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In this work, we present an atomistic first-principles framework for modeling the low-temperature electronic
and transport properties of disordered two-dimensional (2D) materials with randomly distributed point defects
(impurities). The method is based on the T -matrix formalism in combination with realistic density-functional
theory descriptions of the defects and their scattering matrix elements. From the T -matrix approximations
to the disorder-averaged Green’s function and the collision integral in the Boltzmann transport equation, the
method allows calculations of, e.g., the density of states including contributions from bound defect states, the
quasiparticle spectrum and the spectral linewidth (scattering rate), and the conductivity/mobility of disordered
2D materials. We demonstrate the method by examining these quantities in monolayers of the archetypal 2D
materials graphene and transition metal dichalcogenides contaminated with vacancy defects and substitutional
impurity atoms. By comparing the Born and T -matrix approximations, we also demonstrate a strong breakdown
of the Born approximation for defects in 2D materials manifested in a pronounced renormalization of, e.g., the
scattering rate by the higher-order T -matrix method. As the T -matrix approximation is essentially exact for dilute
disorder, i.e., low defect concentrations (cdis � 1) or density (ndis � A−1

cell where Acell is the unit-cell area), our
first-principles method provides an excellent framework for modeling the properties of disordered 2D materials
with defect concentrations relevant for devices.

DOI: 10.1103/PhysRevB.101.045433

I. INTRODUCTION

Over the past decade, there has been an explosive develop-
ment in theoretical predictions [1–4] and experimetal fabrica-
tion of new two-dimensional (2D) materials hosting exciting
electronic properties. This holds great promise for novel ap-
plications in electronics, optoelectronics, and other emerging
(spintronics, valleytronics, straintronics, twist-tronics disci-
plines. However, atomic disorder which degrades the material
properties is still a major hindrance, and fabrication platforms
that can deliver high-quality materials with low disorder con-
centrations are needed. Recently, there have been advances in
some of the most widely studied 2D materials such as, e.g.,
monolayers of graphene and transition metal dichalcogenides
(TMDs), where devices based on high-quality materials en-
capsulated in ultraclean van der Waals (vdW) heterostructures
have shown promising electrical and optical properties [5].
Such developments are essential for the realization of quan-
tum devices based on 2D materials [6,7].

The initial characterization of atomic disorder due to point
defects in 2D materials often proceeds by means of scan-
ning tunneling microscopy/spectroscopy (STM/STS) which
provides valuable insight into the defect type as well as the
structural and electronic properties of the defects. In, for
example, graphene [8–10] and TMDs [11–16] this has been
useful for the identification of the most common types of
defects as well as probing for bound defect states which lead
to strong modifications of the electronic properties of the
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pristine material. In addition, measurements of quasiparticle
interference in various 2D materials [8,17–24], i.e., spatial
ripples in the local density of states (LDOS) in the vicinity of
a defect, is a direct fingerprint of the defect-induced scattering
processes which may govern the electron dynamics and limit
the electrical and optical performance of materials at low tem-
peratures. Theoretical methods which can supplement such
experiments in predicting the impact of defects on the electron
dynamics are of high value for the understanding of electrical
and optical properties of new materials.

In this work, we introduce an atomistic first-principles
method for modeling the electronic properties of disordered
2D materials. Our method is based on realistic density-
functional theory (DFT) calculations of the defect scatter-
ing potential and matrix elements, in combination with the
T -matrix formalism [25,26] for the description of the inter-
action with the random disorder potential. From the disorder-
averaged Green’s function (GF), accurate descriptions of ex-
perimentally relevant quantities such as, e.g., the density of
states, in-gap bound and resonant quasibound defect states,
spectral properties, and the disorder-induced quasiparticle
scattering rate/lifetime can be obtained. Furthermore, using
the T -matrix scattering amplitude in the calculation of the mo-
mentum relaxation time in the Boltzmann transport equation
allows for theoretical predictions of the disorder-limited low-
temperature conductivity/mobility as well as its dependence
on the Fermi energy (carrier density). This work is thus
complementary to our previous first-principles T -matrix study
of the LDOS and quasiparticle interference in 2D materials
[27].
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In comparison with analytic and tight-binding based T -
matrix studies of defects in, e.g., graphene [28–35] and
black phosphorus [36], our first-principles method permits
for parameter-free modeling of realistic defects in disordered
materials. It furthermore goes beyond other first-principles
studies of defects and their transport-limiting effects based
on the Born approximation [37–41], which we here demon-
strate breaks down for point defects in 2D materials. The
first-principles T -matrix method introduced in this work is
therefore of high relevance for the further development of
first-principles transport methodologies with high predictive
power [41–47].

The details of our method, which is implemented in the
GPAW electronic-structure code [48–50], are described in
Secs. II and III. In Secs. IV and V, we demonstrate the power
of our method on a series of timely problems in disordered
monolayers of TMDs and graphene. For the TMDs MoS2 and
WSe2 with vacancies and oxygen substitutionals, we analyze
(i) bound and quasibound defect states, respectively, in the
gap and in the bands, (ii) the linewidth in the quasiparticle
spectrum, the energy dependence of the scattering rate in the
K, K ′ valleys, and the complete suppression of intervalley
scattering by the spin-orbit splitting and a symmetry-induced
selection rule [27], and (iii) a prediction of unconventional
transport characteristics in p-type WSe2 with a mobility that
decreases with increasing Fermi energy. In graphene we focus
on vacancies and nitrogen substitutionals and examine (i) the
position of quasibound defect states on the Dirac cone, (ii)
their signature in the quasiparticle spectrum and the presence
(absence) of a band-gap opening for sublattice asymmetric
(symmetric) defect configurations, and (iii) the pronounced
electron-hole asymmetry in the transport characteristics in-
duced by strong resonant scattering.

An important finding of this work is that the Born approx-
imation breaks down for point defects in both TMDs and
graphene, and hence most likely also in other 2D materials.
While it is well known that the description of quasibound
states and resonant scattering in graphene is beyond the Born
approximation, our finding that it severely overestimates the
disorder-induced scattering rate in the 2D TMDs by up to sev-
eral orders of magnitude is remarkable, and only emphasizes
the high relevance of a first-principles T -matrix approach for
the modeling of disordered 2D materials.

II. ATOMISTIC DEFECT POTENTIALS

We start by introducing an atomistic first-principles
method for the calculation of the single-defect (or impu-
rity) potential V̂i and its matrix elements which are the ba-
sic building block in the diagrammatic T -matrix formalism
for disordered systems outlined in Sec. III. The method is
analogous to the method for calculating the electron-phonon
interaction [51–53], and is based on DFT within the projector
augmented-wave (PAW) method [54], a linear combination
of atomic orbitals (LCAO) supercell representation of the
defect potential, and is implemented in the GPAW electronic-
structure code [48–50].

In this work, we restrict the considerations to nonmagnetic
spin-diagonal defects in which case the defect potential for a

defect of type i takes the form

V̂i = Vi(r̂) ⊗ ŝ0, (1)

where Vi(r) is the scalar spin-independent defect potential
and ŝ0 is the identity operator in spin space. We thus neglect
defect-induced changes in the spin-orbit interaction, which
are, in general, small relative to the spin-independent poten-
tial. The spin dependence is, of course, important for spin
relaxation and spin-orbit scattering, but this is outside the
scope of this work.

Here, the spin-diagonal defect potential is defined as
the change in the microscopic crystal potential induced by
the defect, and is obtained from DFT as the difference in
the crystal potential between the lattice with a defect and the
pristine lattice, i.e.,

Vi(r̂) = V i
def(r̂) − Vpris(r̂). (2)

The two potentials have contributions from the atomic cores
(ions), which define the overall potential landscape in the
lattice, as well as from the valence electrons which describe
interactions between the valence electrons at a mean-field
level (see Sec. II B below). The defect potential in Eq. (2)
thus carries information about (i) the defect-induced lattice
imperfection (e.g., vacancy, substitutional, or impurity atom),
and (ii) the electronic relaxation in the vicinity of the defect.
Both are important for a quantitative description of the defect
potential.

In practice, the defect potential is expressed in a basis
of Bloch states |nks〉 of the pristine lattice, where n is the
band index, k ∈ 1st Brillouin zone (BZ) is the electronic wave
vector, and s is the spin index. For brevity, we combine in the
following the band and spin indices in a composite “band”
index. The matrix elements of the defect potential become

V mn
i,kk′ = 〈mk|V̂i|nk′〉 =

∑
sz

〈mk; sz|Vi(r̂)|nk′; sz〉, (3)

where as a consequence of the spin-orbit mixing of up and
down spin (sz = ±1) in the Bloch states, the matrix elements,
in general, have contributions from both spin components
|·; sz〉 in spite of the fact that the defect potential itself is spin
diagonal.

The following two subsections summarize our DFT-based
supercell method for the calculation of the defect matrix ele-
ments. The two main technical aspects of the method concern
(i) the representation of the defect potential in an LCAO basis,
and (ii) the calculation of the defect potential in the PAW
formalism [54].

A. LCAO supercell representation

The numerical evaluation of the defect matrix element
in Eq. (3) is based on an LCAO expansion of the Bloch
functions of the pristine lattice |ψnk〉 = ∑

μsz
cμsz

nk |φμk〉, where
μ = (α, i) is a composite atomic (α) and orbital index (i) and

|φμk〉 = 1√
N

∑
l

eik·Rl |φμl〉 (4)

are Bloch expansions of the spin-independent LCAO basis
orbitals |φμl〉, where N is the number of unit cells in the lattice
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FIG. 1. Schematic illustration of the LCAO supercell representa-
tion of the defect potential Vi given by the matrix elements in the
last line of Eq. (5). The square lattice indicates the unit cells of
the lattice. The defect potential is cut off in real space in order to
ensure an isotropic range. The real-space cutoff rcut is measured from
the position of the defect site.

and Rl = l1a1 + l2a2, li ∈ Z, is the lattice vector to the lth unit
cell with ai denoting the primitive lattice vectors.

Inserting in the expression for the matrix element in
Eq. (3), we find

V mn
i,kk′ =

∑
sz

∑
μν

(
cμsz

mk

)∗
cνsz

nk′ 〈φμk|Vi(r̂)|φνk′ 〉

= 1

N

∑
sz

∑
μν

(
cμsz

mks

)∗
cνsz

nk′s′

×
∑

kl

ei(k′ ·Rl −k·Rk )〈φμk|Vi(r̂)|φνl〉, (5)

where the factor of 1/N stems from the normalization of the
Bloch sum in Eq. (4) to the lattice, the last factor in the second
equality is the LCAO representation of the defect potential
Vi(r) illustrated in Fig. 1, and the k, l sums run over the cells
in the lattice.

In practice, the defect potential is calculated in a finite
N1 × N2 supercell constructed by repeating the primitive unit
cell Ni times in the direction of the ith primitive lattice vector,
and with the defect site located at the center. Due to periodic
boundary conditions in the in-plane directions, the supercell
must be chosen large enough that defect sites in neighboring
supercells do not interact. In the direction perpendicular to the
material plane, the cell boundaries are imposed with Dirichlet
boundary conditions, which ensures a common reference for
the two potentials on the right-hand side of Eq. (2) and avoids
spurious interactions between repetitions of the defect in the
perpendicular direction.

In order to impose an isotropic range of the defect poten-
tial, matrix elements involving LCAO basis functions located
beyond a cutoff distance rcut from the defect site R0 are
zeroed, i.e.,

〈φμk|Vi(r̂)|φνl〉 = 0 if |Rμk,νl − R0| > rcut, (6)

where Rμk = Rk + Rα is the center of the LCAO orbital
|φμk〉 at the atomic site α in unit cell k. Once the LCAO
representation of the defect potential in the supercell has
been obtained, the defect matrix elements can be evaluated
efficiently at arbitrary k, k′ = k + q vectors using Eq. (5).

