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Layer dependence of defect charge transition levels in two-dimensional materials
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Point defects in two-dimensional (2D) materials hold great promise for optoelectronic and quantum tech-
nologies. Their properties depend sensitively on the dielectric environment and number of 2D layers, but this has
remained a challenge to include in first-principles calculations on account of the high computational cost. Recent
first-principles techniques facilitate efficient prediction of substrate effects on defect charge transition levels in
2D materials, replacing the substrate by a continuum dielectric model. Here, we show that analogous continuum
treatment of defect-free layers in multilayer 2D materials accurately predicts defect energies compared to explicit
multilayer calculations, but at a small fraction of the computational cost. Applications of this technique to one-
to five-layer and bulk hexagonal boron nitride reveal that defect ionization energies systematically decrease with
an increasing number of layers and for defects in inner layers due to increased dielectric screening. Our results
highlight the dominant role of electrostatic screening in the effect of the environment and the feasibility of tuning
defect levels in 2D materials using material thickness and defect location within the material.
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I. INTRODUCTION

Defects in two-dimensional (2D) materials are of great
importance in a wide range of technological applications, in-
cluding electronic computing and quantum information [1–4].
Both naturally occurring defects, such as vacancies and oxy-
gen substitutions, and intentional doping considerably affect
material properties and device performance [5–12]. Defect
engineering is an essential step in device fabrication, in-
cluding controlled implantation of donors and acceptors to
produce pn junctions in 2D semiconductors [13–15] and of
high spin defects in wide-band-gap materials such as qubits
and single-photon emitters for quantum technologies [16–19].
A comprehensive understanding of defects in 2D materials is
therefore critical for the advancement of these applications.

First-principles calculations based on density-functional
theory (DFT) play a central role in computational materi-
als design, including for defects in three-dimensional (3D)
and 2D materials. Recent computational developments to
correct for previously challenging finite-size supercell errors
in charged defects have led to a rapid exploration of the
stability and charge transition levels of defects in 2D materi-
als [20–27]. Yet most defect calculations focus on monolayer
materials, and defect predictions for multilayer systems are
not widely reported despite the fact that most experimen-
tal realizations of devices such as single-photon emitters
employ multilayer 2D materials. Notably, high environment
sensitivity of defects in 2D materials [23,28–31] suggests a
correspondingly strong dependence on the number of layers
in multilayer 2D materials, making the treatment of such
environment and adjacent layer effects indispensable.
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However, evaluating defects in multilayer materials is
rather challenging due to the high computational cost, with
an N-layer system typically requiring N3 more computa-
tional time than a monolayer in DFT calculations. This cost
is further exacerbated by the requirement of beyond-DFT
treatment, such as using GW many-body perturbation theory,
to accurately predict energy level alignment and band edge
positions [32]. In particular, a typical five-layer material will
already require two orders of magnitude more computational
effort than a monolayer for each defect, making computational
screening of several defect candidates computationally pro-
hibitive and necessitating the development of more efficient
techniques. We recently developed a computationally efficient
approach that accurately accounts for substrate effects on de-
fects in first-principles calculations of the 2D material alone,
treating the substrate using a continuum model of its dielectric
response and thereby removing a large number of substrate
atoms and electrons from the quantum-mechanical calcula-
tion [33]. One possibility of reducing the computational re-
quirements for multilayer materials is to regard the defect-free
layers as a “substrate” and then apply the continuum model.
However, the similarity in energy levels between each layer in
multilayer systems could lead to larger electronic interactions
(beyond the mean-field electrostatic response), and it is not
intuitively clear if a continuum approach could be accurate
for multilayer materials.

