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Acoustic metamaterials with spinning components

Degang Zhao,1,2,* Yao-Ting Wang,2,3,4,* Kin-Hung Fung ,5 Zhao-Qing Zhang,2 and C. T. Chan2,†

1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

3Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
4School of Physics and Astronomy, The University of Birmingham, Birmingham B15 2TT, United Kingdom

5Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

(Received 21 June 2019; revised manuscript received 27 January 2020; accepted 29 January 2020;
published 12 February 2020)

We show that an acoustic metamaterial consisting of an array of spinning cylindrical inclusions can possess
many unusual properties, including folded bulk bands and interface-state bands. The folding of bands inside the
first Brillouin zone is made possible by a rotation-induced antiresonance of compressibility and the rotational
Doppler effect. Both bulk and interface-state band dispersions exhibit remarkable filling-fraction-dependent
features such as the emergence of a cutoff frequency when the filling fraction exceeds a critical value. Robust
one-way transport properties are supported by nondegenerate interface states, but within the same band, interface
states at different frequencies can have different propagation directions.
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I. INTRODUCTION

Acoustic metamaterials (AMs) are artificial acoustic com-
posites made of subwavelength microstructures, and they
exhibit novel wave phenomena or functionalities not found
in natural acoustic materials. Exotic examples of these phe-
nomena include acoustic superlenses [1–3], invisibility cloaks
[4–8], acoustic black holes [9–13], and topological acous-
tic materials [14–19]. One of the most striking properties
of AMs is the negative effective constitutive parameters in
low frequencies. For example, negative mass density can be
achieved by a composite consisting of heavy metal beads
coated in soft rubber [20,21], while negative bulk modulus
can be achieved by a periodic array of Helmholtz resonators
[22]. Subsequently, various AMs simultaneously possessing
negative mass density and negative bulk modulus have been
proposed [23–26]. If one allows relative motion between
the constituent materials in AMs, the additional degrees of
freedom due to kinetic equilibrium can give rise to even
more interesting phenomena. As noted by Censor et al. [27],
sound waves can be scattered by an isotropic scatterer rotating
at a constant angular velocity even if the inclusion and the
background medium are identical. Their results imply that
the rotation of the scatterer can dramatically transform the
acoustic properties of an AM. Furthermore, the assumption
of rotation of inclusions implicitly implies the existence of
interactions between the system and the environment driving
the inclusions at a prespecified angular velocity. The system
is in fact non-Hermitian. Recently, the non-Hermitian acoustic
system has attracted much attention thanks to its many unique
properties that are absent in conventional Hermitian systems
[14–19,28–30].
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In this work, we study both the bulk and interface-state
bands of AM consisting of spinning cylindrical inclusions
using multiple scattering theory (MST) [31,32] as well as
effective-medium theory (EMT) [33]. Both bulk and interface-
state bands exhibit interesting band-folding behaviors in the
subwavelength realm. Due to the band folding inside the
first Brillouin zone, there are sets of k-points that carry
no real eigenvalues. Consequently, gaps are “horizontally”
opened in momentum space in the Brillouin zone [34]. Such
gaps are sometimes referred to as “k-gaps” and they have
been found in non-Hermitian systems [35–40]. We note that
these k-gaps do not appear in Hermitian topological phononic
crystals, and in our system they are induced by the spinning
of the cylindrical inclusions. The effective compressibility
shows that a rotation-induced antiresonance behavior [41],
together with the rotational Doppler effect, which breaks the
chiral symmetry of the effective-mass densities, leads to the
formation of the folded bulk and interface-state bands. The
interface states are unidirectional and can have opposite prop-
agating directions within the same band because the interface
bands can fold within the first Brillouin zone. This unusual
phenomenon cannot occur in Hermitian topological crystals.
Their robust one-way transport is numerically demonstrated.
The evolutions of bulk and interface-state bands are systemat-
ically analyzed by varying the filling fraction f of the spinning
cylinders in the lattice. We find that the band dispersion can
change dramatically when the filling fraction is varied. This
rotation-induced dispersion enables us to realize a new class
of AM without introducing any resonant element.

II. DISPERSION RELATION OF BULK BANDS AND
EFFECTIVE-MEDIUM DESCRIPTION

We begin by considering a two-dimensional (2D) periodic
array of fluid cylinders, with mass density ρs and acoustic
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FIG. 1. (a) A two-dimensional square array of rotating cylinders in a fluidic background. Each cylinder rotates about its symmetric axis at
a constant angular velocity �. (b) The band structures calculated by MST and EMT at a filling ratio f = 0.15 showing two rotation-induced
gaps (shaded in gray) sandwiching a “folded” band in between. The bands intercept the Brillouin zone center and boundaries at ω1, ω2, ω3,
and ω4. (c) Effective-mass densities and compressibility vs frequencies at f = 0.15.

wave velocity cs, immersed in a fluidic background with
mass density ρ0 and acoustic wave velocity c0, as shown in
Fig. 1(a). We assume that the rotating fluid inclusions are
contained in a very thin stationary solid shell, which separates
the spinning fluid from the static background so that they will
not mix, and we will take the limit that the solid wall is so
thin such that the pressure and the radial displacement are
continuous across the boundary. The lattice constant is a, the
radius of cylinders is rs, and each cylinder rotates about its
symmetric z axis at a uniform angular velocity �, which is
defined as positive (negative) for anticlockwise (clockwise)
rotation. While Fig. 1(a) illustrates a square lattice of cylin-
ders, the lattice symmetry is in fact immaterial because we
are interested in the low-frequency regime where the lattice
can be viewed as a homogenized medium. For simplicity, we
ignore the viscosity of the fluids in our theoretical analysis.
In polar coordinates, the radial component of the pressure
acoustic wave equation inside the inclusion is given by [27]