It should be noted that the LCAO procedure for the calcu-
lation of the defect matrix elements outlined here bears close
resemblance to methods based on Wannier functions [47,55].
However, the use of a fixed LCAO basis has the advantage that
the additional step for the generation of the Wannier functions,
which is not always trivial, is avoided.

B. PAW method

In the PAW formulation to DFT [54], the basic idea is
to transform the all-electron Hamiltonian, whose eigenstates
|ψnk〉 oscillate strongly in the vicinity atomic cores, into an
auxiliary Hamiltonian with smooth pseudoeigenstates |ψ̃nk〉,
thereby eliminating the numerical complications associated
with an accurate description of rapidly varying functions.

The physically relevant all-electron wave functions and
the auxiliary pseudo-wave functions are connected via the
transformation T̂ defined as

|ψnk〉 = |ψ̃nk〉 +
∑
a,i

[∣∣φa
i

〉 − ∣∣φ̃a
i

〉]〈
p̃a

i

∣∣ψ̃nk
〉 ≡ T̂ |ψ̃nk〉, (7)

where the terms in the sum over atomic sites a, respectively,
add and subtract expansions of the all-electron and pseudo-
wave functions inside so-called augmentation spheres �a cen-
tered on the atoms. Here, |φa

i 〉 are the correct all-electron wave
functions inside the augmentation spheres, and the pseudopar-
tial waves |φ̃a

i 〉 and projector functions | p̃a
i 〉 are constructed to

obey the completeness relation
∑

i |φ̃a
i 〉〈p̃a

i | = 1. This ensures
the orthogonality of the all-electron wave functions

〈ψmk|ψnk′ 〉 = 〈ψ̃mk|T̂ †T̂ |ψ̃nk′ 〉 = δmnδkk′ (8)

via the operator T̂ †T̂ .
Likewise, the all-electron matrix elements of the defect

potential V̂i can be expressed as a matrix element of a trans-
formed operator with respect to the smooth wave functions
|ψ̃nk′ 〉, i.e.,

V mn
i,kk′ = 〈ψmk|V̂i|ψnk′ 〉 = 〈ψ̃mk|T̂ †V̂iT̂ |ψ̃nk′ 〉 ≡ 〈ψ̃mk| ˆ̃Vi|ψ̃nk′ 〉,

(9)

where the transformed operator ˆ̃Vi in the last line is given by

ˆ̃Vi = T̂ †V̂iT̂ =
(

1 +
∑
a,i1

∣∣ p̃a
i1

〉[〈
φa

i1

∣∣ − 〈
φ̃a

i1

∣∣])V̂i

×
(

1 +
∑
a,i2

[∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉]〈
p̃a

i2

∣∣)

≈ V̂i +
∑

α

∑
i1i2

∣∣p̃a
i1

〉
�V a

i1i2

〈
p̃a

i2

∣∣, (10)

and the atomic coefficients are defined as

�V a
i1i2 = 〈

φa
i1

∣∣V̂i

∣∣φa
i2

〉 − 〈
φ̃a

i1

∣∣V̂i

∣∣φ̃a
i2

〉
. (11)

The last line in Eq. (10) holds for local operators and fur-
thermore assumes that the bases are complete and that the
atomic augmentation spheres �a do not overlap. However, in
practical PAW calculations, finite bases and small overlaps be-
tween different augmentation spheres can be tolerated without
substantial loss of accuracy.
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The transformed operator, which incorporates the full de-
tails of the potential due to the all-electron density (frozen
core + valence electrons), can be expressed as

ˆ̃V = veff(r̂) +
∑

α

∑
i1i2

∣∣ p̃a
i1

〉
�V a

i1i2

〈
p̃a

i2

∣∣, (12)

where veff = vH + vxc is the effective potential given by the
sum of the electrostatic Hartree potential vH (including the po-
tential due to the atomic cores) and the exchange-correlation
potential vxc, and the last term is the all-electron corrections
given by the atomic coefficients �V α

i1i2
defined in Eq. (11).

Full PAW expressions for veff and �V α
i1i2

can be found in, e.g.,
Ref. [50].

In the defect potential in Eq. (2), the two contributions to
the potential in Eq. (12) describe, respectively, perturbations
in the crystal potential and atomic-core states on the defect.
The latter term can be regarded as the PAW analog of a
Löwdin downfolding of atomic defect states onto the Bloch
functions [34].

C. Examples

In this section, we show examples of matrix elements for
the defects in 2D TMDs and graphene studied in Secs. IV and
V below.

In order to relate the DFT-calculated matrix elements
(which have units of energy) to the impurity strength V0 of
the δ-function potential in continuum descriptions of defects,
Vi(r) = V0δ(r − R0), it is instructive to rewrite the matrix
element as

V mn
i,kk′ ≡ 1

N
V̄ mn

i,kk′ ≡ 1

A
Ṽ mn

i,kk′ , (13)

where the definition of V̄i in the first step follows trivially from
Eq. (5), and in the second step we have used that A = NAcell,
where A and Acell are, respectively, the sample and unit-cell
area. In the last equation, Ṽi = AcellV̄i has units of eV Å2 like
the impurity strength V0 above. In the following, the first
symbol in Eq. (13) is used interchangeably for the different
matrix elements.

1. Defects in 2D TMDs

The semiconducting TMD monolayers are some of the
most well-studied 2D materials in terms of electrical, optical,
and structural properties. This includes numerous STM/STS
studies of their atomic defects, showing that the most com-
mon types of defects are monovacancies [14,56–66], oxygen
substitutionals [15,16,67,68], i.e., an oxygen atom substitut-
ing a chalcogenide atom, and antisite defects [13,65]. The
variability in the predominant defect type stems from the
different fabrication techniques [5], where so far chemical
vapor deposition and chemical vapor transport (CVD/CVT)
yield rather low material quality in comparison to recent
flux-grown materials [13,69] with defect densities as low as
1010–1011 cm−2.

In this work, we focus on atomic monovacancies and
oxygen substitutionals. In our DFT calculations of the defect
supercell, we find in agreement with previous works [59–62]
that structural relaxation around the defect site is minor and is
therefore disregarded here.

Figure 2 summarizes the defect matrix elements in 2D
WSe2 for W and Se monovacancies (VW,Se) as well as oxygen
substitutionals (OSe). The plots show the absolute value of
the spin- and band-diagonal matrix element in the valence
(bottom row) and conduction (top row) bands, with the initial
state of the matrix element V nn

i,kk′ fixed to k = K which is
the position of the band edges in most of the semiconducting
monolayer TMDs [70]. The K, K ′ intravalley and intervalley
matrix elements are indicated with, respectively, a small and a
large arrow in the lower left plot.

Overall, the matrix elements exhibit a nontrivial wave-
vector dependence as a function of q = k′ − k. Only in the
vicinity of the high-symmetry K, K ′ points are the matrix
elements characterized by regions with trigonal symmetry
where a relatively constant value is attained. The magnitude
of the K, K ′ intravalley and intervalley matrix elements for
the W vacancy are about an order of magnitude larger than
the matrix elements for the Se vacancy and O substitutional.
This can be understood from the fact that the Bloch states
are dominated by the transition metal d orbitals [71], and
therefore have a larger overlap with defects on the transition
metal site compared to defects on the chalcogenide sites. On
the contrary, the matrix elements for the Se vacancy and O
substitutional resemble each other, indicating that the two
types of defects will have similar impact on the electronic
properties of WSe2.

As expected for atomic point defects, the W vacancy gives
rise to both strong intravalley and intervalley matrix elements
which are comparable in magnitude. On the other hand, the
matrix elements for the Se vacancy and O substitutional, as
well as the valence-band matrix element for the W vacancy,
show a highly unconventional feature; their intervalley matrix
elements are strongly suppressed and vanishes identically
between the two high-symmetry K, K ′ points. This is in
spite of the fact that we here consider the spin-conserving
matrix element where the spin is the same for the two Bloch
functions in the matrix element in Eq. (3). That is, this
feature is unrelated to the SO splitting of the bands [72,73].
In a recent work [27], we have shown that this originates
from the C3 symmetry of the defect sites together with the
valley-dependent orbital character of the Bloch functions [27],
which give rise to a symmetry-induced selection rule that
makes the K ↔ K ′ valence and conduction band intervalley
matrix elements vanish identically, except for defects on the
transition metal site where it only vanishes in the valence
band.

Another important selection rule is the one imposed by
time-reversal symmetry on the intervalley matrix element
between states of opposite spin at the K and K ′ points

〈nKs|V̂i|nK ′s̄〉 = 0, (14)

where s̄ = s. Note that this holds even in the presence of spin-
orbit coupling in the defect potential which does not break
time-reversal symmetry.

2. Graphene

Graphene is a host of a large variety of defects rang-
ing from vacancies and lattice reconstructions like, e.g.,
Stone-Wales defects, to adatoms and substitutional atoms
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FIG. 2. Defect matrix elements for vacancies (Vi, i = W, Se) and substitutional oxygen (OSe) in 2D WSe2. The plots show the absolute
value of the spin-diagonal intraband matrix elements V nn

i,kk′ in the valence (bottom) and conduction (top) bands, with the initial state fixed to
k = K (marked with dots ◦) and as a function of k′. The small (large) arrow in the lower left plot corresponds to intravalley (intervalley)
couplings. DFT parameters: 11 × 11 supercell with 10 Å of vacuum to the cell boundaries in the vertical direction.

involving alkali-metal, halogen, and other nonmetallic atoms,
or molecules [5,10]. In this work, we restrict the consid-
erations to single carbon vacancies [74–77] and nitrogen
substitutionals [9,78,79].

In Fig. 3 we show the valence and conduction band matrix
elements for a carbon vacancy (left) and a nitrogen substitu-
tional (right). In contrast to the matrix elements for the TMDs
in Fig. 2, there are no selection rules on the matrix elements
for vacancies and substitutionals in graphene. Consequently,
their matrix elements show less variation as a function of k′

C
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FIG. 3. Defect matrix elements for vacancies (VA,B) and substitu-
tional nitrogen (NA,B) in graphene. The plots show the absolute value
of the spin-diagonal intraband matrix elements V nn

i,kk′ in the valence
(bottom) and conduction (top) bands, with the initial state fixed to
k = K + δx̂, δ � π/a (marked with dots ◦), and as a function of k′.
DFT parameters: 11 × 11 supercell with 10 Å of vacuum to the cell
boundaries in the vertical direction.

and the intravalley and intervalley matrix elements are both
significant.

It is instructive to analyze the matrix elements in Fig. 3 in
terms of the standard tight-binding (TB) model for vacancies
[28,29,33,35,80–82] and substitutional atoms [83–85], where
the defect is often described by a change V0 in the onsite
energy of the defect site. In the A, B sublattice (pseudospin)
basis, the defect potential can therefore be expressed as

V̂i = V0

2
(σ̂0 ± σ̂z ), (15)

where σ̂i, i = x, y, z, are Pauli matrices (i = 0 denotes the
identity matrix) in the pseudospin basis, and ± is for defects
on the A and B sublattice, respectively.

For wave vectors in the vicinity of the K, K ′ points,
the graphene TB Hamiltonian can be approximated by the
Dirac model Ĥτk = h̄vF στ · k, where τ = ±1 is the K, K ′
valley index, and στ = (τ σ̂x, σ̂y), with eigenstates χnτk =

1√
2
(1, nτeiτθk )T and eigenenergies εnk = nh̄vF k, where n =

±1 is the band index for the conduction (c) and valence (v)
bands, respectively.

Without loss of generality, we now for simplicity consider
a defect on an A site. Performing a unitary transformation to
the eigenstate basis, the matrix elements of the defect potential
in Eq. (15) become

V mn
i,kk′ = 1

2V0, (16)

which are independent on the wave vectors k, k′ and band
indices m, n, and thus correspond to identical intravalley and
intervalley as well as intraband and interband couplings.