In this paper, we demonstrate that a first-principles with
continuum model approach can accurately predict defect
properties in multilayer 2D materials at a fraction of the
computational cost by excluding the defect-free layers from
the DFT calculation. With hexagonal boron nitride (hBN)
as a prototypical example, we investigate the variation of
the defect transition levels as a function of layer number
[from monolayer (1L) up to five-layer (5L) and bulk] and the
level dependence on defect location. We specifically focus on
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defects of interest for quantum information, including carbon
substitutions (CB and CN) and substitution-vacancy com-
plexes (CB VN and CN VB), accounting for all inequivalent
doping sites. With increasing layer number, charge transition
levels of donors move towards the vacuum level, whereas
those of acceptors move in the opposite direction, decreasing
the ionization energies in both cases. We validate the accuracy
of these predictions by comparison to much more expensive
calculations of explicit multilayer materials in a few selected
cases. The good agreement between the continuum model and
explicit calculations not only shows the accuracy of the model
for rapid exploration of defects in multilayer materials but also
implies that the electrostatic screening captured by the contin-
uum model dominates the environmental effects on defects in
2D materials. Finally, using many-body GW calculations to
correct for self-interaction errors and account for the nonlocal
screening effect, we show that accurate description of the band
edge position is vital for accurate defect ionization energy
predictions.

II. THEORY AND METHODS

A. Defect transition level and ionization energy

The formation energy of a defect with charge q is [34–36]

E f (D, q) = Etot(D, q) − Ehost +
∑

i

niμi + qμe + Ecorr,

(1)
where Etot(D, q) is the total energy of the system with the
defect, Ehost is the energy of the perfect host, ni and μi are
the number and chemical potential of atom i (e.g., C, B, N)
being exchanged during the defect formation, μe is the Fermi
energy ranging from valence band maximum (VBM) to the
conduction band minimum (CBM), and Ecorr is a correction
term for the total energy of supercells with charged defects.

The atomic chemical potentials μi depend on the growth
conditions and the source for potential substitutional impu-
rities. Specifically, for hexagonal boron nitride in thermody-
namic equilibrium, μB + μN = μ1L

BN for 1L hBN, and μB +
μN = μbulk

BN for bulk hBN, where μ1L
BN and μbulk

BN are the total
energy per formula unit of freestanding and bulk hBN, respec-
tively. The specific values of μB and μN then depend on which
species is more abundant: μB is set to the per-atom energy in
α-rhombohedral boron in the B-rich condition, while μN is
set to the per-atom energy in N2 in the N-rich condition, with
the other chemical potential determined from the sum (μBN)
constraint in each case. For substitutional defects including
carbon atoms, we refer μC to the per-atom energy in graphene.

Calculations with q �= 0 require a correction scheme
to remove the spurious Coulomb interaction of the net
charge with its periodic images and the compensating back-
ground charges. Here, we employ a model-charge correction
scheme [21,22] which determines Ecorr from the electrostatics
of a Gaussian charge in a dielectric slab model mimicking
the 2D defect. Solving the Poisson equation for this model
using both isolated boundary conditions and the same peri-
odic boundary conditions as the DFT calculations provides
a prediction of the spurious interactions to subtract. (See the
Supplemental Material [37], Refs. [21,22] for details.)

Finally, the defect charge transition level ε(q/q′) is defined
as the Fermi energy μe in Eq. (1), for which E f (D, q) =
E f (D, q′), resulting in

ε(q/q′) = Etot (D, q) + Ecorr (q) − Etot (D, q′) − Ecorr (q′)
q′ − q

.

(2)
The defect ionization energy is then the difference between
ε(q/q′) and the corresponding band edge (VBM for accep-
tors and CBM for donors), which corresponds to the energy
required to free electrons or holes.

B. Continuum model for 2D multilayer systems

The computational challenge of including the effect of
hundreds of environment atoms in first-principles calculations
of charged defects can be addressed by replacing these atoms
by the dielectric screening of a continuum model [33]. Briefly,
this method captures the dominant electrostatic interaction of
the environment by placing the defective 2D layer of interest
next to a dielectric function profile ε(z) of the environment
calculated from first principles. The only unknown parameter
is then the spatial separation between the explicit DFT layer
and the continuum environment, which is set by equating
EDFT

