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Collective resonances in a circular array of gyromagnetic rods
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We present a rigorous theoretical investigation on the collective magnetic resonance of a circular array of
subwavelength gyromagnetic rods. We derive the closed-form solutions to the eigenmodes within the framework
of the dynamic dipole approximation using an eigenresponse theory. Owing to the lack of time-reversal symmetry
and Lorentz reciprocity, the eigenpolarizability spectra exhibit significant nonreciprocal characteristics: only a
single branch of rotating magnetic dipoles is supported, whereas another one corresponding to inversely rotating
magnetic dipoles is totally suppressed. We found that the collective coupled magnetic dipole and coupled electric
dipole (CED) modes of the circular arrays display remarkable distinction in both the resonant frequency and the
radiative width in comparison with the isolated gyromagnetic rod. We further carry out full-wave numerical
simulation to test the accuracy of the analytical results on the CED mode.
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I. INTRODUCTION

Complex gyrotropic systems with many symmetries being
broken and emergence of topological states have been studied
intensively in recent years [1–12]. Owing to the broken time-
reversal symmetry as well as broken Lorentz reciprocity, such
gyrotropic systems can possibly exhibit unique nonreciprocal
characteristics in the transmission of the field when the source
and receiver are exchanged in their locations. For example, at
the microwave frequency, magnetic photonic crystals based
on gyromagnetic materials, i.e., yttrium iron garnet (YIG),
were theoretically proposed [1] and experimentally verified
[2,3] to realize the one-way electromagnetic edge mode,
allowing light to propagate in one single direction but block
light in the opposite direction. In the terahertz frequency
regime, magnetized plasma or semiconductor materials, i.e.,
the indium antimonide (InSb), could be replaced to see the
nonreciprocal phenomenon, i.e., one-way tunneling or one-
way wave propagation [10]. Very recently, Pike and Stroud
[11] investigated the propagation of spin waves on a periodic
chain of spherical or cylindrical YIG particles induced by the
magnetic dipole-dipole interaction and found that a linearly
polarized wave will experience the Faraday rotation as it
propagates along the particle chain, which is similar to the
linear waves in bulk homogeneous magnetic materials.

Motivated by exploring electromagnetic properties in a
gyrotropic system, in the present work we aim to see the
collective optical response in a properly arranged circular
array system composed of subwavelength gyromagnetic rods.
Rather than just giving a simple physical picture, we show
explicitly the analytical closed-form solutions to the intrinsic
magnetic dipole (MD) mode for the proposed system within
the framework of the dynamic dipole approximation. The
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effective eigenpolarizability as well as the supporting mode
patterns are described. It is indicated from the eigenpolariz-
ability spectra of MD modes that only a single type of collec-
tive magnetic response is supported, arising from the specified
rotating magnetic moment. Another type of the inversely
rotating magnetic moment is completely suppressed. Such
asymmetrical mode solutions originate from the nonreciprocal
property of gyromagnetic materials. Moreover, the strong
geometrical resonance of the array system yields a collective
magnetic dipole (CMD) and coupled electric dipole (CED)
mode, showing differences in both the resonant frequency and
the radiative width in comparison with the resonance of an
isolated gyromagnetic rod. As an example for validation, we
further perform full-wave numerical simulations on the CED
mode, showing good agreement with the analytical mode
solutions.

The paper is organized as follows. In Sec. II, we describe
the main geometry for the proposed array system and typical
parameters used for gyromagnetic materials. By using the
point MD model for each gyromagnetic rod, we derive in
Sec. III the closed-form solutions to the magnetic eigenmodes
based on the eigendecomposition method. Results on the
eigenpolarizability spectra and the supported mode patterns
are shown in Sec. IV. We further validate in Sec. V the analyt-
ical results on the CED mode by using full-wave numerical
simulations and give the conclusions in Sec. VI. Through-
out the paper, a monochromatic e−iωt time dependence is
assumed.