For the vacancy defect in Fig. 3, Eq. (16) is seen to
be a reasonable approximation in the vicinity of the K, K ′
points. From the value of the intravalley and intervalley matrix
elements, ∼70 eV Å2, we find via Eq. (13) that the energy
shift at the vacancy site is V0 ≈ +27 eV (Acell = 5.24 Å2).

045433-5



KRISTEN KAASBJERG PHYSICAL REVIEW B 101, 045433 (2020)

The positive sign can be attributed to the missing attractive
core potential as well as unpaired σ electrons left at the
vacancy site which yield an overall repulsive defect potential
in Eq. (12).

For the N substitutional in Fig. 3, the different values
of the intravalley and intervalley matrix elements as well as
the anisotropy of the intravalley matrix element indicate that
Eq. (16) is a less good approximation. This is due to the fact
that substitutional nitrogen donates a fraction of an electron
to the graphene lattice and thereby ends up as a positively
charged impurity characterized by a strong intravalley matrix
element [86]. The defect potential due to chemical substi-
tutionals therefore presents both short-range (since there is
a substantial onsite chemical energy shift) as well as some
long-range features [83]. In Sec. V below, we find that an
average value of V0 ≈ −10 eV (∼26 eV Å2), where the minus
sign is due to the partially positively charged N substitutional,
yields good agreement with our full DFT-based results.

III. T -MATRIX FORMALISM

In this section, we introduce the T -matrix formalism
[25,26] for the description of (i) a single isolated defect at R0

with defect potential Vi(r − R0), and (ii) disordered systems
with a random configuration of defects and total disorder
potential Vdis(r) = ∑

i,Ri
Vi(r − Ri ) where Ri denotes the po-

sitions of defects of type i. The latter case is the main focus of
this work.

A. Single defects

The situation of a single isolated defect in an otherwise
perfect infinite lattice is relevant for, e.g., STM/STS studies
which probe the LDOS in the vicinity of the defect site which
can be obtained as

ρ(r, ε) = − 1

π
Im G(r, r; ε), (17)

where G(r, r; ε) = 〈r|Ĝ(ε)|r〉 is the real-space representation
of the Green’s function (GF; all Green’s functions are assumed
to be retarded in this work).

For the single-defect problem, the exact GF can be ex-
pressed in terms of the T matrix which describes scattering
off the defect to infinite order in the defect potential T̂i(ε) =
V̂i + V̂iĜ0(ε)T̂i(ε), where Ĝ0(ε) = 1/[ε − Ĥ0] is the GF of the
pristine lattice. In the basis of the Bloch states {ψnk} of the
pristine lattice, the GF becomes

Ĝkk′ (ε) = δk,k′Ĝ0
k(ε) + Ĝ0

k(ε)T̂kk′ (ε)Ĝ0
k′ (ε), (18)

where G0
nk(ε) = (ε − εnk + iη)−1, and

T̂i,kk′ (ε) = V̂i,kk′ +
∑
k′′

V̂i,kk′′Ĝ0
k′′ (ε)T̂i,k′′k′ (ε). (19)

Here, V̂i,kk′ are the matrix elements of the defect potential
in Eq. (3) and the sum over k′′ ∈ 1st BZ is over virtual
intermediate states. In contrast to V̂i,kk′ , the T matrix is, in
general, not Hermitian.

Given the GF in Eq. (18), the real-space LDOS in Eq. (17)
which contains information about the electronic properties of
the defect can be obtained via a Fourier transform [27]. For
example, defect-induced bound states manifest themselves in
a high LDOS intensity at energies corresponding to the bound-
state energy. They arise when the T matrix introduces new
poles in the GF via the correction δĜ = Ĝ0T̂ Ĝ0 in the last
term of Eq. (18). From the full matrix form of the T matrix

T(ε) = [1 − VG0(ε)]−1V, (20)

where the boldface symbols denote matrices in the band (n)
and wave-vector (k) indices, the poles of the T matrix are seen
to appear at energies where the determinant of the matrix in
the square brackets vanishes, i.e.,

det[1 − VG0(ε)] = 0. (21)

Therefore, the positions of the bound states depend sensitively
on the defect matrix elements and the band structure, and
since also high-energy bands can be involved in the formation
of bound states, their exact position can, in general, not be
inferred from low-energy models. For in-gap bound states
residing in the band gap of a semiconductor, the bound states
form discrete energy levels and will be strongly localized to
the defect site due to a weak interaction with the delocalized
Bloch states. On the other hand, quasibound resonant states
in the bands acquire a finite width and tend to be more
delocalized.

An in-depth study of the LDOS and the associated quasi-
particle interference is beyond the scope of this work and has
been deferred to other works [27,87].

B. Disordered systems

In disordered systems with a random configuration of
defects, experimental observables are often self-averaging and
must be obtained on the basis of the disorder-averaged GF.
In contrast to the single-defect problem discussed above,
the problem for the disorder-averaged GF cannot be solved
exactly.

The disorder-averaged GF is given by the Dyson equation

Ĝk(ε) = Ĝ0
k(ε) + Ĝ0

k(ε)�̂k(ε)Ĝk(ε), (22)

where the disorder self-energy �̂k accounts for the inter-
action with the disorder potential, and introduces spectral
shifts, broadening, and potentially bound defect states. As the
disorder average restores translational symmetry, the GF is
diagonal in k. However, the matrix structure in the band and
spin indices is retained, and Eq. (22) must be solved by matrix
inversion.

In this work, the self-energy is described at the level of
the Born and T -matrix (full Born) approximations [25,26],
which apply to dilute concentrations of defects. The two
self-energies are illustrated with Feynman diagrams in Fig. 4,
where the individual diagrams describe repeated scattering off
single defects to different orders in the scattering potential.

The T -matrix self-energy �̂T in the bottom equation of
Fig. 4 takes into account multiple scattering off defects to all
orders in the defect potential, and is therefore exact to lowest
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ΣB = + , = ci ; = Vi,kk ; = G0
k

ΣT = + + + + · · ·

FIG. 4. Feynman diagrams for the Born �B (top) and T -matrix
�T (bottom) approximations for the disorder self-energy. The T -
matrix self-energy sums up all diagrams involving multiple scattering
off the same defect and is therefore exact to lowest order in the
defect concentration ci = Ni/N where Ni and N are, respectively, the
number of defects and unit cells in the lattice.

order in the disorder concentration ci = Ni/N (or density
ni = Ni/A) where Ni is the number of defects of type i. The
self-energy is given by [25,26]

�̂T
i,k(ε) = Ni

[
V̂i,kk +

∑
k′

V̂i,kk′Ĝ0
k′ (ε)T̂i,k′k(ε)

]
, (23)

where T̂ is the T matrix in Eq. (19), and can be expressed in
terms of the k diagonal of the T matrix as

�̂T
i,k(ε) = NiT̂i,kk(ε) ≡ ci

ˆ̄Ti,kk(ε) ≡ ni
ˆ̃T i,kk. (24)

Here, the definitions of the symbols in the two last equalities
are analogous to the ones for the defect matrix elements in
Eq. (13), and express the self-energy in terms of the disorder
concentration ci or density ni, respectively. In the latter case,
the T matrix T̃ = AcellT̄ has units of eV Å2.

In the Born approximation in the top equation of Fig. 4,
the self-energy is truncated after the second-order term in
Eq. (23), i.e.,

�̂B
i,k(ε) = Ni

[
V̂i,kk +

∑
k′

V̂i,kk′Ĝ0
k′ (ε)V̂i,k′k

]
. (25)

Here, the first lowest-order term given by the k-diagonal
matrix elements of the defect potential is purely real and
gives rise to a shift of the unperturbed band energies εnk. The
second-order contribution in the last term gives the leading-
order contribution to the scattering rate, or linewidth broaden-
ing, corresponding to the Fermi’s golden rule expression

τ−1
nk = 2π

h̄
Ni

∑
mk′

∣∣V nm
i,kk′

∣∣2
δ(εnk − εmk′ ). (26)

In Sec. III B 1 below, we discuss the T -matrix generalization
of this expression via the optical theorem.

In the above, we have only considered defects of a single
type i. For disorder consisting of different types of defects,
the disorder average involves an average over the defect types
in addition to the usual average over their random positions.
In the Born and T -matrix approximations which neglect co-
herent scattering off different defect sites, this amounts to

averaging over the self-energies of the different defect types,
i.e.,

〈�̂k〉dis =
∑

i

�̂i,k = Ndis

∑
i

xiT̂i,kk, (27)

where Ndis = ∑
i Ni is the total number of defects, and xi =

Ni/Ndis is the fraction of defects of type i. Note that this proce-
dure does not apply to self-energies containing, e.g., diagrams
with crossed impurity lines [25,26]. In the following, we omit
the sum over defect types for brevity.

The difference between the Born and T -matrix approx-
imations is that the Born approximation is only valid for
weak defects, while the infinite-order T -matrix approximation
applies to defects of arbitrary strength. As a consequence,
the T matrix generally renormalizes the Born results due to
multiple scattering processes if the defect is not weak. The
formation of bound defect states is another good example
where the Born approximation fails to capture the correct
physical picture described by the T -matrix approximation.

Both the Born and T -matrix self-energies are first order
in the disorder concentration ci = Ni/N (defect sites per unit
cell), and hence valid for dilute defect concentrations ci � 1
(or ni � A−1

cell). To demonstrate the wide range of disorder
densities where this is fulfilled in 2D materials, we consider
graphene (Acell = 5.24 Å2) where a disorder concentration of
ci = 1% is equivalent to a density of ni ∼ 2 × 1013 cm−2.
This corresponds to a rather poor material quality, why the
T -matrix self-energy is an excellent approximation for most
experimentally relevant disorder concentrations.

At the level of the two-particle GF for the conductivity
there are, however, effects not captured by the T -matrix
approximation even at low disorder concentrations. One well-
known example is the weak-localization correction to the con-
ductivity which arises due to interference between scattering
processes at different defect sites [88,89]. Nevertheless, the T -
matrix approach presented here provides a good compromise
between wide applicability and practicality for applications
with realistic defects and band structures.

1. Quasiparticle spectrum and scattering

As a consequence of disorder scattering, the pristine band
structure is renormalized and broadened, yielding quasipar-
ticle (QP) states with a finite lifetime which can be probed
in, e.g., ARPES. The measured spectral function Ak(ε) =∑

n Ank(ε) is given by the diagonal elements of the GF as

Ank(ε) = −2 Im Gnn
kk(ε), (28)

where Ank obeys the sum rule
∫

dε
2π

Ank(ε) = 1.
While our numerical calculations of the spectral function

and DOS presented below are based on the full matrix form
of the GF in Eq. (22), it is instructive to assume a diagonal
form of the self-energy and GF,

Gnk(ε) = 1

ε − εnk − �nk(ε)
, (29)

in order to analyze the effects of disorder scattering in closer
detail.

In the diagonal approximation for the GF in Eq. (29), the
spectral function can in the vicinity of the QP energies ε̃nk
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given by the solution to the QP equation

ε − εnk − Re�nk(ε) = 0 (30)

be approximated as

Ank(ε) ≈ Znk
γnk

(ε − ε̃nk )2 + (γnk/2)2
, (31)

where the QP weight is given by Znk = [1 −
∂εRe �nk(ε̃nk )]−1, and the linewidth broadening is given
by the imaginary part of the self-energy

γnk = −2ZnkIm �nk(ε̃nk ) = −2ZnkNiIm T nn
i,kk(ε̃nk ), (32)

evaluated at the on-shell QP energy ε = ε̃nk, and where the
last equality holds for the T -matrix self-energy.