int = E ε(z)
int , where EDFT

int and E ε(z)
int are the interaction en-

ergies of a Gaussian test charge with the real substrate and
with the ε(z) model, respectively. Analogous to continuum
solvation models for liquid environments developed for the
treatment of solid-liquid interfaces [38–43], the dielectric
model ε(z) is described using a shape function s(z) which
smoothly transitions from 0 (vacuum region) to 1 (dielectric
slab region) as ε(z) = 1 + (εb − 1)s(z), where εb is the dielec-
tric constant of the substrate. The self-consistent solution of
the modified Poisson equation with the dielectric profile ε(z)
augments the Hartree potential term in the DFT Hamiltonian,
and the resulting DFT total energies then automatically in-
clude the dominant electrostatic interaction of the substrate
with the charge distribution of the 2D material and defect.
(See Ref. [33] for additional details.)

We find here that this continuum model approach works
remarkably well not only for defects in 2D materials on
substrates [33] but also for defects in multilayer 2D materials.
In this case, we replace the dielectric effect of the defect-free
layers by a dielectric function profile ε(z). Unlike the treat-
ment of 3D substrate materials which can be approximated
by a spatially uniform dielectric response in their interior,
the treatment of 2D layers requires treatment of the spatially
inhomogeneous response. Therefore, we directly obtain ε(z)
from DFT calculations of the surrounding layers, analogous
to the procedure for constructing the dielectric profile for the
charged defect correction [21], instead of from a shape func-
tion s(z) modulating the bulk dielectric constant. Specifically,
we apply a small normal electric field E0 to the defect-free
layers of the slab, calculate the change in the total electrostatic
potential �V (z), and find ε−1(z) = − 1

E0

∂�V (z)
∂z . The atomic

geometry is self-consistently optimized in all calculations
presented here, including in this dielectric calculation, which
makes it the low-frequency dielectric function ε0(z) [instead
of the high-frequency value ε∞(z) if atomic geometries were
constrained throughout]. See Ref. [21] for details.
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FIG. 1. (a) Continuum model treatment of defects in an outer
layer of five-layer hBN, specified by the dielectric function ε(z). The
layer containing the defect is placed at z = 0, and the nearest peak of
ε(z) is zdm away. (b) Scheme for determining band edge positions of
the five-layer system in the continuum approach, accounting for the
rigid shift due to the electrostatic potential from the continuum model
calculation and edge shifts (�ECBM, �EVBM) from (c) an explicit
density-of-states calculation of the five-layer system. After aligning
the core levels (gray dashed line) with that in 1L, the difference in the
band edges (dashed red and blue lines) yields �ECBM and �EVBM.

Figure 1(a) illustrates the example of 5L hBN with a
defect on the surface layer. Without loss of generality, the
defective atomic layer is at z = 0, and the nearest peak of
the dielectric function of the defect-free layer is located at
z = zdm. The ε(z) obtained directly from DFT calculations
enables zdm to be set to the explicit interlayer spacing distance,
making the overall procedure for multilayer systems easier
than 2D materials on substrates (which required a separate
determination of zdm) [33]. The net ε(z) profiles for 2L, 3L,
4L, and 5L hBN with all possible inequivalent defect locations
(surface, second layer, innermost layer, etc.) are shown in
Fig. S1 of the Supplemental Material [37].

The dielectric function profile in the continuum model
essentially introduces a net dipole in that layer, which cre-
ates a shift of the net DFT electrostatic potential from one
side of the continuum model layer to the other, effectively
shifting the potential in the layer treated explicitly relative
to the vacuum level. Also, the change in the electrostatic
potential does not have a significant spatial variation in
the region of the explicit layer (since the model does not
overlap with that region). Therefore, the continuum model
shifts the VBM and CBM equally. This leaves the band gap
unchanged, as shown in Fig. 1(b) (left panel, from 1-layer
to 5-layer′). Effects beyond the electrostatic interaction are
captured by aligning explicit density of states calculations
of the defect-free multilayers with the monolayer, as shown
in Fig. 1(c), closely mimicking the corresponding proce-
dure for substrate effects [33]. After aligning the core levels
for 1L and 5L hBN to remove the electrostatic potential

contributions, the differences in band edge positions yield the
offsets �EVBM and �ECBM. The final band edge positions
combine the electrostatic and beyond-electrostatic effects to-
gether, as shown in Fig. 1(b) (right panel, from 5-layer′ to
5-layer). For example, in 5L hBN, the continuum model shifts
both the VBM and CBM up by 0.940 eV, while the band edge
offsets are �EVBM = −0.002 eV and �ECBM = −0.406 eV
after aligning the core energy levels. Therefore, the net
VBM and CBM energy corrections for referencing the con-
tinuum model results are E5L