II. GEOMETRY AND MATERIAL PARAMETERS

Let us consider N infinitely long cylindrical gyromagnetic
rods with radius r arranged to have their centers located on
a circle of radius R0. A top view of the structure in the xy
plane is schematically shown in Fig. 1(a), and the axis of each
cylindrical rod is along the z direction. The center-to-center
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FIG. 1. (a) Schematic diagram of the circular array composed of
N gyromagnetic (YIG) cylindrical rods. The geometrical parameters
R0, r, and a show the radius of the array structure, the radius of
each individual rod, and the center-to-center distance between two
nearest-neighbor rods, respectively. The unit cell for the array system
is also presented. (b) The collection of N rotating MDs as an effective
point dipole model of (a). The black dots denote the rod centers in
(a), and the blue arrows show the excited magnetic moments m at
the rods, the rotation directions of which are indicated by the orange
circular arrows.

distance between two nearest-neighbor rods is identical with
a = 2R0 sin(π/N ). The array is assumed to be centered at the
origin and then the position vectors of the rod centers are
described as

R j = R0 cos(2 jπ/N )ex + R0 sin(2 jπ/N )ey, (1)

where j = 1, 2, . . . , N is the rod index. Under the external
static magnetic field H along the z direction, the gyromagnetic
rod can be characterized by the permittivities εm and the
following magnetic permeability tensor:

μ =
⎛⎝ μ1 iμ2 0

−iμ2 μ1 0
0 0 1

⎞⎠, (2)

where μ1 = 1 + ωm(ωh − iβω)/[(ωh − iβω)2 − ω2], μ2 =
ωmω/[(ωh − iβω)2 − ω2], where ωh = γ H0 is the precession
frequency, γ is the gyromagnetic ratio, H0 is the applied
magnetic field, and β is the phenomenological damping co-
efficient; ωm = γ 4πMs, and 4πMs is the saturation magne-
tization. The background medium is set to be the vacuum.
Notice that each individual rod may be treated as an ideal
dipole in the limit of low-loss subwavelength structure near
the frequency of its dipolar resonance. Meanwhile, we focus
on the case that the rods are not too close together, i.e., a � 3r,
retaining the validity of the dipole approximation for the entire
array system. Hence in the following work, we may consider
the proposed gyromagnetic system [shown in Fig. 1(a)] as a
collection of N MDs in the xy plane, located respectively at
the center of each rod [shown in Fig. 1(b)].

III. MODEL AND METHODS

A. Coupled dipole method

We start with a two-dimensional (2D) scattering problem
of the collection composed of N MDs shown in Fig. 1(b),
under the normal illumination of an external TE-polarized
plane wave (Hx, Hy, Ez). The local field at the jth dipole
consists of the external incident field acting on the jth dipole,

i.e., Hinc(R j ), and the field radiated from all other dipoles
i (i �= j). We then have the following equation for the field
at the jth dipole,

Hloc(R j ) = Hinc(R j ) +
N∑

i �= j

Hi(R j − Ri ), (3)

where Hi(R) = k2
0G0(R)mi is the magnetic field radiated

from the magnetic moment mi of the ith dipole. Here, k0 =
ω/c is the wave number in the background medium and
G0(R) is the free-space 2D Green’s function.

The local field at the jth dipole induces a magnetic moment
m j = αHloc(R j ). Here, the polarizability α is the dynamic
dipole polarizability, which is represented by

α = 8i

k2
0

[
(D1 + D−1)/2 −i(D1 − D−1)/2
i(D1 − D−1)/2 (D1 + D−1)/2

]
, (4)

where D1/D−1 are the Mie scattering coefficients correspond-
ing to the MD of the clockwise/counterclockwise rotating
direction. It is emphasized that D1 and D−1 are no longer
the same for the gyromagnetic materials. The polarizability
tensor in Eq. (4) indicates anisotropic characteristics with
nonzero off-diagonal components, which substantially leads
to the asymmetrical excitation on the MDs with different
rotating direction. The derivation details for Eq. (4) and Mie
scattering coefficients of an isolated gyromagnetic cylindrical
rod are given in the Appendix.

To analyze the eigenmodes and mode profiles for this array
of MDs, Eq. (3) may become

α−1m j − k2
0

N∑
i �= j

G0(R j − Ri )mi = Hinc(R j ), (5)

which are a set of linear equations for the coupled MDs. We
may also write these equations in the compact matrix form

M(ω)m = Hinc, (6)

where m is the 2N-rowed column vector of N dipole moments
(m1, m2, . . . , mN ) and M is a 2N × 2N matrix, defined as

M(ω) = α−1 − k2
0

N∑
i �= j

G0(R j − Ri ). (7)

Instead of solving Eq. (6) directly by a time-consuming
method of searching complex zeros of the determinant of
M, det[M(ω)] = 0, we consider the following eigenvalue
problem:

M(ω)m = λ(ω)m, (8)

by employing an eigendecomposition method (or spectral the-
ory), which is previously known as an eigenresponse theory
[13].