r2∂2
r p + r∂r p + (

r2λ2
m − m2

)
p = 0, (1)

where p is the pressure; m is the integer angular index,
which yields ∂θ p = imp; and λ2

m = −(4�2 + M2)c−2
s gives

the rotating wave number λm. The frequency correction M =
−i(ω − m�) arises from the rotational Doppler effect [42]
that causes frequency shifts of waves propagating from static
to rotating media and breaks the symmetry between m and −m
states. Outside the inclusion, Eq. (1) is replaced by

r2∂2
r p + r∂r p + (

r2k2
0 − m2

)
p = 0, (2)

where k0 = ω/c0 denotes the wave number in the background
medium. The general solutions of Eqs. (1) and (2) have
the forms pin = ∑∞

m=−∞ amJm(λmr)eimθ inside the inclusion
and pout = ∑∞

m=−∞ bmJm(k0r)eimθ + cmHm(k0r)eimθ outside
the inclusion. Here Jm(x) and Hm(x) are the Bessel function
and Hankel function of the first kind, respectively. To match
the boundary conditions, we further need the radial displace-
ments ur inside the inclusion, which has the form [27]

ur = [(2�2 − M2)∂r p − 3imM�p/r]/

× [ρs(M
2 + 4�2)(M2 + �2)]. (3)

After applying the boundary conditions that both p and ur are
continuous at r = rs, the Mie scattering coefficients can be
obtained as [27]

Dm = − λmρ0Rm(λmrs)Jm(k0rs) − k0ρsJm(λmrs)J ′
m(k0rs)

λmρ0Rm(λmrs)Hm(k0rs) − k0ρsJm(λmrs)H ′
m(k0rs)

,

(4)

where

Rm(λmrs) = ω2

(4�2 + M2)(�2 + M2)

×
[

(2�2 − M2)J ′
m(λmrs) − 3imM�

Jm(λmrs)

λmrs

]
.

(5)

Equation (4) describes the scattering of a single rotating cylin-
der. This equation enables us to calculate the band structures
by using MST [31,32] in any frequency range.

Knowing the Mie scattering coefficients Dm, we can ob-
tain the effective-medium parameters in the long-wavelength
regime. Using the EMT technique [33], we obtain the follow-
ing effective bulk modulus Be and effective-mass densities ρ±

e
from D0 and D±1, respectively (see Appendix A for details):

B−1
e = f B−1

es + (1 − f )B−1
0 with B−1

es = 2�2 + ω2

ρsc2
s (ω2 − �2)

,

ρ±
e = ρ0

(1+ f )ρ±
es+(1− f )ρ0

(1− f )ρ±
es+(1+ f )ρ0

with ρ±
es = ρs

(
1 ± �

ω

)
,

(6)

where f denotes the filling fraction of the cylinders and
the ± sign refers to anticlockwise/clockwise rotation (“m =
±1”). Bes and ρ±

es are, respectively, the effective bulk modulus
and effective-mass densities of the spinning cylinders seen
in the laboratory frame. The Bes and ρ±

es expressions can
also be independently derived from the scattering of a single
spinning cylinder [see Eqs. (B14), (B15), and (C5) in the
Appendixes]. The splitting of ρ+

e and ρ−
e (or ρ+

es and ρ−
es)

is a result of the rotational Doppler effect, which makes
D1 �= D−1. Equation (6) indicates that an ordinary material
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that has a frequency-independent response can be turned into
a dispersive medium when parts of the medium are spinning.
In addition, transforming the density terms in Eq. (6) into
Cartesian coordinates in the x-y plane leads to an anisotropic
density tensor of the form (see Appendix B for details)

↔
ρe = 1

2

(
ρ+

e + ρ−
e −i(ρ+

e − ρ−
e )

i(ρ+
e − ρ−

e ) ρ+
e + ρ−

e

)
. (7)

By substituting Be and
↔
ρe into the acoustic wave equation

Be∇(∇ · �v) = ↔
ρe

∂2�v
∂t2

, (8)

we obtain the following effective-medium dispersion relation:

k2 = 2ω2ρ+
e ρ−

e

(ρ+
e + ρ−

e )Be
. (9)

As an example, we consider a system in which the ro-
tating cylinders and the background medium are both wa-
ter (ρ0 = ρs = 1000 kg/m3, c0 = cs = 1490 m/s) and we set
a = 0.1 m, f = 0.15, and � = 3000 rad/s. The band struc-
tures calculated using MST and EMT are compared in
Fig. 1(b). The excellent agreement between the EMT and
MST results confirms the validity of Eq. (9). It is interesting
to find that even though the inclusion and the background
medium are identical, two rotation-induced band gaps emerge
in the low-frequency regime with a folded band lying in be-
tween. The physics of these resonant gaps and the folded band
can be understood from the effective parameters depicted in
Fig. 1(c). According to Eq. (9), a band gap occurs if its
right-hand side is negative, which is determined by the signs
of B−1

e , ρ+
e , ρ−

e , and ρ+
e + ρ−

e . Figure 1(c) clearly indicates
that the first band gap stems from the single negativity of ρ−

e .
The second band gap originates from the negativity of the
effective compressibility B−1

e arising from the antiresonance
of B−1

e at ω = � as the frequency dependence of the response
function B−1

e exhibits an opposite trend to that of ρ−
e [41].