Via the optical theorem [25,26], the diagonal elements of
the imaginary part of the T matrix can be expressed as

−2 ImT nn
i,kk(ε) = −2 Im

∑
mk′

∣∣T nm
i,kk′ (ε)

∣∣2

ε − εmk′ + iη

= 2π
∑
mk′

∣∣T nm
i,kk′ (ε)

∣∣2
δ(ε − εmk′ ), (33)

and the lifetime broadening (or scattering rate) in Eq. (32) can
be brought on a form which resembles the Born expression
in Eq. (26). This allows to identify the elements T nm

i,kk′ of the T
matrix as the renormalized Born scattering amplitude given by
the bare matrix element V nm

i,kk′ . Furthermore, the optical theo-
rem in Eq. (33) can be used to separate out the contributions to
the lifetime broadening from, e.g., intravalley and intervalley
scattering by splitting the k′ sum into sums over intravalley
and intervalley processes

∑
k′ → ∑

k′∈intra +∑
k′∈inter. This

may be desirable in order to extract, e.g., the disorder-limited
valley lifetime.

In context of the discussion of scattering above, it is
important to note that selection rules in the defect matrix
elements V nm

i,kk′ imposed by a symmetry � common to the
lattice and defect potential V̂i = �V̂i�

−1 are transferred to the
elements of the T matrix. This follows straightforwardly from
the fact that the T matrix transforms as the defect potential
T̂i = �T̂i�

−1 under such symmetry transformations. Thus,
scattering processes which are forbidden by symmetry due
to vanishing matrix elements in the Born approximation are
also forbidden in T -matrix approximations, in spite of the fact
that scattering processes in the latter case proceed via virtual
intermediate states.

2. Bound defect states

When bound states appear in the single-defect problem,
it is interesting to ask how they manifest themselves in the
spectral function and the DOS (here defined per unit cell) of
the disordered system

ρ(ε) = − 1

Nπ
Im[Tr Ĝ(ε)], (34)

where N is the number of unit cells in the lattice. Naively,
one would expect peaks at the bound-state energies of the
isolated defect. To shed light on the the bound-state DOS of
a dilute disordered system, we consider a situation where the

EcEv
E

εbE
−

Re   knΣ

b

FIG. 5. Graphical illustration of the bound-state solution ε = Ēb

to the QP equation in Eq. (30) in the presence of an in-gap pole in
the T -matrix self-energy �T

nk = NiTnk. The bound-state position Ēb

is determined by the intersection [with ∂εRe�T
nk < 0 in order for Zb

nk
in Eq. (36) to be >0] between Re�T

nk (solid blue line) and ε − εnk

(dashed red lines) here sketched for states at the band edge, i.e. εnk =
Ev,c.

single-defect GF in Eq. (18) has an in-gap bound state stem-
ming from a pole of the T matrix with energy Eb.

To facilitate a simple analysis, we resort again to the diag-
onal form of the GF in Eq. (29). In this case, the self-energy is
given by the diagonal elements of the T matrix, which in the
vicinity of the pole can be approximated as

Tnk(ε) = 1

N

ank

ε − Eb + iη
, ε ≈ Eb, (35)

where ank (with unit eV2) is the strength of the pole for a
given band n and k point, and the positive infinitesimal η =
0+ ensures the correct analytic behavior of the T matrix.

We now demonstrate how the pole of the T matrix gives
rise to a new bound-state pole in the disorder-averaged GF,
whose energy we denote Ēb in order to distinguish it from
the T -matrix pole at ε = Eb. The bound state, being a well-
defined quasiparticle of the disordered system, emerges as
a new solution to the QP equation in Eq. (30) with energy
ε = Ēb as sketched graphically in Fig. 5 for states at the band
edges, i.e., εnk = Ev,c. Here, the generic shape of the real part
of the T matrix (self-energy) originates from its pole form in
Eq. (35).

Expanding the self-energy around ε = Ēb, �(ε) ≈
Re�(Ēb) + (ε − Ēb)∂εRe�|ε=Ēb

, the in-gap GF takes the
form

Gnk(ε) ≈ Zb
nk

ε − Ēb + iη
, ε ≈ Ēb, (36)

where Zb
nk = (1 − ∂εRe�nk|ε=Ēb

)−1 is the contribution to the
spectral weight of the bound states from the state nk. Note that
bound states may have contributions from several bands, and
by virtue of the sum rule for the spectral function in Eq. (28),
Zb

nk � 1 in order for the pristine bands to remain well defined.
In the presence of bound states, the spectral function in

Eq. (28) thus becomes a sum of two contributions Ank =
AQP

nk + Ab
nk given, respectively, by (i) Eq. (31) describing the

QPs associated with the pristine bands, and (ii) the imaginary
part of Eq. (36) for the bound state. Note that the bound-state
solution to the QP equation may, in fact, depend on both
n and k, such that dispersive defect bands, i.e., Ēb → ε̄b,nk,
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may arise even though hybridization between the defects is
not accounted for in the T -matrix approximation. As we
demonstrated in a recent work, this situation arises in, e.g.,
alkali-metal-decorated graphene [90].

The bound-state position Ēb naturally depends on the dis-
order concentration via Eq. (30). With the self-energy given
by the pole form of the T matrix in Eq. (35), it follows
straightforwardly that Ēb → Eb in the limit of ci → 0. This is
not surprising as the ci → 0 limit is equivalent to setting Ni =
1 and letting N → ∞, i.e., the single-defect limit. In addition,
the quasiparticle weight vanishes as Znk ≈ ciank/(ε − εnk )2,
implying that the in-gap form of the imaginary part of the GF
becomes

−ImGnk(ε) ≈ π

N

ank

(ε − εnk )2
δ(ε − Eb), ci → 0, (37)

which is identical to the in-gap form of the imaginary part
of the single-defect GF (its diagonal elements) in Eq. (18).
Thus, the bound-state DOS of a dilute system approaches the
single-defect DOS for ci → 0 as anticipated, and its weight
vanishes as 1/N compared to the DOS of the pristine lattice.
At higher disorder concentrations (but still � 1), the graphical
solution of Eq. (30) in Fig. 5 indicates that the GF pole Ēb

drifts away from the T -matrix pole at Eb.
When the disorder concentration becomes so high that

electronic states on neighboring defect sites start to hybridize
and form impurity bands, the single-site T -matrix approxima-
tion considered here breaks down and more advanced methods
are required [91,92].

3. Transport

At low temperatures where electron-phonon scattering is
frozen out, the longitudinal conductivity is often limited by
the intrinsic disorder of the material. Within the framework of
Boltzmann transport theory, the disorder-limited longitudinal
conductivity σ can be obtained from the current density,

j = q
∑
nk

vnkδ fnk ≡ σE, (38)

where q is the charge of the carriers, vnk = 1/h̄∇kεnk is the
band velocity, and δ fnk = fnk − f 0

nk is the deviation of the
distribution function away from the equilibrium Fermi-Dirac
distribution f 0

nk ≡ f 0(εnk ), to first order in the applied field E.
The deviation function is given by the linearized Boltz-

mann equation which for elastic disorder scattering in a
multiband system takes the form

qvnk · E
∂ f 0

∂ε

∣∣∣∣
ε=εnk

= −
∑
n′k′

Pnk,n′k′[δ fnk − δ fn′k′], (39)

where

Pnk,n′k′ = 2π

h̄
Ni

∣∣T nn′
i,kk′ (εnk )

∣∣2
δ(εnk − εn′k′ ) (40)

is the transition rate in the T -matrix approximation, which
follows from the optical theorem in Eq. (33).

In Appendix A we outline a least-square method for the
solution of the Boltzmann equation (BE) (39) on general
k-point grids and with first-principles inputs for the band
structure, band velocities, and elastic scattering rate. The

method does not rely on any assumptions about the func-
tional form of the deviation function δ fnk or a relaxation-time
approximation. Other approaches for the solution of the BE
based on first-principles input for inelastic electron-phonon
scattering have been discussed in the literature [42–44]. Our
method in Appendix A was recently applied in calculations
of the transport properties of Li-doped graphene within a TB
description of the graphene bands and the Li-induced carrier
scattering [93].

In the calculations presented in this work, we restrict
the discussion to transport involving a single band (spin-
degenerate or spin-orbit split), and furthermore assume that
the band structure is isotropic with a constant effective mass
m∗ (or Fermi velocity vF in the case of graphene), which is
a good approximation for the transport-relevant energy range
close to the band edges. In this case, the conductivity can
be expressed in terms of the relaxation time given by the
T -matrix scattering amplitude as

τ−1
nk = 2π

h̄
Ni

∑
k′

∣∣T nn
i,kk′ (εnk )

∣∣2

× [1 − cos θkk′]δ(εnk′ − εnk ), (41)

where θkk′ = θk − θk′ is the scattering angle. The only differ-
ence between the QP scattering rate in Eqs. (32) and (33) and
the inverse transport relaxation time is the factor 1 − cos θkk′

in the square brackets, which accounts for the fact that the
transport is insensitive to small-angle scattering while the QP
lifetime is equally sensitive to all scattering processes. For
isotropic scattering, the two scattering times become identical
as the angular integral of the cos θkk′ term vanishes.

With the above-mentioned assumptions and considering
the low-temperature limit (kBT � EF ), the conductivity in
Eq. (38) simplifies to the well-known Drude form given by

σ = ne2τ (EF )

m∗ and σ = e2v2
F

2
ρ(EF )τ (EF ), (42)

in, respectively, a 2D semiconductor and graphene, where n is
the carrier density and ρ is the density of states. In combina-
tion with first-principles calculations of the T -matrix transport
relaxation time in Eq. (41), these expressions provide a simple
and accurate framework for calculating the low-temperature
conductivity in disordered 2D materials.

C. Numerical and calculational details

The calculation of the T matrix in Eq. (19) is the most
demanding step in the evaluation of the above-mentioned
quantities. Rather than solving the equation by direct matrix
inversion as in (20), it is numerically more stable to recast
it as a system of coupled linear equation (one set of coupled
equations for each column in T and V)

[1 − VG0(ε)]T(ε) = V, (43)

and solve it with a standard linear solver. This requires one
factorization followed by a matrix-vector multiplications and
scales as O(M3) where M denotes the matrix dimension.

The calculation of the T matrix must be checked for con-
vergence with respect to (i) the BZ sampling with Nk k points
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FIG. 6. Brillouin zone grids for a hexagonal lattice with, respec-
tively, (left) uniform and (right) nonuniform k-point sampling. In the
nonuniform grids a denser sampling is used in a small region around
the high-symmetry points (red squares) of particular interest. In this
case, only the dense k-point sampling is specified in the text, and it
is marked with an asterisk as Nk1 × Nk2

∗ in order to indicate that it is
a nonuniform grid.

on either Nk1 × Nk2 uniform BZ grids or nonuniform grids
with a higher density of grid points in the vicinity of important
high-symmetry points (see Fig. 6), and (ii) the number of
bands Nb included in the calculation of the T matrix. In
general, we have found that the convergence of the position of
bound defect states in the gap of 2D semiconductors requires
a large number of bands (Nb > 50) starting from the bottom of
the spectrum and up to high energies, while only a moderate
k sampling (∼21 × 21) is required. On the other hand, the
linewidth broadening in Eq. (32) [and Eq. (33)] requires only
a few bands (Nb ∼ 2–4) (as long as there are no bound states
in the bands), but a dense k-point grid (135 × 135) in order to
sample the constant-energy surface on which the quasiparticle
scattering takes place. In the case of graphene, quasibound
resonant states are inherent to the Dirac cone dispersion, and
hence both the the resonant state and the scattering rate can
be calculated with a dense k-point sampling including only a
few bands.

With the above-mentioned number of bands and k-point
samplings, the dimension M of the matrices in Eqs. (43)
becomes M = Nb × Nk ∼ 20 000–50 000. With the matrix el-
ements represented as 128-bit complex floating-point num-
bers, the memory requirement for each of the dense complex
matrices in Eq. (43) becomes M2 × 128/8 bytes≈10–30 GBs.
To tackle the large matrix dimensions in the solution of the
matrix equation in Eq. (43), we exploit the automatic openMP
multithreading of the LAPACK linear solvers.