VBM − E1L
VBM = 0.940 − 0.002 =

0.938 eV and E5L
CBM − E1L

CBM = 0.940 − 0.406 = 0.534 eV.
Below, we use exactly the same procedure to refine the band
edge positions using GW many-body perturbation theory,
using an additional offset for each band edge from DFT to
GW calculations of the defect-free multilayer.

C. Computational details

Calculations necessary to obtain the results discussed
here include supercells of monolayer (1L), few-layer (2L to
5L), and bulk hBN with and without defects. We imple-
ment the above methods in and perform DFT calculations
using the open-source plane-wave DFT software JDFTX [44],
with the Garrity-Bennett-Rabe-Vanderbilt ultrasoft pseudopo-
tentials [45], Perdew-Burke-Ernzerhof (PBE) generalized gra-
dient approximation [46] to the exchange-correlation func-
tional, and plane-wave kinetic energy cutoffs of 20 hartrees
for wave functions and 100 hartrees for the charge density.
Brillouin zone sampling employs a Monkhorst-Pack k mesh
of 2 × 2 × 1 for 6 × 6 × 1 supercells of the 1L to 5L hBN
primitive cell. The cell size in the z direction (normal to the
2D material plane) is 16 Å for 1L hBN and 30 Å for 2L–5L
hBN, with Coulomb truncation to eliminate interactions with
periodic images along z [47].

Defects in bulk hBN are computed with a 6 × 6 × 2 super-
cell of the energetically favorable AA′ stacking eclipsed with
N over B [48], resulting in four total layers per simulation cell,
with a 2 × 2 × 2 k mesh for Brillouin zone integration. Van
der Waals correction with the dispersion-corrected DFT (DFT-
D2) scheme [49] is used throughout to get an appropriate layer
spacing. Specifically, for the bulk, we obtain a lattice constant
of a = 2.51 Å and an interlayer spacing of c = 3.32 Å, in
agreement with previous reports [48]. All atoms are allowed
to relax in all calculations, including in the dielectric function
calculation for the continuum model, as discussed above.

D. GW calculations and convergence

We perform GW quasiparticle band-structure calculations
of 1L–3L and bulk hBN unit cells using BERKELEYGW [50].
Specifically, we perform one-shot G0W0 calculations from
a PBE-DFT starting point generated by JDFTX [44] with
the optimized norm-conserving Vanderbilt norm-conserving
pseudopotentials [51] and a plane-wave kinetic energy cutoff
of 70 Ry. Accurate band edge positions and band gaps in
GW calculations, especially for 2D materials, require careful
convergence of the GW results [52–54]. Here, the cell sizes
normal to the atomic plane for 1L, 2L, and 3L hBN are 16,
19, and 23 Å, respectively, with Coulomb truncation used to
speed up the convergence. Increasing further to 18.5 Å for
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FIG. 2. Convergence of GW calculations of the quasiparticle
band gap of monolayer hBN with the number of bands included
in the Coulomb hole summations Nb and the energy cutoff for the
dielectric matrix Scut with an “infinite” number of empty bands for
the dielectric matrix Nc (approaching the number of plane waves) and
a 12 × 12 × 1 k mesh. Values at Scut → ∞ are extrapolated using
the 40–90 Ry results to infinite energy cutoff. The azure solid line
represents the “final” extrapolated result at Scut → ∞ and Nb → ∞.
The blue circle represents the band gap at the chosen parameters of
Scut = 40 Ry and Nb = 1700.