Thus, the presence of antiresonance in B−1
e , together with the

rotational Doppler effect which breaks the symmetry between
ρ+

e and ρ−
e , produces such a unique band structure. The

folded band undergoes a transition from positive to negative
group velocity as the frequency is increased. At the transition
frequency, the group velocity diverges and the average group
refractive index vanishes, i.e., ng = ∂ (nω)/∂ω = 0 [35]. This
point is known as the exceptional point (EP) associated with
the coalescence of two modes and the opening of a “k-gap”
[36–40,43,44]. It should be noted that the folded bands in
photonic systems [35,36,40] obtained previously are due to
the assumption of nondispersive negative constitutive param-
eters, which is incompatible with causality, while the rotation-
induced folded band here originates from a realistic model.

Since the zeros of the functions ρ−
e (ω) and B−1

e (ω) depend
on the filling fraction f , the pattern of the entire band structure
can vary drastically with a change of f . To investigate the
variations in band structure induced by changing the filling
fraction, it is convenient to consider the frequencies of the four
band-edge states at the Brillouin zone boundaries [marked
by ω1, ω2, ω3, and ω4 in Fig. 1(b)], which can be obtained
explicitly from Eqs. (9) and (6). At k = 0, ω1 and ω2 are

determined by the conditions of ρ−
e (ω1) = 0 and B−1

e (ω2) =
0. For ω3 and ω4, for convenience, we take k = ∞ in Eq. (9)
and look for the conditions of ρ+

e (ω3) + ρ−
e (ω3) = 0 and

B−1
e (ω4) = ∞, respectively. The analytical solutions of ω1,

ω2, ω3, and ω4 are

ω1 = (1 + f )ρs�

(1 + f )ρs + (1 − f )ρ0
,

ω2 =
√

(1 − f )ρsc2
s − 2 f ρ0c2

0

f ρ0c2
0 + (1 − f )ρsc2

s

�,

(10)

ω3 =
√

(1 − f 2)ρ2
s

(1 − f 2)
(
ρ2

0 + ρ2
s

) + 2(1 + f 2)ρ0ρs
�,

ω4 = �

and their dependence on f is shown in Fig. 2(a). We note
that ω4 = � is independent of f . It is interesting to see that
ω2, as a rapidly decreasing function of f , intersects with ω1

and ω3. The dramatic change of band dispersions occurs near
the filling fractions at which two band edges merge. When
ω2 intersects ω1 at f ≈ 0.2111, the folded band shrinks to a
point [Fig. 2(b)]. The folded band reemerges as f is further
increased, but is inverted with ω2 lying below ω1 [Fig. 2(c)].
When f approaches 0.2554, ω2 ≈ ω3 with the two lowest
bands almost touching [Fig. 2(d)]. When f is above 0.2554,
ω2 lies below ω3 and the first band becomes folded [Fig. 2(e)].
Finally, ω2 approaches zero when f ≈ 1/3, above which the
first band disappears and the system becomes gapped with a
cutoff frequency at ω3 [Fig. 2(f)]. The presence of a zero-
frequency gap has its origin in the negativity of B−1

e at low
frequencies when f is sufficiently large. In fact, it can be
shown that a single spinning cylinder has a negative response
to an external applied force at a low frequency due to the
antiresonant nature of B−1

es shown in Eq. (6) (detailed analysis
can be found in Appendix C).

III. DISPERSION RELATION AND ROBUST
PROPAGATION OF INTERFACE STATES

In a 2D system, the acoustic wave equation has the same
form as the electromagnetic wave equation (for one specific
polarization), and the acoustic and electromagnetic parame-
ters have a one-to-one mapping, 1/B ↔ ε, ρ ↔ μ, when the
electric field is parallel to the cylinder axis. In the presence of
rotation, according to Eq. (7) our model is similar to a gyro-
magnetic photonic crystal under an external dc magnetic field,
which induces the imaginary off-diagonal terms in μ [45,46].
As such, the spinning of cylinders plays the counterpart of an
effective static magnetic field, which breaks the time-reversal
symmetry and reciprocity, mimicking a quantum Hall system
under an external magnetic field. If we combine the lattice
with anticlockwise spinning cylinders and that with clockwise
spinning cylinders (mimicking the magnetic field applied
antiparallel to the gyromagnetic photonic crystal), we would
expect the interface states to exist in the subwavelength band
gap. However, there is one important difference. While the
presence of the magnetic field changes µ without affecting the
electric permittivity ε, the rotation of cylinders in our system
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FIG. 2. (a) Frequencies of four band-edge states vs filling fraction f . (b)–(f) Evolution of bulk bands with increasing f . When f > 1/3, ω3

becomes a cutoff frequency below which acoustic waves cannot propogate.

not only produces an antiresonance in B−1
e , but also breaks

the chiral symmetry of effective-mass densities. As we will
show below, this antiresonance can also fold an interface-state
band so that the interface states within the same band can
propagate in two opposite directions in two different portions
of an interface band.

We now investigate the dispersion relation of interface
states. We consider two semi-infinite media separated by a
boundary at y = 0, each having spinning cylinders at the same
filling fraction but whose angular velocities display different
signs (� for y < 0 and −� for y > 0). The pressure of
the interface states takes the form p = p0eikxx−β|y|−iωt , and
by applying EMT, the dispersion relation and propagation
constant can be solved as

k2
x = (ρ+

e + ρ−
e )ω2

2Be
with β = −ρ+

e − ρ−
e

ρ+
e + ρ−

e

kx > 0. (11)

Since β is positive in Eq. (11), these interface states are
unidirectional. The sign of kx is determined by the relative
magnitudes of ρ+

e and ρ−
e and it can therefore have different

signs in different bands. Moreover, an additional nondisper-
sive flat band occurs at frequency ω1 where ρ−

e = 0, i.e.,

ρ−
e = 0 with β = kx > 0. (12)

This flat band has zero group velocity and does not transport
energy. Similar flat bands were found previously at the inter-
face of two magnetic domains in a Hermitian system [47].
The detailed derivations of the dispersion relations of interface
states and the flat band can be found in Appendix D.