In the calculation of the DOS in Eq. (34), a very fine
k-point sampling is needed to converge the DOS of the bands
near the band edges. We therefore (i) first calculate the differ-
ence δρ = ρdis − ρ0 between the DOS of the disordered and
pristine materials on a coarse k-point grid (in order to include
enough bands to capture bound states), and (ii) subsequently
add δρ to the DOS of the pristine material obtained on a fine
k-point grid. In this way, we avoid spiky artifacts in the DOS
of the bands due to insufficient k-point sampling, while at the
same time capturing potential defect states in the bands.

For the results presented in the following sections, the
band structures and defect matrix elements have been obtained
with the GPAW electronic-structure code [48–50], using DFT-
LDA within the projector augmented-wave (PAW) method, a

double-zeta polarized (DZP) LCAO basis, and including spin-
orbit interaction [94]. The parameters used in the individual
calculations are listed in the figure captions.

IV. DISORDERED 2D TMDs

The experimental consensus on the prevalent types of
defects in the 2D TMDs (see Sec. II C 1) has led to numerous
theoretical DFT studies of their structural and electronic prop-
erties [27,61,62,95–101]. On the other hand, first-principles
calculations of the impact on electron dynamics in disordered
2D TMDs remain few [102,103]. In the following subsec-
tions, we analyze in detail the electronic (DOS and quasi-
particle spectrum) and transport (conductivity and mobiliy)
properties.

A. DOS and in-gap bound states

We start by discussing the impact of defects on the DOS,
and in particular the defect-induced in-gap states observed
in various STM/STS experiments [11–16]. Figure 7 shows
the DOS for disordered MoS2 (top) and WSe2 (bottom) with
different types of defects. The dashed vertical lines mark the
position of the valence and conduction band edges (black)
as well as the Fermi energy (EF ; red dashed line). All the
defects, in particular transition metal vacancies, introduce a
series of defect-localized in-gap states at positions in good
agreement with previously reported DFT supercell calcula-
tions [61,100,102,104].

Our results in Fig. 7 show that some of the orbitally
degenerate bound states are subject to a notable spin-orbit-
induced spin splitting. This is also in agreement with previous
supercell calculations of defect-induced in-gap states taking
into account spin-orbit interaction [14,102,104]. In MoS2, the
splitting is of the order of ∼50 meV for the two VMo states
above the Fermi energy and the two VS top states, whereas
a significantly larger splitting of ∼270 meV is observed for
the unoccupied VSe and OSe states in WSe2. It should be
noted that this effect is captured in spite of the fact that
we here consider spin-independent defect potentials, i.e., the
spin-orbit interaction enters only through the unperturbed
band structure.

It is interesting to note that most of the considered defects
introduce both occupied and unoccupied in-gap states occur,
except for the VSe and OSe defects in WSe2 which only
introduce unoccupied in-gap states. For all the other defects,
the shallow occupied states above the valence-band edge act
as hole traps in the p-doped (gated) materials. The converse
holds for the unoccupied in-gap states which act as deep
electron traps in the n-doped materials. As we have recently
demonstrated, the charging of the defect sites resulting from
such carrier trapping has detrimental impact on the transport
properties of gated 2D TMDs [103].

In addition to in-gap bound state, defects may also in-
troduce quasibound states inside the bands as predicted in,
e.g., MoSe2 and WS2 [14,102]. As witnessed by the ci = 1%
curves in Fig. 7 which show pronounced deviations from the
pristine DOS inside the bands, this seems to be the case also
in MoS2 and WSe2. However, we find that some of these
features are artifacts from the procedure we have used to
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FIG. 7. Density of states of disordered 2D TMDs for different types of defects and defect concentrations: (top) MoS2 and (bottom) WSe2.
The energy is measured with respect to the center of the band gap, the vertical dashed lines indicate the position of the valence and conduction
band edges, and the small (red) dashed lines indicate the Fermi energy EF . Parameters: 21 × 21 k points (135 × 135 k for the pristine DOS),
60 bands, and η = 5 meV (20 meV in the bands).

calculate the DOS in the bands of the disordered system (see
Sec. III C above). Only the features in the valence band for
Mo vacancies in MoS2 (∼350 meV below the band edge), W
(∼150 meV below the band edge) and Se vacancies
(∼350 meV below the band edge) in WSe2 correspond to true
quasibound states. As their positions are reasonably far away
from the band edges, resonant scattering off the quasibound
states can be neglected in calculations of the disorder-limited
transport properties [103]. By contrast, both bound and quasi-
bound defect states have been demonstrated to alter the optical
properties of 2D TMDs by binding the excitons in the defect
states [63,66,67,102].

B. Spectral function and quasiparticle scattering

In Fig. 8, we show the valence and conduction band
spectral functions (grayscale intensity plots) for disordered
MoS2 and WSe2 with a ci = 1% concentration of, respec-

tively, Mo and Se vacancies together with the unperturbed
band structure of the pristine materials (dashed lines). Al-
though our DFT calculations indicate that the direct and
indirect band gaps in MoS2 and WSe2 are almost identi-
cal, and that the band gap in some cases is indirect [105],
recent microARPES experiments have given conclusive ev-
idence that the band gap in monolayers of the semicon-
ducting TMDs MX2 with M = Mo, W and X = S, Se is
direct [70].

Overall, the spectral functions overlap almost perfectly
with the unperturbed band structures, indicating that disorder-
induced renormalization of the bands is small at ci = 1%
in the T -matrix approximation. This is in stark contrast to
the Born approximation (not shown), where the first term in
Eq. (25) given by the bare defect matrix element gives rise
to a giant shift of the bands. In the T -matrix approximation,
this shift is strongly renormalized by the matrix inverse on the
right-hand side of Eq. (20).

FIG. 8. Spectral function of disordered 2D TMDs showing the two first spin-orbit-split valence and conduction bands for (left) MoS2 with
Mo vacancies and (right) WSe2 with Se vacancies. The dashed lines show the bands of the pristine materials. Parameters: ci = 1%, 135 × 135 k
points, 4 bands, and η = 20 meV.
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FIG. 9. Disorder-induced linewidth broadening for the spectral
functions in Fig. 8: (left) MoS2 and (right) WSe2; (top) conduction
and (bottom) valence band. The broadening has been obtained from
the imaginary part of the on-shell self-energy via Eq. (32). Parame-
ters: see caption of Fig. 8.

The quasiparticle lifetime given by the broadening of the
spectral function is difficult to infer from Fig. 8 due to
the numerical broadening η. In Fig. 9 we therefore show
the linewidth broadenings obtained directly from the on-
shell self-energy via Eq. (32). Overall, the linewidths show
a pronounced dependence on k with multiple peaks and dips
along the considered path in the BZ. The strong increase in
the linewidth in the vicinity of the � point in the conduction
bands (top plots) is due to overlap with higher-lying bands
outside the energy range shown in Fig. 8. The sharp peak
in the linewidth along the K-M path in the lower right plot
is due to resonant scattering off the quasibound defect state
introduced by the Se vacancy in the valence band. For the
defect concentration ci = 1% considered here, the overall
magnitude of the disorder-induced linewidth is comparable to
the phonon-induced linewidth at elevated temperatures [106].

In the � and K valleys close to the band edges, the
linewidths show characteristic dips with a particularly sharp
shape. To analyze these features in closer detail, we show
in Figs. 10 and 11 the linewidths for the spin-up and -down
bands in K valley of, respectively, the conduction band of
MoS2 (Mo and S vacancies) and the valence band of WSe2

(W and Se vacancies) as a function of the band energy ε = εnk
(measured with respect to the band edges) instead of k. In
the two figures, the left columns show a comparison between
the Born [Eq. (26)] and T -matrix approximations, whereas
the right columns show the contributions to linewidth from
intravalley and intervalley scattering. Due to the large spin-
orbit splitting in the valence band of WSe2, only the linewidth
for the spin-up band appears in Fig. 11. Note that different
k-point samplings have been used in the two figures, hence
the difference in energy resolution.

In Figs. 10 and 11, the sharp dips in the linewidths in Fig. 9
mentioned above are manifested in a strong energy depen-
dence of the T -matrix linewidths close to the band edges.

FIG. 10. Energy dependence of the disorder-induced linewidth
broadening in the K valleys of the conduction band in MoS2 due to
(top) Mo and (bottom) S vacancies. (Left) Comparison between the
Born and T -matrix approximations. (Right) Intravalley vs intervalley
scattering contributions to the T -matrix linewidth. The on-shell
energy has been sampled along the �-K-M path in the BZ, and is
measured with respect to the conduction band edge. Parameters: see
caption of Fig. 8.

For comparison, the linewidths in the Born approximation
exhibit a weaker energy dependence which can be traced
back to the almost constant matrix elements in Fig. 2 inside
the K, K ′ valleys, implying that the Born linewidth given
by Eq. (26) to a good approximation becomes proportional
to the DOS in the K, K ′ valleys. The energy dependence of
the Born linewidths therefore reflects the gradual increase in
the DOS in Fig. 7 at the band edges. On the contrary, the
sharp drop in the T -matrix linewidths at the band edges is
a consequence of higher-order renormalization of the Born
scattering amplitude by multiple scattering processes. This
makes the T -matrix amplitude strongly energy dependent, and
can modeled quantitatively with a simple analytic T -matrix
model as we have demonstrated in Ref. [103].

Another consequence of the higher-order renormalization
is a strong reduction of the scattering amplitude between
the Born and T -matrix approximations. This is evident from
Fig. 10 where the former overestimates the scattering rates up
to three orders of magnitude. The reduction is largest for M
vacancies which are strong defects (cf. the matrix elements
in Fig. 2) for which the T matrix leads to a giant renor-
malization of the Born scattering amplitude. For the weaker
X centered defects (vacancies and substitutional atoms), the
matrix elements in Fig. 2 are smaller, but still large enough
for the T matrix to yield a non-negligible renormalization
of the scattering amplitude. These observations point to a
concomitant breakdown of the Born approximation and stress
the importance of a T -matrix description of atomic defects in
2D TMDs.

In the plots in the right columns of Figs. 10 and 11,
we have separated out the contributions to the linewidth
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FIG. 11. Energy dependence of the disorder-induced linewidth
broadening in the K valley of the valence band in WSe2 due to
(top) W and (bottom) Se vacancies. (Left) Comparison between the
Born and T -matrix approximations. (Right) Intravalley vs intervalley
scattering contributions to the T -matrix linewidth. The on-shell
energy has been sampled along the �-K-M path in the BZ, and is
measured positive with respect to the valence band edge. Parameters:
99 × 99∗ plus parameters in caption of Fig. 8.

broadening from intravalley (solid lines) and intervalley
(dashed lines) scattering. Interestingly, the plots show that
while the intravalley and intervalley contributions are of the
same order of magnitude for Mo vacancies in MoS2, the
intervalley contribution is negligibly small for S vacancies
as well as W and Se vacancies in WSe2. In the almost spin-
degenerate conduction band of MoS2 [73], this is related to the
symmetry-induced selection rules for the intervalley matrix
elements discussed in Sec. II C 1 and Ref. [27], which strongly
suppress K ↔ K ′ intervalley scattering by X -centered defects
in 2D TMDs. In the valence band of WSe2, this as well as
the large and opposite spin-orbit splitting in the K, K ′ valleys
[72] suppress intervalley scattering. Long valley lifetimes
exceeding hundreds of ps are therefore achievable even in
highly disordered 2D TMDs if M-centered defects can be
eliminated.