Here in Eq. (8), λ is the complex eigenvalue of the matrix
M(ω), and we can also define the effective eigenpolarizability
as [14]

αeig = 1

λ
, (9)

which allows us to see the collective response of the whole
system when the external field is present. The imaginary part
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of eigenpolarizability Im[αeig] is proportional to the extinction
of the external driving field. Its peaks also indicate the reso-
nant mode location and the corresponding widths of the peaks
are inversely proportional to the quality factor Q of the par-
ticular resonant mode. Moreover, the dominant contribution
to the resonance from the material properties (material/site
resonance) or the geometrical properties (geometrical/lattice
resonance) can be generally separated.

B. Analytical eigensolutions

We now face the eigenvalue problem of Eq. (8) on the
2N × 2N matrix M, which in general is only solved numer-
ically. Fortunately, the structure in Fig. 1(b) that we consider
has a discrete rotational symmetry, and the above problem can
be simplified and analytically solved as shown below.

For convenience, we present the matrix M and the mag-
netic dipole moments m in Eq. (8) using the Cartesian coordi-
nates with an origin at the center of the circular array. Under
a specified rotating transition by the matrix �,

� =

⎡⎢⎢⎢⎢⎢⎣
�̃1 O O O O
O �̃2 O O O
O O �̃3 O O

O O O
. . .

...
O O O · · · �̃N

⎤⎥⎥⎥⎥⎥⎦, (10)

where

�̃ j =
[

cos(2 jπ/N ) sin(2 jπ/N )
− sin(2 jπ/N ) cos(2 jπ/N )

]
( j = 1, 2, . . . , N )

(11)
is the local transformation for the jth dipole, the eigenvalue
problem Eq. (8) then becomes

M′m′ = λm′, (12)

where the new vectors m′ = �m and new matrix
M′ = �M�−1.

Due to the discrete rotation symmetry of the structure, it
is seen that M′ remains invariant under a cyclic index trans-
formation, i.e., T(n)M′T(n)−1 = M′, for n = 1, 2, 3, . . . , N ,
where

T(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

O Ĩ O O O

O O Ĩ
. . .

...

O O O
. . . O

O O O
. . . Ĩ

Ĩ O O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎦

n

, (13)

and Ĩ is a 2 × 2 identity matrix. Thereby, T(n) and M′ may
share the same eigenvectors

v(p)
n = g(p)ei2π pn/N , (14)

with g(p) being an arbitrary vector and p = 1, 2, 3, . . . , N .
By substituting Eq. (14) into Eq. (12) and introducing an

additional index σ for further reduced eigenspaces, we can
finally split the transformed Eq. (12), which is involved in the
2N × 2N matrix M′, into N sets of eigenvalue problems on a

2 × 2 matrix M̃′(p),

M̃′(p)g(p,σ ) = λ(p,σ )g(p,σ ), (15)

where

M̃′(p) = α−1 − k2
0G (p), (16)

G (p) = i

8

N−1∑
j=1

[
H (1)

0 (k0Dj )�̃
−1
j + H (1)

2 (k0Dj )K
]
ei2π p j/N ,

(17)

Dj = 2R0 sin

(
jπ

N

)
, (18)

and

K =
[−1 0

0 1

]
, (19)

with the mode index p = 1, 2, 3, . . . , N , and σ = +, −.
The eigenvalues λ are given by

λ(p,±) = 1
2

[
α−1

11 + α−1
22 − 
2 ± 
s

]
, (20)

with the corresponding eigenvectors

g(p,±) =
[

a−1
11 − a−1

22 + 
3 ± 
s

2(α−1
21 + 
1)

]
. (21)

Note that the eigenvectors m′(p,±) of M′ are in the form of

m′(p,±)
j = g(p,±)ei2π p j/N . (22)

Here, some finite sums and expressions are used:


1 = ik2
0

8

N−1∑
j=1

sin
2 jπ

N
H (1)

0 (k0Dj )e
i2π p j/N , (23)


2 = ik2
0

4

N−1∑
j=1

cos
2 jπ

N
H (1)

0 (k0Dj )e
i2π p j/N , (24)


3 = ik2
0

4

N−1∑
j=1

H (1)
2 (k0Dj )e

i2π p j/N , (25)

and


s =
√

4
(
α−1

12 − 
1
)(

α−1
21 + 
1

) + (
α−1

11 − α−1
22 + 
3

)2
.