We now use MST to numerically verify the interface state
dispersion derived above. We construct a supercell with 10
cylinders rotating anticlockwise in the region y < 0 and 10

cylinders rotating clockwise in the region y > 0. The periodic
boundary condition is applied on the two edges of the super-
cell. For the case of f = 0.15, the four lowest interface-state
bands calculated by MST are shown by the blue circles in
Fig. 3(a). Also plotted in Fig. 3(a) is the result of EMT given
in Eqs. (11) and (12) (red solid lines) with the effective param-
eters shown in Fig. 3(b). Again, excellent agreement is found.
Unlike the projected bulk bands (green shaded region), where
the dispersions are symmetric for the positive and negative
k solutions, interface bands appear only on one side of kx

determined by the condition of β > 0 according to Eqs. (11)
and (12). Thus, the sign of kx can vary from band to band as
shown in Fig. 3(a). For the three dispersive interface bands,
only a portion of the second band lies within the absolute
gap of the projected bulk bands. The lowest and the third
interface bands overlap spectrally with the corresponding bulk
bands. Similar to the case of the folded bulk band, we find
also a transition point at which the group velocity diverges
and the average group refractive index for the interface states
vanishes, i.e., n(s)

g = 0 [35]. The third band is also folded,
and this band lies very close to the bulk band due to the fact
that ρ+

e − ρ−
e → 0 at high frequencies, as clearly depicted

in Fig. 3(b). As a result, the decay length diverges and the
dispersion relations of the interface states and bulk states
merge, as shown in Eqs. (11) and (9).

To explicitly demonstrate the interface states, we show in
Figs. 3(c) and 3(d) the amplitude of the pressure field of
the two eigenstates calculated by MST: one is in the first
band and the other is in the second band. Both states exhibit
an exponential decay behavior away from the interface. To
determine the decay coefficient β, in Figs. 3(e) and 3(f) we
plot the magnitude of the average field inside the cylinders
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FIG. 3. (a) Interface state dispersion relations calculated by MST and EMT at f = 0.15. ω1 is the frequency of the flat band. ω′
1, ω′

2, ω′
3,

and ω′
4 denote the frequencies at the Brillouin zone center and boundaries. The green shaded regions represent the projected bulk bands along

the x direction. (b) Effective-mass densities and compressibility. Parts (c) and (d) are the absolute values of the pressure field distribution of two
eigenstates in the first and second interface-state bands, respectively. Parts (e) and (f) are the intensities of the average field inside all cylinders
on the y > 0 side for the two states in (c) and (d), respectively. The MST calculated field intensities can be well fitted using exponential functions
decaying away from the boundaries at y = 0. For (e) and (f), the fitted exponential functions are f (y) = 0.0741 exp(−3.026y) − 0.000 27 and
f (y) = 0.1611 exp(−1.232y) − 0.0044, respectively.

on one side of the supercell as a function of the distance
away from the interface. The results of exponential fittings
give the values of β of these two states as 3.026 and 1.232,
respectively, which agree well with the values of 3.021 and
1.217 obtained from Eq. (10).

In addition, we choose an interface state in the flat band
and plot the real and imaginary parts of the pressure field
in Fig. 4(a). It clearly reveals that the average pressure in a
supercell is approximately equal to zero, i.e., p ≈ 0, which is
consistent with the analytical derivation in Appendix D. For
comparison, the real and imaginary parts of the pressure of
another interface state belonging to a folded band are plotted
in Fig. 4(b). It is found that p �= 0.

Using the EMT result of Eqs. (11) and (6), we can analyti-
cally solve the frequencies of interface states on the Brillouin
zone boundaries, marked by ω′

1, ω′
2, ω′

3, and ω′
4 in Fig. 3(a),

ω′
1 = ω3 =

√
(1 − f 2)ρ2

s

(1 − f 2)
(
ρ2

0 + ρ2
s

) + 2(1 + f 2)ρ0ρs
�,

ω′
2 = ω2 =

√
(1 − f )ρsc2

s − 2 f ρ0c2
0

f ρ0c2
0 + (1 − f )ρsc2

s

�, (13)

ω′
3 = (1 − f )ρs

(1 − f )ρs + (1 + f )ρ0
�, ω′

4 = �.

Except for ω′
4, all other frequencies are also functions of

the filling fraction f , which is again an important parame-
ter that determines the pattern of interface-state bands. The
evolution of interface states is demonstrated in Fig. 5. The
curves of ω′

1, ω′
2, ω′

3, and ω′
4 versus f are plotted in Fig. 5(a).

Similar to the bulk band, ω′
2 has intersection points with ω′

1
and ω′

3. The dispersion curves of interface states at different
filling fractions are plotted in Figs. 5(b)–5(f). Also plotted
are bulk bands for comparison. When f = 0.2554, ω′

1 = ω′
2,

the second folded band almost shrinks to a point. As the
filling fraction increases to f = 0.28, the folded band appears
again but flips to the kx > 0 region, which is due to the sign
change of ρ+

e + ρ−
e . When f = 0.2915, ω′

2 ≈ ω′
3, the first and

second bands nearly touch each other and behave as if they
might merge together to form one band. When f continuously
increases to 0.31, ω′

2 < ω′
3, the folded band descends to be

the lowest band and it almost overlaps to the bulk band. When
f > 1/3, the folded interface state band disappears with the
folded bulk band. To the best of our knowledge, this unusual
dispersion of interface states and their sensitive dependence
on the filling fraction are not found in Hermitian systems.