Our finding for the suppression of intervalley scattering by
chalcogen-centered defects is also relevant for studies of weak
localization/antilocalization in 2D TMDs [107–111], where,
e.g., S vacancies in n-doped MoS2 have often been mentioned
as a source pronounced intervalley scattering [109–111]. As
we have demonstrated here, this is not the case and intervalley
scattering must instead be attributed to the existence of other
point defects.

C. Transport

In studies of the disorder-limited transport properties of 2D
TMDs, it is important to consider the fact that defect-induced
in-gap states can trap holes or electrons as extrinsic carriers
(i.e., gate induced) are introduced into the bands. This holds,

FIG. 12. Low-temperature transport characteristics of disordered
p-doped WSe2 with a concentration of Se vacancies of ci = 0.01%
(ni ≈ 1011 cm−2). (Top) Conductivity and mobility vs Fermi level.
(Bottom) Ratio between the transport and quantum scattering times.
Parameters: m∗ = 0.46 and caption of Fig. 11.

respectively, for occupied in-gap states in p-doped as well as
unoccupied in-gap states in n-doped samples, and results in
charging of the defect sites. A description of such charging
effects within the framework of our method in Sec. II is
beyond the scope of this work. Based on a simple model,
we recently demonstrated that the charge-impurity scattering
resulting from charging of defects has detrimental conse-
quences for the carrier mobility in 2D TMDs [103], and is
therefore unfavorable in order to realize high-mobility TMD
samples.

In the following, we focus on cases where defect charg-
ing is not expected. As witnessed by Fig. 7, this situation
is encountered in p-doped WSe2 with Se vacancies or O
substitutionals which only introduce unoccupied in-gap states
above the intrinsic Fermi level. Upon p doping the material,
i.e., moving the Fermi level into the valence band with a gate
voltage, the defects thus remain overall neutral as there are
no occupied in-gap states to deplete. The defect potentials in
Sec. II C 1 obtained for the charge-neutral defect supercells
therefore give a realistic description of the defects in the
p-doped material.

In the top plot of Fig. 12 we show the low-temperature
transport characteristics of disordered p-doped WSe2 with
a ci = 0.01% concentration of Se vacancies corresponding
to the defect density (∼1011 cm−2) in recently fabricated
high-quality flux-grown TMDs [5,13]. The conductivity is
obtained from Eq. (42) using our DFT-calculated hole mass
(m∗ = 0.46), and with the relaxation time calculated from
Eq. (41) using DFT inputs for the band structure and T matrix.
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In p-doped WSe2, the carrier density n scales with the
Fermi level as n ≈ EF

5 meV × 1012 cm−2. The energy range
considered in Fig. 12 thus corresponds to typical values of the
carrier densities accessible in experiments. The conductivity
and mobility in Fig. 12 directly probe the energy dependence
of the scattering rate shown in Fig. 11. Since the scattering
rate decreases with energy, the conductivity exhibits an initial
sublinear density dependence, which translates into a mobility
that decreases with carrier density. The characteristic density
scaling of the mobility in Fig. 12 is therefore a direct fin-
gerprint of the inherent energy dependence of the T -matrix
scattering amplitude for point defects in 2D TMDs.

Another important observation to make from Fig. 12 is
the overall large magnitude of the carrier mobility μ ∼
15 000–35 000 cm2 V−1 s−1, which exceeds all previously
reported experimental values, so far not exceeding μ ∼
5000 cm2 V−1 s−1 [7,109,111–120]. The large theoretical mo-
bility predicted here is a hallmark of (i) the low defect density
used in the calculation which corresponds to high-quality
TMDs [5], and (ii) the absence of the above-mentioned defect
charging which leads to a significant reduction of the mobility
due to charged-impurity scattering [103]. Both factors are
essential for the realization of high-mobility monolayer TMD
samples.

Finally, the bottom plot in Fig. 12 shows the ratio between
the transport scattering time and the quantum (quasiparticle)
scattering time which is accessible from Shubnikov–de Haas
oscillations in magnetotransport [121]. The close-to-unity
value of the ratio is a direct manifestation of a weak q =
k − k′ dependence of the T -matrix scattering amplitude in the
K, K ′ valleys which is inherited from the Se vacancy defect
matrix element in Fig. 2. In this case, the cos θkk′ term in the
transport relaxation time in Eq. (41) vanishes, and the two
scattering times become identical.

Aside from the impact on the longitudinal conductivity
considered here, other theoretical works have studied the ef-
fect of disorder in 2D TMDs on various other properties such
as, e.g., the optical conductivity [122], excitons and optical
absorption [123], localization [107,108,110], and spin and
valley Hall effects [124,125]. Extensions to studies based on
atomistic descriptions of the defect potential offer interesting
perspectives for future developments.

V. DISORDERED GRAPHENE

Graphene is known to host a wide variety of atomic-
scale point defects which are predicted to introduce reso-
nant states on the Dirac cone associated with quasibound
defect states [28,31,33,80]. The energy of such quasibound
states depends on the interaction between the defect and the
graphene lattice which is highly sensitive to the position of
the defect [34,81,82]. For vacancies and substitutional atoms,
quasibound states with energies in direct vicinity of the Dirac
point arise in a robust manner. In transport, such defects act as
resonant scatterers exhibiting a strong peak in the scattering
cross section at the resonance energy which suppresses the
conductivity [126,127] and affects electron cooling [128,129].

FIG. 13. Density of states of disordered graphene with differ-
ent defect concentrations of vacancies (top) and N substitutionals
(bottom). Parameters: 99 × 99∗ k points (300 × 300 for the pristine
DOS), 2 bands, and η = 50 meV (15 meV for pristine).

In the following, we focus on monoatomic vacancies and
nitrogen (N) substitutionals on the A and/or B sublattice.

A. DOS and spectral function

The DOS of disordered graphene has been studied
in numerous works (see, e.g., Refs. [28–31]) addressing,
e.g., defect-induced resonant states and band-gap openings.
Below we separate the discussion in two cases: (1) sublattice-
asymmetric disorder, i.e., defects located exclusively on
one sublattice, and (2) sublattice-symmetric disorder where
the defects are distributed equally between the A and B
sublattices.

1. Sublattice-asymmetric disorder

In Fig. 13, we show the DOS for disordered graphene
with vacancies (top) and N substitutionals (bottom) located
on only the A sublattice (VA and NA). At low concentration,
ci = 0.1%, the DOS is hardly discernible from the DOS of
pristine graphene. By contrast, at ci = 1% a clear peak in the
DOS associated with a quasibound resonant state emerges,
respectively, below and above the Dirac point for VA and NA

defects. This is in agreement with STM studies of the LDOS
[9,77,79]. Our finding for the position of the vacancy bound
state contrasts previous theoretical studies based on tight-
binding modeling [31–35,130], which predict the resonant
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FIG. 14. Spectral function for disordered graphene with different
concentrations [(top) ci = 0.1% and (bottom) ci = 1%] of A sub-
lattice (left) vacancy defects, and (right) N substitutionals. The red
dashed lines show the dispersion of pristine graphene. The white
dots mark the peak values of the spectral function. Parameters:
η = 25 meV, and caption of Fig. 13.

state to be at the Dirac point. In our analysis below, we
comment on this discrepancy.

Figure 14 shows plots of the spectral functions correspond-
ing to the different defects and concentrations in Fig. 13.
The spectral function at ci = 0.1% reflects the pristine bands
(red dashed lines), although a finite broadening due to dis-
order scattering, here masked by the numerical broadening
η, is present (see also Fig. 17 below). For ci = 1%, the
Dirac cone is strongly perturbed due to resonant scattering
at the position of the quasibound defect states in the DOS.
In addition to a pronounced broadening of the states which
completely washes out the Dirac cone, this also produces
a significant renormalization of the bands below and above
the position of the resonance. Signatures of such effects in
ARPES on nitrogen-doped graphene have so far not been
observed [78,131], probably because the concentration of N
substitutionals is too low.

By closer inspection of the spectral functions in Fig. 14,
a concentration-dependent band-gap opening can be observed
at the Dirac point which at ci = 1% is ∼100 meV. This is
expected as defects located on a single sublattice break the
sublattice symmetry, effectively turning the disordered system
into gapped graphene [132] as also demonstrated in other
theoretical works considering sublattice-asymmetric disorder
[29,85,133]. Band-gap openings have also been reported ex-
perimentally in ARPES on nitrogen-doped graphene [78] and
graphene with hydrogen adatoms [134], but the underlying
mechanism is believed to be of a different nature, i.e., not
associated with sublattice asymmetry.

To shed additional light on the band-gap opening as well
as the resonant spectral features, the GF in the 2 × 2 sub-
space spanned by the valence and conduction bands. In this

DFT Analytic

FIG. 15. Disorder self-energy at k = K for (top) A only and
(bottom) A + B N substitutionals, respectively (ci = 1%). (Left)
DFT results. (Right) Analytic results based on the self-energies
in Eqs. (49) and (50) with V0 = −10 eV, Acell = 5.25 Å2, vF =
106 m/s, � = 104 eV. DFT parameters: η = 25 meV, and caption
of Fig. 13.

subspace, the diagonal elements obtained by matrix inversion
of the Dyson equation (22) take the form

Gnn
k (ε) = 1

ε − εnk − �eff
nk (ε)

, A or B, (44)

where the effective self-energy is given by

�eff
nk (ε) = �nn

k (ε) + �nn̄
k (ε)�n̄n

k (ε)

ε − εn̄k − �n̄n̄
k (ε)

, n̄ = n. (45)

Here, the second term introduced by the matrix inversion
describes a defect-induced coupling between the valence and
conduction bands, and is responsible for the band-gap open-
ing.

The effective self-energy in Eq. (45) based on the DFT-
calculated T matrix for N substitutionals is shown in the
left top plot of Fig. 15 for k = K. Here, the solution to
the transcendental equation for the QP equation in Eq. (30)
corresponds to the intersection between the solid (green) and
dashed lines. Clearly, the effective self-energy shows a feature
just below the Dirac point which gives rise to two solutions
of the QP equation, corresponding, respectively, to the top of
the valence band and the bottom of the conduction band, and
hence mark a band-gap opening.

The feature in the effective self-energy responsible for
the band-gap opening can be analyzed further based on the
TB defect model introduced in Sec. II C 2. In this case, we
can solve Eq. (20) for the T matrix analytically, yielding a
k-independent T matrix which in the pseudospin basis inherits
the matrix structure of the defect potential in Eq. (15),

T̂i(ε) = T0(ε)

2
(σ̂0 ± σ̂z ), (46)
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where the prefactor is given by

T0(ε) = V0

1 − V0Ḡ0(ε)
, (47)

and Ḡ0(ε) = 1
2 Tr Ĝ0(ε) = 1

2

∑
nk G0

nk(ε) is the k-summed
GF for pristine graphene. In the Dirac model, it is given by

Ḡ0(ε) = Acell
ρ̄0

2

[
ε ln

∣∣∣∣ ε2

ε2 − �2

∣∣∣∣ − iπ |ε|�(� − |ε|)
]
, (48)

where ρ̄0 = gv/2π (h̄vF )2, gv = 2 is the valley degeneracy,
and � is an ultraviolet cutoff.

Performing a unitary transformation to the eigenstate basis
(as the results below are independent on the valley index we
omit it here), the T -matrix self-energy in Eq. (24) becomes

�̂T
k (ε) = �0(ε)

(
1 ±1

±1 1

)
, �0(ε) = ciT0(ε)

2
, (49)

where the ± sign on the off-diagonal elements is for defects
on the A, B sublattice. In either case, the diagonal elements
of the GF again take the form in Eq. (44), with the effective
self-energy now given by

�eff
nk (ε) = �0(ε) + [�0(ε)]2

ε − εn̄k − �0(ε)
, n̄ = n. (50)

To see the role of the second term for the band-gap opening,
we note that Ḡ0 → 0 in the vicinity of the Dirac point, i.e.,
|ε| → 0, and hence the T matrix in Eq. (47) can be approxi-
mated as T0(ε) ≈ [1 + iδ(ε)]V0, where δ(ε) = V0Im Ḡ0(ε). In
the effective self-energy in Eq. (50) this leads to a pole in
the second term which for the Dirac-point self-energy, i.e.,
k = K, is located at ε0 = ciV0/2. The right top plot in Fig. 15
shows the analytic TB self-energy in Eq. (50) for parameters
corresponding to N substitutionals (see caption). The param-
eters have been obtained by fitting to the DFT self-energy as
follows: We first fix V0 to a value resembling the average value
of the intravalley and intervalley matrix elements in Fig. 3,
and then treat � as a fitting parameter in order to match
the DFT self-energies in Fig. 15. This is in contrast to the
Debye-model-inspired approach in Ref. [31], which is here
found to be unable to yield a satisfactory description of the
DFT self-energy.