1L hBN changes the band gap by only 60 meV. The final
GW values used below are extrapolated to the infinite k-point
limit using 9 × 9 × 1 and 12 × 12 × 1 k-mesh results for each
of the 1L–3L systems based on the technique proposed in
Ref. [22], while the bulk hBN results are as obtained directly
with a 12 × 12 × 4 k mesh. Adding two more k-mesh settings
(i.e., 10 × 10 × 1 and 11 × 11 × 1) to the extrapolation for
1L hBN almost does not change the final value, demonstrating
the GW results are well converged with respect to the k-space
samplings.

In addition, plane-wave GW calculations require con-
vergence with respect to the number of empty states Nc,
the kinetic-energy cutoff for the dielectric matrix/screened
Coulomb interaction Scut, and the number of bands included
in the Coulomb hole summations Nb [50,54]. Figure 2 sum-
marizes the GW convergence tests for 1L hBN. We use an
“infinite” Nc = 5700 close to the total number of plane waves
in the wave function basis and test gap errors with respect to
Nb and Scut. For each Nb, we can extrapolate the results to
Scut → ∞, and for each Scut, we can extrapolate the results
to Nb → ∞. (See Fig. S2 in the Supplemental Material [37]
for additional details on the extrapolation and overall GW
convergence tests.) Using the Nb → ∞ and Scut → ∞ re-
sult of Eg = 7.203 eV (azure line in Fig. 2) as a reference,
we determine appropriate Nb and Scut that provide answers
converged to a target accuracy of 0.1 eV. Specifically, the
Nb → ∞ limit of Scut = 40 Ry and the Scut → ∞ limit of
Nb = 1700 are each within 0.1 eV of this final result. Note
that the convergence errors with respect to Nb and Scut tend to
cancel, such that the result with these parameters (blue circle

F
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FIG. 3. Predicted formation energies of CB, CN, CBVN and CNVB

in neutral and singly charged states (+1 for donors and −1 for
acceptors) as a function of Fermi energy under (a) B-rich and
(b) N-rich conditions. Colored lines and solid symbols denote for-
mation energies and charge transition levels of these defects in
monolayer (1L) hBN, while gray lines and open symbols denote
them for the bulk hBN case. Black and gray vertical lines mark the
corresponding band edge positions. Neutral defects shift by less than
0.1 eV, while charged defects are stabilized by ≈0.60 eV from 1L
to bulk, resulting in an ≈0.56 eV reduction in acceptor ionization
energies and ≈1.05 eV reduction in donor ionization energies after
accounting for small VBM and larger CBM shifts.

in Fig. 2) is effectively accurate to much better than 0.1 eV.
Using these convergence tests, we select Scut = 40 Ry for
multilayer and bulk calculations, scale Nb proportional to the
unit cell volume relative to 1700 for the monolayer since it is
plane wave dependent, and set Nc to the basis-limited infinite
value in all cases. We further set Nb to the basis-limited infinite
value for the computationally simpler bulk case to guarantee
convergence.

III. RESULTS AND DISCUSSION

A dielectric environment surrounding a 2D material aug-
ments its screening and weakens the long-range Coulomb in-
teraction between charges. The charge transition level ε(q/0)
is the energy difference between the formation energies of a
defect in charged and neutral states [Eq. (2)], and the change
in screening primarily impacts the charged formation energy.
This should result in shallower transition levels or lower
ionization energies for defects with increased screening by
each additional layer of the 2D material, with the 3D bulk
material being the asymptotic limit with respect to the number
of layers. Below, we quantitatively show that this is precisely
the behavior for defects in multilayer hBN, using both our
continuum model approach detailed above and explicit multi-
layer DFT calculations as a benchmark.

To set the stage for this layer-dependent variation, Fig. 3
first compares the DFT-predicted formation energies of the
two endpoints: 1L and bulk hBN. It shows results for CB, CN,
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FIG. 4. Charge transitions levels of CB, CN, CBVN, and CNVB in 1L to 5L hBN for all possible nonequivalent placements (e.g., surface,
inner, or central layer) of the defect shown in the lower panel. Ionization energies labeling the arrows are sorted from outermost to innermost
layer placement of the defect. With respect to the vacuum level as the zero of the energy axis, the conduction band moves downwards with
increasing levels much more substantially than the valence band, amplifying the ionization energy reduction of donors compared to acceptors.