(26)

Thus, the close-form solution to the eigenvalue problem for
the circular array is eventually derived. It is seen from Eq. (21)
that all eigenmodes are in general polarized elliptically in
the xy plane with two possible types: clockwise (σ = +) or
counterclockwise (σ = −) rotating MDs. As shown below,
only one single type can actually be supported for the gyro-
magnetic system. Additionally, the phase difference between
two nearest dipoles � j = 1 on the mode index p is obtained
with 2π p/N from Eq. (22).

IV. ANALYTICAL STUDY ON EIGENPOLARIZABILITIES
AND FIELD PROFILES

We now analyze the nonreciprocal collective response in
the proposed system through the eigenpolarizabilities and
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FIG. 2. Eigenpolarizability spectra for the rotating MD collec-
tions of N = 3 and N = 8. (a), (b) Imaginary part. (c), (d) Real
part. The thin solid lines and the scatterers show the analytical
results from Eq. (20) and numerical results by solving directly
Eq. (8), respectively. For comparison, the eigenpolarizability spectra
for the single isolated rod are also presented by solid blue lines. The
eigenpolarizability is in arbitrary units.

the supporting field patterns. Without loss of generality, we
consider here that the rods are made of a type of commercially
available gyromagnetic material YIG, and use a set of typi-
cal parameters for YIG as εm = 15, H0 = 500 Oe, 4πMs =
1750 G, and β = 3 × 10−4. The geometrical parameters for
the array system are set with r = 0.08 cm and R0 = 0.4 cm.
In Fig. 2, we calculate the real and imaginary parts of αeig

as functions of frequency using the analytical expression in
Eq. (20). Cylindrical rods with different numbers for the
array system are used, N = 3 in Figs. 2(a) and 2(c) and
N = 8 in Figs. 2(b) and 2(d). The numerical data are also
included in each figure by solving Eq. (8) directly with a
commercial solver, i.e., Mathematica. Excellent agreement
is shown between analytical and numerical results. In par-
ticular, for the array system composed of many rods, i.e.,
N = 8, analytical formulas allow us to trace the curves for
different eigenmodes; otherwise it is difficult to connect the
mixed numerical data points in Fig. 2 without analytical
results.

For the imaginary part of each eigenpolarizability Im(αeig)
as shown in Figs. 2(a) and 2(b), there always exists a typical
Lorentzian peak, displaying the resonant frequency as well
as the radiative width for the resonance, while for the real
part Re(αeig), it changes from a peak to a dip close to the
resonance. Owing to the violation of time-reversal symme-
try and reciprocity, only a single branch (σ = −) of the
counterclockwise rotating MDs is supported, whereas another
one (σ = +) corresponding to the clockwise rotating MDs
is completely suppressed with negligible eigenpolarizability.
Meanwhile, all eigenmodes for p = 1, 2, 3, . . . , N are always
nondegenerate, although some curves are in close proximity.
Compared with the case of an isolated gyromagnetic rod
(shown as blue lines in Fig. 2), the resonance for most of the
collective modes mainly associated with material resonance

is close in frequency point to that for a single rod, i.e., modes
p = 2, 3 in Fig. 2(a) or modes p = 2, 3, . . . , 7 in Fig. 2(b).
However, there are also additional mode solutions with a
distinct redshift in the resonant frequency from that of single
rod, resulting from the strong geometric resonance, i.e., mode
p = 1 in Fig. 2(a) and p = 1, 8 in Fig. 2(b).