To demonstrate the robustness of the one-way transport of
the interface states, we choose the filling fraction f = 0.2111
as an example. The corresponding projected bulk bands and
the interface states are shown in Fig. 6(a). In this case, since
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FIG. 4. The real and imaginary parts of an interface state that belongs to (a) a flat band and (b) a folded band, respectively.

the second folded bulk band shrinks almost to a point, a wider
gap exists in the bulk band structure, making it easier to
observe the robust one-way transport of interface states. Un-
like the conventional topological interface-state bands, which
typically have either a positive or a negative group velocity
[14–19] within one band, our folded interface band possesses
both positive and negative group velocities. The unidirectional

transmission of interface states along two different directions
can be achieved at different frequencies in the same band. A
finite-sized system that has a boundary with rectangular U-
turns is purposely designed, as shown in the inset of Fig. 6(b).
The cylinders above the interface rotate clockwise while those
below the interface rotate anticlockwise, and the entire system
is embedded in a static water background. A small amount

FIG. 5. (a) Frequencies of band edges as a function of the filling fraction. (b)–(f) The evolution of interface states (solid red lines) as the
increase of the filling fraction increases. The green shaded regions represent the projected bulk bands along the x direction. When f > 1/3,
the dispersion relation is similar to that of (f), in which a band gap appears below a cutoff frequency, showing that the rotating inclusions stop
the propagation of low-frequency longitudinal waves in the bulk of the composite material.
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FIG. 6. (a) The projected bulk band (green shaded region) and interface states (red solid line) at a filling fraction f = 0.2111. (b) The wave
with frequency ωa/2πc0 = 0.0173 and that with ωa/2πc0 = 0.0181 propagating along a convex-shaped interface in a finite system. The inset
is the configuration of the structure. The blue line denotes the interface. The red arrows indicate the directions in which the cylinders rotate.
The red stars mark the positions of point sources.

of absorption is added on the surrounding layer to prevent
the reflection of acoustic waves at the sample-background
boundary. A 2D point source is placed at the center of the
structure [marked by the red star in Fig. 6(b)]. The frequency
of the transition point in the folded interface-state band that
marks the change from a positive to a negative group velocity
is ωa/2πc0 = 0.0176. Figure 6(b) clearly demonstrates that
the excited interface wave propagates along the left side at
frequency ωa/2πc0 = 0.0173 and along the right side at
frequency ωa/2πc0 = 0.0181, without backscattering from
the sharp corners. The directions of propagation are consistent
with the signs of the group velocity shown in Fig. 6(a).

IV. CONCLUSION AND DISCUSSIONS

In this work, we investigate the dispersion relations of
bulk band and interface states for an AM comprising spin-
ning cylindrical fludic inclusions embedded in a static fluid
medium. Due to the antiresonance of effective compressibility
and the rotational Doppler effect, which breaks the chiral
symmetry of the effective-mass densities, folded bulk bands
and interface-state bands are formed. By varying the filling
ratio of the spinning cylinders, we found interesting evolutions
of band structures for both bulk bands and interface-state
bands. Remarkably, when the filling ratio exceeds some criti-
cal value, a zero-frequency gap appears. In addition, since the
interface state band is folded, both positive and negative group
velocities of acoustic waves can coexist in the same band.
We have also numerically demonstrated the robust one-way
propagation of interface waves with different directions in the
same band.

In the present study, we have considered cylindrical inclu-
sions that are fluidic. It would be interesting to consider rotat-
ing solid inclusions, in either fluidic or solid background me-
dia. Shear waves should be considered in those systems, and
the multiple scattering formulation will get more challenging.
As the interesting effects (including a rotation-induced low-
frequency cutoff for high filling ratios, and antiresonance
behavior in the effective compressibility) can be described
by effective-medium theories, we expect that these novel
phenomena do not depend on the symmetry of the lattice and
should persist in a random or aperiodic array. Nevertheless,

the effect of disorder is an interesting direction to explore.
Also, our analytic results show that the interesting effects
do not require a critical minimum speed, meaning that if the
rotational speed is reduced, the phenomena will not disappear
but the band gaps will be smaller and the effects will become
less conspicuous.
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APPENDIX A: EFFECTIVE-MEDIUM PARAMETERS

Here, we derive the effective acoustic wave constitutive
parameters for acoustic metamaterial with spinning cylinders.
The required approximations of Bessel and Neumann func-
tions as the argument tends to zero are listed in Table I.
We begin from Eq. (4) in the main text, in which the Mie
scattering coefficients are given by

Dm = − λmρ0Rm(λmrs)Jm(k0rs) − k0ρsJm(λmrs)J ′
m(k0rs)

λmρ0Rm(λmrs)Hm(k0rs) − k0ρsJm(λmrs)H ′
m(k0rs)

,

where

Rm(λmrs) = ω2

(4�2 + M2)(�2 + M2)

[
(2�2 − M2)J ′

m(λmrs)

− 3imM�
Jm(λmrs)

λmrs

]
.

Here λ2
m = −(4�2 + M2)c−2

s and M = −i(ω − m�). To cal-
culate the effective density and bulk modulus, the following

TABLE I. Approximations of the Bessel and Neumann functions
as x ≈ 0.

J0(x) ≈ 1, J±1(x) ≈ ± x
2 , J ′

0(x) ≈ − x
2 , J ′

±1(x) ≈ ± 1
2

Y0(x) ≈ 2
π

ln x, Y±1(x) ≈ ∓ 2
πx , Y ′

0 (x) ≈ 2
πx , Y ′

±1(x) ≈ ± 2
πx2

054107-7



ZHAO, WANG, FUNG, ZHANG, AND CHAN PHYSICAL REVIEW B 101, 054107 (2020)

term Dm/(1 + Dm) is needed [33]:

Dm

1 + Dm

=
− λmρ0Rm (λmrs )Jm (k0rs )−k0ρsJm (λmrs )J ′

m (k0rs )
λmρ0Rm (λmrs )Hm (k0rs )−k0ρsJm (λmrs )H ′

m (k0rs )

1 − λmρ0Rm (λmrs )Jm (k0rs )−k0ρsJm (λmrs )J ′
m (k0rs )

λmρ0Rm (λmrs )Hm (k0rs )−k0ρsJm (λmrs )H ′
m (k0rs )

= −λmρ0Rm(λmrs)Jm(k0rs) + k0ρsJm(λmrs)J ′
m(k0rs)

iλmρ0Rm(λmrs)Ym(k0rs) − ik0ρsJm(λmrs)Y ′
m(k0rs)

.