CBVN, and CNVB as a function of the Fermi level position
(electron chemical potential) in both B- and N-rich condi-
tions. Note that the Fermi level is referenced to the VBM,
which moves downward by 0.06 eV from 1L to bulk (at
equal electrostatic potentials based on core-level alignment),
while the CBM moves downward by 0.50 eV, resulting in
a band gap reduction of 0.44 eV at the DFT level (from
4.68 eV in 1L to 4.24 eV in bulk hBN). The band edge shifts
and the corresponding band gap increases from bulk to 1L
hBN are due to the quantum confinement effect. The more
substantial CBM shift than VBM shift can be understood by
the more delocalized state around CBM than VBM (a smaller
effective mass of the conduction band compared to that of the
valence band) [55]. CB and CBVN are donorlike defects with
charge state transition from +1 to 0, whereas CN and CNVB

are acceptorlike defects with charge state transition from 0
to −1. The formation of neutral CB and CN is energetically
favorable under N-rich and B-rich conditions, respectively,
while the relative stability of neutral CBVN and CNVB is
independent of N and B abundance (since it involves removal
of an entire BN unit).

The neutral formation energies of all defects shown in
Fig. 3 change very slightly when the defects are transferred
from 1L to bulk hBN, with the most noticeable differences
for CN in B-rich conditions and CB in N-rich conditions (still
less than 0.1 eV). On the other hand, all charged defects
are significantly stabilized (lower ionization energies) in the
bulk due to the additional screening, as expected. Specifically,
the donor ionization energies (downward relative to CBM)
decrease from 2.52 to 1.49 eV for CB and 3.25 to 2.18 eV for
CBVN, while the acceptor ionization energies (upward relative
to VBM) decrease from 2.28 to 1.73 eV for CN and 2.14 to

1.57 eV for CNVB, irrespective of atomic chemical potentials
(N/B rich), which cancel out in the energy difference. Notice
that the donor levels both shift by about 1.05 eV, while
the acceptor levels both shift by about 0.56 eV. The larger
reduction for donors comes from the significant downward
shift of the CBM. The small downward shift of the VBM
would tend to increase acceptor ionization energies, but it
is negligible compared to the screening effect that works to
reduce them.

Calculating defect energetics in multilayer 2D materials
is significantly more expensive than in the monolayer and
bulk limits discussed above. We use the continuum model
approach to systematically map the impact of the number of
layers (ranging from two to five) and defect position within
the multilayer stack on the transition levels of each of these
defects, as shown in Fig. 4. We benchmark the accuracy of
the continuum model against much more expensive, explicit
all-atom calculations for selected defects (CB in 2L, 3L, and
5L and CN in 2L) and find ionization energy predictions to
be accurate within 0.05 eV in all cases. (See Table S2 in
the Supplemental Material [37] for these ionization energy
comparisons.) The excellent accuracy of the continuum model
also implies that the electrostatic screening captured by the
model is the dominant factor of the environmental effects on
defects in 2D materials.

Figure 4 illustrates that the DFT band gap of hBN de-
creases monotonically from 4.68 to 4.28 eV with increasing
layers, with the CBM shifting more substantially than the
VBM. As in the comparison of defects between monolayer
and bulk hBN above, this makes the ionization energies of
donors more sensitive with respect to layer number than
those of acceptors. Specifically, the maximum reduction in
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ionization energies (from 1L to 5L-c) is 0.84 and 0.74 eV
for CB and CBVN donors, compared to 0.50 and 0.47 eV for
CN and CNVB acceptors. Also note that the shifts for the 5L
case (relative to 1L) are still about 0.1–0.3 eV smaller than
those for the bulk, indicating that the screening effect due
to individual layers is rather weak and two to four layers
still do not screen the Coulomb potential of the defects
completely.