For the purpose of further understanding the complicated
collective response, we plot in Figs. 3(a)–3(h) the electric field
Ez patterns of all modes from p = 1 to p = 8 in the N = 8
array system, which is just the case of Figs. 2(b) and 2(d).
For the p = 1 mode, magnetic moments in all MDs are
rotating in a similar way, creating a CMD mode, while
for the p = 8 mode, the excited magnetic moments form a
circular loop of magnetic displacement current, representing
effectively a CED mode. Other modes from p = 2 to p = 7
are involved in higher-order multipole moments, as shown in
Figs. 2(b)–2(g). In terms of multipole decomposition, we can
identify quantitatively the resonant character for each mode
as shown in Figs. 3(i) and 3(j). The contributions of different
multipoles (Px, Py, Pz, Mx, My, and Mz) are investigated by
magnetic dipole moment M = ∑

j m j and electric dipole

moment P = 2
ik0

∑
j

R j×m j

R2
j

[15,16]. For the p = 1 mode, large

Mx and My components among these modes are seen, but
with the π/2 phase difference between them, i.e., My/Mx =
eiπ/2, resulting in the formation of a counterclockwise rotating
MD in the xy plane. In comparison, a dominant scattering
power attributed to the ED moment Pz is found for the p = 8
mode.

We next investigate in Fig. 4 the impact of MD numbers
N on the mode distribution. Other geometrical parameters
for the array system are fixed as those used in Fig. 2, i.e.,
r = 0.08 cm and R0 = 0.4 cm. The position of each individual
MD follows the formula Eq. (1). As N varies from N = 2
to N = 10, the interparticle distance becomes smaller and
the interaction between MDs is enhanced, resulting in the
formation of larger bandwidth (difference between maximum
and minimum mode frequencies) as shown in Fig. 4. In
particular, both the CMD (p = 1) and CED modes (p = N)
are strongly influenced with an increase of N , indicating a
much larger shift in the resonant frequency, whereas other
modes are still near the resonance of a single rod (shown by
the blue dashed line in Fig. 4).

Besides, the quality factor Q can also be evaluated from
the imaginary part of eigenpolarizability Im(αeig), defined as
Q = ω0/δ (the resonant frequency ω0 and the corresponding
peak width δ). In Fig. 5, we present the relative quantity Q/Q0

for the CMD (p = 1) and CED (p = N) modes as a function
of MD numbers N , showing the variation of the Q factor for
the array structure compared to that (Q0) for the single isolated
rod. Notably, the CMD mode radiates strongly, resulting in
the formation of a low-Q collective resonance. Meanwhile,
the Q factor decreases gradually as N increases. In contrast,
when the CED mode is excited, most of the electromagnetic
energy tends to concentrate inside the array structure and the
Q factor is well enhanced, particularly attaining a maximum
Q/Q0 = 5.2 for the case of N = 3. In addition, other higher-
order collective modes except for the CMD and CED modes
could also achieve an improvement of mode qualities (not
shown).
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FIG. 3. (a)–(h) Electric field Ez patterns for the intrinsic normal modes of a ring of N = 8 counterclockwise rotating MDs. Normalized
multipole decomposition results Mα (i) and Pα (j) of the normal modes to their respective maximal values in each panel.

V. VERIFICATIONS BY FULL WAVE
NUMERICAL SIMULATION

We turn to carry out full-wave numerical simulations, i.e.,
COMSOL Multiphysics, to test the accuracy of the obtained
analytical results within the framework of the dynamic dipole
approximation used above. For our calculations, we choose a
unit cell as shown in Fig. 1(a), due to the discrete rotational
symmetry in the ring system. Two boundaries along the radial

FIG. 4. The distributions of the resonant frequency as functions
of the number N of the ring system. Analytical mode solutions on
the CMD mode (p = 1) and CED mode (p = N) are also shown
clearly by the black solid and red dashed lines, respectively. For
comparison, the resonant frequency for the single isolated rod with
radius r = 0.08 cm is indicated by the blue dotted line. The structural
parameters R0 and r are the same as those in Fig. 2.

directions are set by periodic conditions. For instance, the
continuity in the fields of these two boundaries implies the
case of an in-phase oscillation for all rods, also corresponding
to that for the CED mode (p = N). The third boundary at the
outer space is used by the scattering boundary. To see the
eigenmode solutions, we then perform the mode analysis in
COMSOL Multiphysics by probing a globe out-of-plane wave
number kz on the unit cell. Through sweeping the frequency
over the concerned range, the magnitude of kz may exhibit a
dip close to zero when the resonance occurs. Field profiles
can be used to further confirm which kind of resonance