(A1)

Based on the multiple scattering theory, under the standard
approximations k0r0, k0rs 
 1, the effective bulk modulus Be,
which is determined by m = 0 terms, can be denoted as

B−1
e + 2B−1

0
J ′

0(k0r0 )
k0r0J0(k0r0 )

B−1
e + 2B−1

0
Y ′

0 (k0r0 )
k0r0Y0(k0r0 )

= Y0(k0r0)

iJ0(k0r0)

(
D0

1 + D0

)
. (A2)

The right-hand side (RHS) of Eq. (A2) is

RHS

= Y0(k0r0)

J0(k0r0)

λ0ρ0R0(λ0rs)J0(k0rs) − k0ρsJ0(λ0rs)J ′
0(k0rs)

λ0ρ0R0(λ0rs)Y0(k0rs) − k0ρsJ0(λ0rs)Y ′
0 (k0rs)

≈ 2

π
ln k0r0

λ0ρ0R0(λ0rs) + k0ρsJ0(λ0rs) k0rs
2

λ0ρ0R0(λ0rs) 2
π

lnk0rs − k0ρsJ0(λ0rs) 2
πk0rs

= 2

π
ln k0r0

λ0ρ0R0(λ0rs)+k0ρsJ0(λ0rs) k0rs
2

lnk0rs
[
λ0ρ0R0(λ0rs) 2

π
−k0ρsJ0(λ0rs) 2

πk0rslnk0rs

]

≈ 2

π
ln k0r0

λ0ρ0R0(λ0rs) + k0ρsJ0(λ0rs) k0rs
2

−k0ρsJ0(λ0rs) 2
πk0rs

=
− 2λ0ρ0R0(λ0rs )

k0ρsJ0(λ0rs )k0rs
− 1

2
k2

0 r2
s ln k0r0

. (A3)

The left-hand side (LHS) of Eq. (A2) is

LHS =
B−1

e + 2B−1
0

J ′
0(k0r0 )

k0r0J0(k0r0 )

B−1
e + 2B−1

0
Y ′

0 (k0r0 )
k0r0Y0(k0r0 )

≈ B−1
e − B−1

0

B−1
e + 2B−1

0

2
πk0r0

k0r0
2
π

ln k0r0

= B−1
e − B−1

0

B−1
e + 2B−1

0
1

k2
0 r2

0 ln k0r0

≈ B−1
e − B−1

0

B−1
0

2
k2

0 r2
0 ln k0r0

. (A4)

Compare Eqs. (A3) and (A4),

B−1
e − B−1

0

B−1
0

=
(

r2
s

r2
0

)
B−1

es − B−1
0

B−1
0

= f
B−1

es − B−1
0

B−1
0

, (A5)

where f = (rs/r0)2 represents the filling fraction of the crys-
tal, and Bes can be regarded as the bulk modulus of a spinning
cylinder seen in the lab frame and can be approximated as

B−1
es = − 2λ0R0(λ0rs)

k0ρsc2
0J0(λ0rs)k0rs

= − 2λ0R0(λ0rs)

ω2ρsrsJ0(λ0rs)

= − 2λ0

ω2ρsrsJ0(λ0rs)

ω2

(4�2 + M2)(�2 + M2)

× [(2�2 − M2)J ′
0(λ0rs)]

≈ λ2
0

ρs

(2�2 − M2)

(4�2 + M2)(�2 + M2)

= − 2�2 − M2

ρsc2
s (�2 + M2)

= 2�2 + ω2

ρsc2
s (ω2 − �2)

. (A6)

Then

B−1
e = f B−1

es + (1 − f )B−1
0 = f

ρsc2
s

2�2 + ω2

ω2 − �2
+ 1 − f

ρ0c2
0

.

(A7)

For effective-mass density, we first take the angular index m =
1 into account. The effective-mass density ρ+

e can be denoted
as [33]

ρ+
e − ρ0

J1(k0r0 )
k0r0J ′

1(k0r0 )

ρ+
e − ρ0

Y1(k0r0 )
k0r0Y ′

1 (k0r0 )

= Y ′
1 (k0r0)

iJ ′
1(k0r0)

(
D1

1 + D1

)
. (A8)

The RHS of Eq. (A8) can be approximated as

RHS

= Y ′
1 (k0r0)

J ′
1(k0r0)

λ1ρ0R1(λ1rs)J1(k0rs) − k0ρsJ1(λ1rs)J ′
1(k0rs)

λ1ρ0R1(λ1rs)Y1(k0rs) − k0ρsJ1(λ1rs)Y ′
1 (k0rs)

≈ 4

πk2
0r2

0

λ1ρ0R1(λ1rs) k0rs
2 − k0ρsJ1(λ1rs) 1

2

λ1ρ0R1(λ1rs)
(− 2

πk0rs

) − k0ρsJ1(λ1rs) 2
πk2

0 r2
s

= r2
s

r2
0

λ1ρ0R1(λ1rs)rs − ρsJ1(λ1rs)

−λ1ρ0R1(λ1rs)rs − ρsJ1(λ1rs)

= f
ρs

J1(λ1rs )
λ1rsR1(λ1rs ) − ρ0

ρs
J1(λ1rs )