The multilayer material with N > 2 additionally contains
multiple nonequivalent choices of the defect position, which
also has an effect on the transition level. Taking CB in 5L
hBN as an example (Fig. 4), the transition level moves up
by 0.13 eV (from −3.43 to −3.30 eV) when the defect is
moved from the outermost layer (5L-a in Fig. 4) to the second
layer (5L-b) and further goes to −3.27 eV when it is moved
to the third (innermost) layer (5L-c). The other defects have a
similar tendency: the donor (acceptor) transition level shifts
up (down) by 0.1–0.16 eV from 5L-a to 5L-b and further
shifts by only 0.02–0.04 eV to 5L-c. As expected, defects in
inner and central layers experience increased screening from
both sides and are therefore shallower than defects in surface
layers. The neutral defect has very similar energy regardless of
the location (validated by explicit DFT calculations of neutral
CB in 5L-a, 5L-b, and 5L-c), indicating that the neutral defect
may form with equal probability in each layer of 5L hBN.
However, the defects in the inner and central layers are more
likely to achieve the excitation of Donor0 → Donor+1 + e−1

or Acceptor0 → Acceptor−1 + h+1, where e−1 is a conduc-
tion electron and h+1 is a valence hole due to the smaller
ionization energy. Therefore, dopants for 2D semiconductors
(requiring shallower defects) and defect states designed for
long coherence times (requiring deeper defects) would be
preferable in the inner and central layers and surface layers,
respectively. Also, the slight difference (comparable to kBT
at room temperature) between 5L-b and 5L-c (because the
screening strength is inversely proportional to the distance)
indicates that the defects in all layers other than the surface
layer in a system with N � 5 can be considered to have
similar electronic properties. This is a very important point
as precise experimental control of defect location is usually
challenging.

Given that most devices with multilayer 2D materials
would also involve a substrate, we also calculate the ionization
energy of CB in 5L hBN on H-passivated diamond(111)
using the continuum model approach. Here, only one explicit
hBN layer containing the defect is included in the quantum-
mechanical calculations, treating all remaining layers and the
substrate as a continuum. (See Ref. [33] for details regard-
ing the dielectric profile of the diamond substrate.) Due to
the asymmetry of the system, CB now has five inequivalent
sites. The corresponding ionization energies are 1.583, 1.423,
1.382, 1.377, and 1.384 eV, respectively, for a defect placed
from the top layer (farthest from the diamond) to the bottom
layer (nearest the diamond). The placement of the 5L hBN
on the substrate of diamond decreases the defect ionization
energy by about 0.3 eV. The slight increase of the ionization
energy from 1.377 eV (the second-nearest layer to the dia-
mond) to 1.384 eV (the nearest layer to the diamond) can
be ascribed to stronger in-plane screening by adjacent hBN
layers compared to the diamond substrate.

In addition, to check the effect of the location of the
explicit/dielectric interface relative to the defect in the con-
tinuum model, we also calculated the ionization energy of CB

in 5L hBN with M explicit atomic layers and M ′ dielectric
function layers (M + M ′ = 5), as shown in Table S3 of the
Supplemental Material [37]. The explicit layer containing
the defect is always put in the central position (i.e., 5L-c). The
errors of a continuum model with M = 1, 3, and 4, compared
to explicit DFT calculations (M = 5), are all well within
0.04 eV. We reiterate that all energies presented in Fig. 4 are
obtained with only one explicit atomic layer.

So far, we have presented predictions of charge transition
levels and ionization energies at the semilocal DFT (PBE)
level. As is well known, semilocal DFT underestimates band
gaps and is inaccurate for band edge positions, thereby sig-
nificantly influencing the defect ionization energy [28,56,57].
GW many-body perturbation theory can rectify these issues
but is extremely expensive for large supercell calculations
containing defects. Fortunately, referenced to the vacuum
level, defect transition levels in 2D hBN are found to be
extremely insensitive to the level of theory, remaining un-
changed between PBE and GW to within 0.1 eV [58]. (This is
primarily because charge transition levels are obtained from
the differences in total energies, which tend to be accurate
in DFT, unlike band edge positions, which are electronic
eigenvalues known to be unreliable.) Therefore, the primary
impact of GW corrections is on the band edge positions, which
we focus on below. We can therefore simply reference the
previous defect transition levels computed using PBE-DFT
on a large defect supercell to accurate band edge positions
computed using GW on primitive cells of the undefective
material (with varying layer number). This allows combining
the computational efficiency of PBE-DFT for large supercells
with the accuracy of GW for the band positions to rapidly
obtain accurate ionization energy predictions.

