual simulations, we use c = 4 mJ mol−1 K−2.
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