λ1rsR1(λ1rs ) + ρ0
. (A9)

The LHS of Eq. (A8) is expressed as

LHS =
ρ+

e − ρ0
J1(k0r0 )

k0r0J ′
1(k0r0 )

ρ+
e − ρ0

Y1(k0r0 )
k0r0Y ′

1 (k0r0 )

≈ ρ+
e − ρ0

ρ+
e + ρ0

. (A10)

Combining Eqs. (A9) and (A10), we have

ρ+
e − ρ0

ρ+
e + ρ0

= f
ρ+

es − ρ0

ρ+
es + ρ0

, (A11)

which can be reexpressed as

ρ+
e = ρ0

(1 + f )ρ+
es + (1 − f )ρ0

(1 − f )ρ+
es + (1 + f )ρ0

, (A12)
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where ρ+
es represents the effective-mass density of a spinning cylinder seen in the lab frame and has the form

ρ+
es = ρs

J1(λ1rs)

λ1rsR1(λ1rs)

= ρs
J1(λ1rs)

λ1rs
ω2

(4�2+M2 )(�2+M2 )

[
(2�2 − M2)J ′

1(λ1rs) − 3iM� J1(λ1rs )
λ1rs

]
= ρs

(4�2 + M2)(�2 + M2)

ω2
[
(2�2 − M2)λ1rs

J ′
1(λ1rs )

J1(λ1rs ) − 3iM�
]

= ρs
[4�2 − (ω − �)2][�2 − (ω − �)2]

ω2[[2�2 + (ω − �)2] − 3(ω − �)�]

= ρs
(3�2 − ω2 + 2ω�)(−ω2 + 2ω�)

ω2(ω2 + 6�2 − 5ω�)

= ρs
(ω − 3�)(ω + �)ω(ω − 2�)

ω2(ω − 2�)(ω − 3�)

= ρs

(
1 + �

ω

)
. (A13)

Similarly, for m = −1 we can get

ρ−
e = ρ0

(1+ f )ρ−
es + (1− f )ρ0

(1− f )ρ−
es + (1 + f )ρ0

with ρ−
es = ρs

(
1 − �

ω

)
.

(A14)

APPENDIX B: DERIVATION OF MASS DENSITY TENSOR
IN CARTESIAN COORDINATES

Euler’s equation of acoustic wave is

↔
ρ

∂�v
∂t

= �F = −∇p. (B1)

Here the vector �F denotes the force per unit volume. For a
two-dimensional system, in Cartesian coordinates, the equa-
tion can be expressed as

−iω

(
ρxx ρxy

ρyx ρyy

)(
vx

vy

)
=

(
Fx

Fy

)
. (B2)

In the case of m = ±1, the above equation can be
expressed as

−iω

(
ρ+

e 0
0 ρ−

e

)(
v+
v−

)
=

(
F+
F−

)
. (B3)

The transformation between m = ±1 unit vectors and those in
Cartesian coordinates is

e+ = 1√
2

(x̂ + iŷ),

(B4)

e− = 1√
2

(x̂ − iŷ).

Then

�F = F+ê+ + F−ê− = F+ 1√
2

(x̂ + iŷ) + F− 1√
2

(x̂ − iŷ)

= Fxx̂ + Fyŷ, (B5)

where F± = (1/
√

2)(Fx ∓ iFy). The transformation of com-
ponents between a two-coordinate system can be written as(

Fx

Fy

)
= 1√

2

(
1 1
i −i

)(
F+
F−

)
= U

(
F+
F−

)
. (B6)

Similarly, we have (
vx

vy

)
= U

(
v+
v−

)
. (B7)

Combining Eqs. (B2), (B3), (B6), and (B7), the mass density
tensor in Cartesian coordinates can be obtained as(

ρxx ρxy

ρyx ρyy

)
= U

(
ρ+

e 0
0 ρ−

e

)
U −1

= 1

2

(
ρ+

e + ρ−
e −i(ρ+

e − ρ−
e )

i(ρ+
e − ρ−

e ) ρ+
e + ρ−

e

)
. (B8)

In the limit of f → 1, Eq. (A12) reduces to ρ±
e = ρ±

es.
Equation (B3) can also be independently derived by the wave
scattering of a single spinning cylinder. In polar coordinate,
according to Eq. (B1) the components of �F are

Fr = −∂ p

∂r
, Fθ = − ∂ p

r∂θ
= − imp

r
. (B9)

According to Eq. (14) of [27], we have

ρ0(M2 + 4�2)vr = MFr + 2�Fθ ,
(B10)

ρ0(M2 + 4�2)vθ = −2�Fr + MFθ .

In the case of m = −1, Eq. (B10) gives

ρ0(M2 + 4�2)(vr + ivθ ) = (M − 2i�)(Fr + iFθ ). (B11)

Or,

ρ0(−iω)

(
1 − �

ω

)
(vr + ivθ ) = Fr + iFθ . (B12)
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According to the transformation between polar and Cartesian
coordinates, we have

Fr + iFθ = e−iθ (Fx + iFy), vr + ivθ = e−iθ (vx + ivy).