Remarkably, the DFT- and TB-calculated self-energies are
in almost perfect agreement. However, due to (i) the nontrivial
q = k′ − k dependence of the matrix elements in Fig. 3,
and (ii) the finite numerical broadening η used in the DFT
calculation of the T -matrix self-energy, some quantitative
differences arise.

Via the analytic self-energy in the top plot of Fig. 15, the
feature in the DFT self-energy responsible for the band-gap
opening can now be identified with the pole introduced by the
second term in Eq. (50), which clearly emerges just below the
Dirac point, and is seen to give rise to the two solutions to
the QP equation also found in the DFT self-energy in Fig. 15.
Note that the QP equations for the valence and conduction
bands are identical at k = K (since εnK = 0 for n = v, c),
implying that the states at the band-gap opening are formed
by a combination of the original valence and conduction band
states as in conventional gapped graphene.

FIG. 16. Spectral function for disordered graphene with equal
amounts of A and B sublattice defects (c = 1%). The plots show the
spectral function along the �-K-M BZ path for (top left) vacancies,
(top right) N substitutionals, and (bottom) a combination of vacan-
cies and N substitutionals. The red dashed lines show the dispersion
of pristine graphene and the white dots mark the peak values of the
spectral function. Parameters: η = 25 meV, and caption of Fig. 13.

In the top plots of Fig. 15, the pole structure in the self-
energy at positive energy stems from the pole in the T matrix
associated with the quasibound defect state in the DOS in
Fig. 13. For the T matrix in Eq. (47), the pole is positioned
at the energy where 1/V0 = Re Ḡ0, and is thus located above
(below) the Dirac point for V0 < 0 (V0 > 0) (see, e.g., Fig. 10
in Ref. [84]). This is in agreement with our discussion of
the V0 parameter for the VA and NA defects in Sec. II C 2.
Note that |V0| → ∞ produces a bound state at the Dirac
point as discussed in several TB studies of vacancy defects
[31–35]. However, as our DFT calculations here demonstrate,
this limiting value of V0 provides an unrealistic description of
the vacancy potential and consequently also the position of the
quasibound defect state.

In addition to introducing the defect state itself, poles in
the T matrix also account for resonant scattering off the defect
state which strongly perturbs the bands. As evident from the
bottom plots in Fig. 14, this introduces a splitting of the
conduction band at the resonance energy which resembles a
gap opening, but the broadening of the states due to resonant
scattering prevents the opening of a spectral gap.

2. Sublattice-symmetric disorder

In Fig. 16 we show the spectral function of disordered
graphene (c = 1%) with defects distributed equally on the A
and B sublattices for vacancies (top left), N substitutionals
(top right), and both vacancies and N substitutionals (bottom).
The two top plots to a large extent resemble the bottom plots
for ci = 1% of A-only defects in Fig. 14, however, with the
important difference that the spectral functions in Fig. 16
do not feature a band-gap opening. In the presence of both
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VA,B and NA,B defects, the renormalization of the bands is
strongly reduced at energies between the two resonant states
in the DOS in Fig. 13 as if the two types of defects cancel
the effect of each other. We can again rationalize these
findings by considering the GF in the valence and conduction
band subspace. As otherwise identical defects on the A and
the B sublattices must be considered as different types of
defects, the total self-energy is given by the average over the
self-energies for the individual A, B defects as in Eq. (27),
which here amounts to averaging the matrix structure of the
self-energies for A and B sublattice defects [126,127].

For the DFT self-energy, we find that the sublattice-
averaged self-energy is almost perfectly diagonal (not shown),
such that the diagonal elements of the GF to a good approxi-
mation become

Gnn
k (ε) = 1

ε − εnk − �nn
k (ε)

, A and B. (51)

This could also have been anticipated from the TB self-energy
where the sublattice average obviously eliminates the off-
diagonal elements in Eq. (49) and �nn

k (ε) = �0(ε). Thus, for
identical defects distributed equally on the A and B sublattices,
overall sublattice symmetry and, hence the chirality of the
graphene states, is conserved.

The two bottom plots in Fig. 15 show, respectively, the
DFT and TB self-energies for N substitutionals on both sub-
lattices. Again, there is an excellent qualitative agreement be-
tween the TB and DFT self-energies, and quantitative differ-
ences can be attributed to the factors mentioned in Sec. V A 1
above. While the structure in the self-energy due to the pole
in the T matrix is retained, the form of Re� in the vicinity
of the Dirac point does evidently not give rise to a band-gap
opening, but only a small downshift of the bands also visible
in the right plot of Fig. 16.

In the case of both VA,B and NA,B defects, the reduction of
the band renormalization at energies immediately above and
below the Dirac point can be attributed to a partial cancellation
between the real parts of the two self-energies in this energy
range. This follows straightforwardly from the fact that the
self-energy for VA + VB defects resembles a shifted version
of the self-energy for NA + NB defects in the bottom plot of
Fig. 16 with the pole structure centered around the position of
the bound state in Fig. 13.

B. Quasiparticle scattering and transport

In this section, we study in further detail the disorder-
induced quasiparticle scattering responsible for the spectral
linewidth broadening in Figs. 14 and 16 as well as its impact
on the transport properties of graphene. In order to avoid com-
plicating the discussion with potential band-gap openings, we
here focus on sublattice-symmetric disorder.

In Fig. 17 we show the linewidth broadening in graphene
with A + B nitrogen substituationals (c = 0.1%) as a function
of the on-shell energy on the Dirac cone. The left plot shows a
comparison between the Born and T -matrix approximations,
whereas the right plot shows the individual intravalley and
intervalley contributions to the T -matrix linewidth in the left
plot. Note that the energy dependence of the linewidth has
been obtained from k points along the �-K-M path in the BZ,

FIG. 17. Energy dependence of the linewidth broadening due to
sublattice-symmetric N substitutionals in graphene. (Left) Compari-
son between the Born and T -matrix approximations. (Right) Intraval-
ley and intervalley contributions to the total T -matrix linewidth.
Points acquired along the �-K-M path. Parameters: cdis = 0.1%,
η = 25 meV, and caption of Fig. 13.

and the fact that it forms a single continuous curve along the
two line segments shows that it is highly isotropic.

While the energy dependence of the linewidth broadening
in the Born approximation reflects the energy dependence
of the density of states of pristine graphene in Fig. 13, the
T -matrix linewidth is strongly electron-hole asymmetric with
a pronounced peak on the electron side due to resonant
scattering. Also, on the hole side where the DOS of pris-
tine and nitrogen-substituted graphene are almost identical
(cf. Fig. 13), does the T matrix yield a strong renormal-
ization of the Born approximation, with an almost energy-
independent linewidth broadening.

The separation into intravalley and intervalley scattering
contributions in the right plot of Fig. 17 reveals that the
two types of scattering processes contribute equally to the
linewidth broadening at positive energies where resonant scat-
tering dominates. This is in agreement with the TB model
in Eqs. (51) and (49). On the contrary, this is not the case
on the hole side where intravalley scattering is stronger than
intervalley scattering, which can be attributed to the different
intravalley and intervalley matrix elements in Fig. 3. Our
finding for the strong electron-hole asymmetry in the interval-
ley scattering rate is in excellent qualitative agreement with
recent magnetotransport measurements where the intervalley
rate was extracted from the weak localization (WL) correction
to the conductivity in nitrogen-doped graphene [135] and
graphene with point defect created by ion bombardment [136].

In Fig. 18, the left and center plots show the low-
temperature transport characteristics of disordered graphene
with a c = 0.01% concentration of sublattice-symmetric va-
cancies (VA + VB) and N substitutionals (NA + NB), respec-
tively. The plots show the conductivity (left y axis) and
mobility (right y axis) as a function of the Fermi level, with
the corresponding carrier density scaling as n ≈ ( EF

120 meV )
2 ×

1012 cm−2. For both types of defects, the transport exhibits a
strong electron-hole asymmetry in the conductivity/mobility
which is inherited from the resonant-scattering-induced asym-
metry in the underlying scattering rates (cf. Fig. 17). Similar
electron-hole asymmetries in the transport characteristics of
disordered graphene have been addressed in other theoreti-
cal works [83,85,127], and demonstrated experimentally in
defected and nitrogen-doped graphene [74,135].
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FIG. 18. Low-temperature transport characteristics of disordered graphene with a c = 0.01% concentration (n ≈ 2 × 1011 cm−2) of
sublattice-symmetric defects. (Left) Vacancy defects (VA + VB) and (center) nitrogen substitutionals (NA + NB). The plots show the
conductivity (left y axis) and mobility (right y axis) as a function of the Fermi level. (Right) Ratio between the quantum and transport scattering
times. Parameters: η = 25 meV, vF = 106 m/s, and caption of Fig. 13.

Due to the fact that the quasibound states for the two
defects considered in Fig. 18 are, respectively, on the hole
and electron sides of the Dirac point (cf. Fig. 13), the two
sets of conductivities/mobilities are almost mirror-symmetric
versions of each other. Considering the large difference in
the value of the matrix elements for VA and NA defects in
Fig. 3, it is perhaps surprising that the magnitude of the
conductivities/mobilities are almost identical when compar-
ing the electron (hole) side for VA + VB with the hole (elec-
tron) side for NA + NB. However, as witnessed by the Born
vs T -matrix comparison in the left plot of Fig. 17, the bare
matrix element which together with the DOS determines the
overall magnitude of the Born scattering rate, simply does not
reflect the magnitude of the true scattering rate given by the
T matrix. This holds, in particular, for strong defects where
the renormalization of the Born scattering amplitude is most
significant.

In the right plot of Fig. 18 we show the ratio between
the transport and quantum scattering times as a function
of the Fermi energy. In spite of the fact that the transport
characteristics for VA + VB and NA + NB defects are similar,
the ratios between the scattering times for the two types of
defects show qualitative differences, in particular, on the hole
side. On the basis of the k, q = k′ − k dependence of the
matrix elements in Fig. 3, vacancies are expected to behave
as short-range disorder (constant matrix element) for which
τtr/τqp ∼ 1 in agreement with Fig. 18. On the other hand, the
strong anisotropy and q dependence of the matrix element for
nitrogen substitutionals reflect a dual short-range and charged-
impurity character as also discussed in Sec. II C 2 above. Since
the transport scattering time is less sensitive to small-angle
scattering, this results in a ratio larger than unity τtr/τqp > 1
on the hole side [137]. On the electron side of the Dirac point,
the ratio is close to unity as resonant scattering stemming from
the short-range nature of the defect potential [cf. the TB model
in Eqs. (15) and (47)] dominates.

In order for a complete characterization of the nature of
the defects via transport studies, it is thus advantageous to
combine measurements of the longitudinal conductivity with
measurements of the Shubnikov–de Haas oscillations in the
magnetoconductivity from which the quantum scattering time
can be inferred.

C. Adatoms and adsorbates

In addition to the in-plane defects in graphene considered
above, adatoms and molecular adsorbates sitting on top of
graphene are also of high relevance as they can be used
to functionalize [138–140] and dope [141] graphene, but
may at the same time dominate the transport properties due
to resonant scattering off the adatom and adsorbate levels
[32,34,142,143].