Figure 5(a) shows the GW-predicted band edge positions
with respect to the vacuum level for 1L to 3L and bulk hBN,
which are in excellent agreement with previous GW predic-
tions using a different (without empty states) technique [58].
(See Table S1 in the Supplemental Material [37] for a detailed
comparison.) Going from 1L to bulk, the shifts in CBM
and VBM are, respectively, −0.62 and +0.44 eV in GW,
compared to −0.50 and −0.06 eV in DFT, as discussed above,
revealing the correction of a much stronger self-interaction
error in the VBM position.

Note that the GW gap reduction from 1L to 3L is 0.21 eV,
which is only 20% of the 1.05-eV reduction from 1L to the
bulk. In comparison, the DFT band gap decreased by 0.33 eV
from 1L to 3L, which is 75% of the net reduction of 0.44 eV
from 1L to the bulk. Therefore, the overall gap reduction is
larger in GW than in DFT, as is well known and expected
due to the impact of dielectric screening on energy levels
in GW (captured via the screened Coulomb interaction W)
that is missed by DFT. However, for the few-layer cases, the
band gap reduction is unexpectedly larger in DFT, primarily
because only a small fraction of the screening effects that
eventually lead to the large bulk GW band gap reduction is
captured in the first few surrounding layers.

Finally, referencing the defect transition levels from Fig. 4
(specifically for 1L, 2L, and 3L-b) with respect to the GW
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FIG. 5. (a) Band positions relative to the vacuum level from GW
calculations. (b) Defect ionization energies relative to GW band
edges as a function of the layer number. DFT ionization energies of
CB and CN shown for comparison using dashed lines and half-filled
triangles. GW increases all ionization energies, weakens the variation
of the donor ionization energy with layers due to reduced variation
of the CBM position, and strengthens the variation of acceptor
ionization energy to greater variation of the VBM position.

band edge positions, Fig. 5(b) shows the final ionization
energy predictions for the four defects. Compared to the
previous DFT results, the band position changes discussed
above lead to an overall increase in all the defect ioniza-
tion energies. Additionally, the ionization energy variation
of donors becomes weaker with the number of layers due
to reduced shifting of the CBM, while that for acceptors
becomes stronger due to increased shifting of the VBM.

IV. CONCLUSIONS

We have shown that defect ionization energies in 2D mate-
rials are sensitive to the number of layers and the position of
the defect within the stack of layers. Intuitively, the ionization
energies of defects systematically decrease due to increased
dielectric screening and corresponding stabilization of the
charged defect state with an increasing number of layers and
as the defect is closer to the center of a multilayer stack. While
DFT calculates accurate charge transition levels relative to
vacuum, GW calculations of the band edge positions are
vital to correctly describe the ionization energies. In fact,
smaller variations of the CBM and stronger layer-dependent
modifications of VBM positions in GW qualitatively change
the trend of ionization energy reduction with layers for donor
and acceptor defects.

We also showcased the efficacy and accuracy of a con-
tinuum model approach to describe the impact of adjacent
layers in a multilayer material. Replacing adjacent layers
by a continuum dielectric response substantially reduces the
number of atoms and electrons in the electronic structure
component and retains an accuracy of 0.05 eV with respect
to explicit DFT multilayer calculations. The general frame-
work we have developed here will prove useful for rapid
evaluation of point defect properties in 2D materials and their
heterostructures, laying the foundation for high-throughput
computational screening for desirable material-defect pairs
for microelectronic, optoelectronic, and quantum information
applications.
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