(B13)

Thus, Eq. (B12) can be written as

−iωρ−
esv

− = F−. (B14)

Similarly, when m = 1, we use

ρ0(M2 + 4�2)(vr − ivθ ) = (M + 2i�)(Fr − iFθ )

and

Fr − iFθ = eiθ (Fx − iFy), vr − ivθ = eiθ (vx − ivy)

to obtain

−iωρ0

(
1 + �

ω

)
v+ ≡ −iωρ+

esv
+ = F+. (B15)

APPENDIX C: INDEPENDENT ANALYSIS ABOUT
EFFECTIVE BULK MODULUS OF SINGLE SPINNING

CYLINDER AND ZERO-FREQUENCY GAP WITH HIGH
FILLING FRACTION

Here we consider the scattering of acoustic waves by one
single spinning cylinder. In low frequencies, the effective
bulk modulus is determined by the m = 0 component of the
Mie scattering coefficient. Under this condition, according to
Eq. (19) in [27], the radial displacement in a rotational cylin-
der denotes

ur = 2�2 + ω2

(4�2 − ω2)(�2 − ω2)

∂r p

ρs
. (C1)

The acoustic wave equation in a rotational cylinder is

1

r

∂

∂r

(
r
∂ p

∂r

)
+ λ2

0 p = 0, (C2)

where λ0 = √−(4�2 − ω2)c−2
s is the rotating wave number

for m = 0. By solving Eq. (C2), under the low-frequency
approximation, we have

p ≈ A0J0(λ0r) ≈ A0, ∂r p ≈ −λ2
0r

2
A0 = 4�2 − ω2

2c2
s

rA0,

(C3)
where A0 is the amplitude of pressure in low fre-
quencies, and here we set A0 > 0 to denote a pos-
itive pressure. Substituting Eq. (C3) into Eq. (C1),
we have

ur

r
= 2�2 + ω2

2ρsc2
s (�2 − ω2)

A0. (C4)

Based on the definition of bulk modulus B = −V (∂ p/∂V ), we
have

Bes ≈ −V
�p

�V
= −πr2h

p

2πrurh
≈ − r

2ur
A0

⇒ B−1
es ≈ − 2ur

rA0
= 1

ρsc2
s

2�2 + ω2

ω2 − �2
. (C5)

The result is identical to Eq. (A6) in Appendix A, which is
derived by the effective-medium theory of [33]. In Eq. (C5),
we have

�V = 2πrurh = πr2h

ρsc2
s

2�2 + ω2

�2 − ω2
A0 (C6)

when frequency ω → 0, �V = 2πr2hA0/ρsc2
s > 0. It means

that under a positive pressure, the volume of a cylinder
expands instead of compresses, i.e., the spinning cylinder
exhibits a negative effective bulk modulus. And the effective
bulk modulus of the whole system is the weighted mean of
bulk modulus for cylinder and background,

B−1
e = f B−1

es + (1 − f )B−1
0 . (C7)

As f increases, the effect of expansion of the rotational cylin-
der increases, while that of compression of the static back-
ground decreases. When f > 1/3, the expansion becomes
greater than compression, and the system has a negative
response under the applied pressure. Then B−1

e < 0 and the
band gap appears.

APPENDIX D: DERIVATION OF DISPERSIVE AND
NONDISPERSIVE BANDS OF INTERFACE STATES

Due to mirror symmetry, the pressure and velocity
of the interface states take the form p = p0eikxx−β|y|−iωt

and �v = (vxx̂ + vyŷ) = vx0eikxx−β|y|−iωt x̂ + vy0eikxx−β|y|−iωt ŷ,
respectively, with β > 0 denoting the decay coefficient [47].
Euler’s equation can be written as

↔
ρe(∂�v/∂t ) = −∇p in the

region y < 0 and
↔
ρ

∗
e (∂�v/∂t ) = −∇p in region y > 0, where

↔
ρ

∗
e is the complex conjugate of

↔
ρe in Eq. (7) in the main text

due to the sign change of �. By using the boundary conditions
that p and vy are continuous at the interface y = 0, we obtain
the relation

kx = −ρ+
e + ρ−

e

ρ+
e − ρ−

e

β. (D1)

Substituting Eq. (D1) into the dispersion relation Eq. (9) with
k2 replaced by k2

x − β2 on the left-hand side, we obtain the
following dispersion relation for the interface states:

k2
x = (ρ+

e + ρ−
e )ω2

2Be
. (D2)

Under the condition ρ−
e = 0, in the region y < 0, Euler’s

equation can be written as

iωρ+
e

2

(
1 −i
i 1

)(
vx

vy

)
=

(
ikx

β

)
p. (D3)

Equation (D3) has two sets of solutions: solution 1 is kx = −β

with p �= 0 and solution 2 is p = 0.
For solution 1, we apply condition ρ−

e = 0 and solution
kx = −β in a continuity equation of acoustic wave Be∇ · �v =
−∂ p/∂t , and we have

Be(ikxvx + βvy) = Beβ(−ivx + vy) = iωp. (D4)
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Combining Eqs. (D3) and (D4), we have the solutions

vx =
(

kx

ωρ+
e

+ ω

2Bekx

)
p,

(D5)

vy =
(

− ω

2Bekx
+ kx

ωρ+
e

)
ip.

Similarly, in the y > 0 region, we can obtain the solutions

vx =
(

kx

ωρ+
e

+ ω

2Bekx

)
p,

(D6)

vy =
(

− kx

ωρ+
e

+ ω

2Bekx

)
ip.

Applying the boundary condition vy(y<0) = vy(y>0) at the inter-
face, according to Eqs. (D5) and (D6), we have two solutions.
One is k2

x = ρ+
e ω2/2Be, which belongs to the dispersion

relation of interface state Eq. (10) with ρ−
e = 0. The other

solution is p = 0, which is inconsistent with the precondition
p �= 0. Then the first solution is only a point in the dispersive
interface states band.

For the second solution, i.e., p = 0, in the y < 0 area,
Euler’s equation gives

vx − ivy = 0. (D7)

The continuity equation gives

Be(ikxvx + βvy) = 0. (D8)

Combining Eqs. (D7) and (D8), we have the solution

kx = β, (D9)

i.e., the dispersion relation of a flat interface state band, and
the same solution can be obtained in the y > 0 region.
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