In a recent work on disordered Li-decorated graphene [90],
we demonstrated that in T -matrix descriptions of adatoms
(we expect that the same holds for other types of adatoms
and adsorbates), it is essential to express the T matrix and
the Dyson equation in Eqs. (19) and (22) in a “complete”
Bloch-state basis; i.e., the basis must include bands which
describe the electronic structure of both graphene and the
surface region where the adatoms are located.

From the point of view of first-principles calculations,
the importance of using a complete basis is not a surprising
observation. On the other hand, T -matrix studies of graphene
with adatoms or adsorbates have consistently been based on
simple TB models considering a single impurity level coupled
to the π bands of graphene [32,34,142]. While this can be
expected to capture, e.g., resonant scattering at a qualitative
level, it does not account for the fact that the impurity level
itself may depend on the impurity concentration via their cou-
pling to so-called surface states [90]. The two, i.e., resonant
scattering and the position of the impurity level, are obviously
interconnected and must hence be treated in a self-contained
framework.

In the T -matrix approach outlined here in Secs. II and III,
electronic levels of adatoms and adsorbates enter through the
second term in the defect potential in Eq. (12) and emerge as
poles in the T matrix. In this respect, the method presented
here must be expected to give a more complete description of
the spectral properties and defect scattering in disordered 2D
materials with adatoms and adsorbates [90].

VI. DISCUSSION AND OUTLOOK

The first-principles T -matrix methodology for modeling
the electronic properties of disordered materials presented
here is a natural step beyond first-principles methods based
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on the Born approximation (see, e.g., Refs. [37–41]). As
witnessed by the examples included here, this is a critical step
in 2D materials where the Born approximation often breaks
down and fails to capture even the qualitative picture.

Our work has identified some of the main technical
challenges associated with first-principles T -matrix calcu-
lations as described in Sec. III C. For example, the large
matrix dimensions and memory requirements encountered
in the solution of the matrix equation in Eq. (43) call
for careful parallelization considerations, beyond the simple
multithreading/shared memory approach adopted here. Alter-
natively, the T -matrix equation can be solved in real-space as
described in Appendix B by using the supercell LCAO basis
{|φμl〉} in Eq. (4) and with a subsequent transformation to
the Bloch-state basis as in Eq. (5). This has the immediate
advantage that the dimensions of the matrices in Eq. (43)
will be fixed to the number of LCAO basis functions in
the supercell, which is rather low (∼1000–10 000 for the
supercell sizes considered here). However, this comes at the
cost of having to perform the transformation in Eq. (5) to
the desired k-point grid for each energy in the T matrix, but
this is manageable and can be more efficient when only the
k-diagonal elements of the T matrix (self-energy) are needed.

Irrespective of the strategy chosen for the solution of the
T -matrix equation, it is essential to use nonuniform k-point
samplings of the BZ in order to achieve a satisfactory en-
ergy resolution in subsequent calculations of, e.g., spectral
properties, scattering rates, or transport properties; see, e.g.,
Refs. [41,44,45,144] for other recent developments in this
direction. As this allows for energy resolutions of the order
of meV, our T -matrix method is advantageous in comparison
to Kubo-based approaches [83,85,92,122] for the calculation
of the low-temperature longitudinal conductivity and its de-
pendence on the Fermi energy (carrier density) in dilute,
disordered materials.

In addition to the technical aspects of the implementation
and the electronic properties discussed in this work, there
are several interesting extensions to be considered in future
works. For example, a generalization to spin-dependent de-
fect potentials V̂i = ∑

s V̂i,s(r̂) ⊗ σ̂s, accounting for the lo-
cal change in the spin-orbit interaction around the defect is
straightforward, and would allow to address spin-orbit and
spin-flip scattering, and hence defect-mediated spin relaxation
[39].

A generalization of our method to the treatment of charged
defects due to filling of bound defect states by extrinsic
carriers presents another highly relevant extension of this
work. This requires a self-consistent framework as well as a
proper treatment of the resulting long-range Coulomb contri-
bution to the defect potential like in calculations of long-range
electron-phonon interactions [145,146]. Preliminary steps for
modeling charged defects have recently been reported [68].

Finally, extensions to other 2D materials and vdW mul-
tilayer structures [147] as well as to solutions of the Boltz-
mann equation based on first-principles inputs for the band
structure, band velocities, and T -matrix scattering amplitude
(cf. Appendix A) will be important for the future character-
ization of the electronic and transport properties of new 2D
materials. Also, our method for calculating the defect matrix
elements paves the way for new diagrammatic first-principles

treatments of, e.g., excitons and optical properties [123], as
well as transport phenomena such as, e.g., localization [88,89]
and anomalous Hall [92,148–151] effects in disordered 2D
materials.

VII. CONCLUSIONS

In conclusion, we have presented a DFT-based first-
principles method for the calculation of defect matrix ele-
ments for realistic descriptions of impurities, defects, sub-
stitutionals, adatoms, adsorbates, etc., in 2D materials. In
combination with a full first-principles-based evaluation of the
T -matrix approximation for the disorder self-energy, we have
developed a powerful parameter-free first-principles frame-
work for the description of bound defect states, spectral prop-
erties, quasiparticle and carrier scattering, and transport in
disordered 2D materials. In spite of the fact that the focus here
has been on 2D materials, the method is completely general
and can be applied also to 1D and 3D materials. The method is
implemented in the GPAW electronic structure code [48–50].

We first applied the method to defects in the two monolayer
TMDs MoS2 and WSe2. We demonstrated that both vacancies
and substitutional oxygen give rise to a series of in-gap
bound states with some of the states exhibiting a large
spin-orbit-induced splitting. As we have discussed in a
recent work [103], the presence of in-gap states leads to
charging of the defect sites in the extrinsic (i.e., gated)
materials, and the resulting charged-impurity scattering
has detrimental consequences for the achievable mobility.
However, interestingly we find that Se vacancies and oxygen
substitutionals in WSe2 only introduce empty in-gap states
above the intrinsic Fermi level, implying that these defects
will remain charge neutral in extrinsic p-type WSe2. In the
transport characteristics of high-quality vdW WSe2 devices
(ndis ∼ 1010–1011 cm−2) free from charged impurities in
the substrate [5], this manifests itself in a record-high low-
temperature mobility μ ∼ 15 000–35 000 cm2 V−1 s−1, which
surprisingly decreases with the carrier density (Fermi energy).
The unconventional density dependence of the mobility can be
traced back to a strong renormalization of the Born scattering
amplitude by multiple-scattering processes accounted for by
the T matrix. As a consequence, the quantum and transport
scattering times become strongly energy dependent and
increase away from the band edge. In conjunction with the
severe overestimation of the scattering rate by the Born
approximation, this underlines the importance of a T -matrix
treatment of point defects in disordered 2D semiconductors.

We also discussed our previously reported symmetry-
induced protection against intervalley scattering by defects
in 2D TMDs [27], and showed that it completely suppresses
intervalley scattering by, e.g., S vacancies in the conduction
band of MoS2, which has often been suggested as the ori-
gin of the intervalley scattering extracted from WL/WAL in
2D MoS2 [109,111]. This finding furthermore points to the
possibility of achieving extremely long valley lifetime even in
disordered 2D TMDs.

In the last part, we studied the effect of carbon vacancies
and nitrogen substitutionals on the electronic properties of
graphene. Here, we found that the two types of defects give
rise to quasibound resonant states, respectively, below and

045433-19



KRISTEN KAASBJERG PHYSICAL REVIEW B 101, 045433 (2020)

above the Dirac point. While the latter is in agreement with
experimental studies of nitrogen substitutionals in graphene
[9,79], our finding for the position of the vacancy-induced
resonant state below the Dirac point is in contrast to numerous
tight-binding studies where it appears at the Dirac point
[31–35]. For now, we can only speculate that this is due to
an oversimplified treatment of the vacancy defect potential in
the tight-binding models.

Studying the spectral properties of disordered graphene
with, respectively, sublattice-asymmetric and sublattice-
symmetric distributions of vacancies and nitrogen substitu-
tionals, we demonstrated defect concentrations of the order
of c ∼ 1% (ndis ∼ 1013 cm−2) are required in order to see
fingerprints of the resonant states in the spectral function
measured in ARPES. We furthermore showed that sublattice-
asymmetric disorder with the defects located exclusively on
one of the sublattices opens a concentration-dependent band
gap in graphene, which for the above-mentioned concentra-
tion is of the order of ∼100 meV. For sublattice-symmetric
disorder, the spectrum again becomes gapless, but retains its
characteristic form at the position of the quasibound states
caused by strong resonant scattering. In the presence of equal
concentrations of sublattice-symmetric vacancies and nitro-
gen substitutionals, the band renormalizations due to the two
types of defects cancel each other, which results in a less
dramatic deformation of the Dirac cone in the vicinity of the
quasibound states.

Finally, we demonstrated that the transport characteristics
of disordered graphene become strongly electron-hole asym-
metric in the presence of quasibound resonant states.

Altogether, our first-principles-based T -matrix method is
an important step toward accurate modeling of realistic de-
fects and their impact on the electronic properties of disor-
dered materials.
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APPENDIX A: NUMERICAL SOLUTION
OF THE BOLTZMANN EQUATION

The Boltzmann equation in Eq. (39) can be recast as a
matrix equation in the composite band and wave-vector index

(n, k),

C f̃ = b, f̃nk = δ fnk

q|E∣∣ ∂ f 0

∂ε

∣∣
ε=εnk

, (A1)

which is solved for f̃nk. Here, the matrix elements of the
collision matrix and the vector on the right-hand side are
given, respectively, by

Cnk,n′k′ = −δnk,n′k′
∑
n′′k′′

Pnk,n′′k′′ + Pnk,n′k′ , (A2)

bnk = vnk · Ê, (A3)

where Pnk,n′k′ is the T -matrix transition rate in Eq. (40), vnk

is the band velocity, and Ê = E/|E| is a unit vector in the
direction of the applied electric field. It should be noted that
no approximations have been invoked in the solution of the
Boltzmann equation outlined above which applies in the case
of elastic scattering.

The matrix form of the Boltzmann equation in Eq. (A1),
appended with the additional particle-conserving constraint∑

nk δ fnk = 0 on the distribution function, can be solved with
a standard least-squares method based on a singular-value
decomposition of the collision matrix.

APPENDIX B: T -MATRIX EQUATION IN LCAO BASIS

As an alternative to the Bloch-state formulation of the
T -matrix equation in Eq. (19) of the main text, it may for
practical reasons be advantageous to use the LCAO supercell
basis as discussed in Sec. VI.

In the nonorthogonal LCAO basis {|φμk〉}, the complete-
ness relation takes the form

∑
kμ,lν |φμk〉(S−1)μν

kl 〈φνl | = 1̂,
where S−1 is the inverse of the overlap matrix defined by
Sμν

kl = 〈φμk|φνl〉. Considering the matrix elements T μν

i,kl (ε) =
〈φμk|T̂i(ε)|φνl〉 and inserting completeness relations in the T -
matrix equation T̂i(ε) = V̂i + V̂iĜ0(ε)T̂i(ε), the latter becomes

T̂i,kl (ε) = V̂i,kl +
∑
k′l ′

V̂i,kk′ ˆ̃G0
k′l ′ (ε)T̂i,l ′l (ε), (B1)

where the orbital index has been omitted for brevity and ˆ̃G0 =
Ŝ−1Ĝ0Ŝ−1.

As in Sec. III, this can be recast as a matrix equation in the
cell and orbital indices,

[1 − VG̃0(ε)]T(ε) = V, (B2)

with the GF given by

G̃0(ε) = [εS − H0]−1. (B3)

The dimension of the matrices is here given by the number of
LCAO orbitals in the supercell.
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