FIG. 5. The relative mode qualities Q/Q0 of the CMD (p = 1)
and CED (p = N) modes versus the number N of the ring system,
where Q0 is the Q factor for the single isolated rod with radius r =
0.08 cm. Other parameters are the same as those in Fig. 2.
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FIG. 6. (a) The globe out-of-plane wave number kz on the chosen
unit cell as a function of frequency. For different numbers N of
ring systems, the CED modes are marked by pink dots and also
connected with the dashed line. Note that each curve is shifted by
1.5 with respect to the preceding one. (b) The comparison of CED
mode solutions between the COMSOL Multiphysics and analytical
method. Other parameters are the same as those in Fig. 2.

happens, i.e., dipole, quadrupole, or other high-order multi-
pole resonances.

In Fig. 6(a), we focus on the observation of the CED reso-
nance by marking the lowest dips in magnitude of kz for differ-
ent ring systems analyzed in Fig. 4. A summary in the resonant
frequency for the CED resonance is given in Fig. 6(b), show-
ing good agreement with the analytical results. Nevertheless,
discrepancies will exist for larger-N ring systems, mainly due
to the neglected contribution of the ED resonance at the single
isolated rod. As seen from Fig. 8 in the Appendix, the Mie
coefficient D0 (associated with the ED resonance) appears
nearly unchanged, but just an order of magnitude less than
that of D−1 (corresponding to the MD resonance) over the
concerned frequency range; therefore the exclusion of D0 may
induce the noticeable shift in the resonant frequency.

We finally see in Fig. 7 the excitation of the CED res-
onance for the array system of N = 3 and N = 8 when an

FIG. 7. The excitation of the CED resonance for the ring system
of N = 3 and N = 8 when an out-of-plane electric current is located
at the origin (labeled with S). (a), (b) The electric field profile
Ez. (c), (d) Norm of magnetic field distribution |H | simultaneously
with the cyan arrows denoting the vector patterns of magnetic
field H = (Hx, Hy ). The structural parameters are R0 = 0.4 cm and
r = 0.08 cm.

FIG. 8. (a) Magnitudes of the Mie scattering coefficients
of a single isolated YIG cylindrical rod, having radius
r = 0.08 cm, as depicted in Fig. 1(a). For TE polarization
(Hx, Hy, Ez), the curve D0 denotes the electric dipole, D−1/D1 the
counterclockwise/clockwise rotating magnetic dipole, and D−2/D2

the counterclockwise/clockwise rotating magnetic quadrupole.
The counterclockwise magnetic dipole is dominant over the range
of frequencies, i.e., 3.7–3.9 GHz. (b) Radiation distribution maps
on electric field (Ez component) for 2D counterclockwise rotating
magnetic dipole, my = imx , in free space.

out-of-plane electric current is located at the origin. The
distributions in the electric field Ez [Figs. 7(a) and 7(b)] and
the magnetic field H = (Hx, Hy) as well as norm of magnetic
field |H | [Figs. 7(c) and 7(d)] are shown in Fig. 7. At the
resonance of dipolar MDs, i.e., f = 3.817 GHz for N = 3 or
f = 3.751 GHz for N = 8, the rotating MD located at each
individual rod is excited as shown by the cyan arrow surface
of the magnetic field H in Figs. 7(c) and 7(d). Notice that there
exists the abrupt change in direction of the magnetic field at
the interface of the rod, due to the fact that the effective perme-
ability (μ2

1 − μ2
2)/μ1 for each rod shows negative value at the

dipolar MD resonance. Nevertheless, the in-phase oscillation
patterns for all magnetic moments on rods form a circulation
of magnetic displacement current, acting as an ED parallel to
the rod axis. Thereby the excitation of the CED mode Pz is
well observed. It is emphasized that the CED resonance is a
collective response of the MDs among the rods, not possible
with a single rod. Moreover, as the localized electric field
mainly radiates inward, the CED resonance can be readily
excited by a line current located at an arbitrary location inside
the array system, not limited to the region close to the rod.

VI. CONCLUSION

In summary, we demonstrate an analytical approach to
the coupled magnetic resonance in a circular array of sub-
wavelength gyromagnetic rods. Based on the dynamic dipole
approximation, we derive the closed-form formulas to the
intrinsic MD mode solutions. Both the effective eigenmode
polarizability and the supporting mode profiles are explicitly
described. Owing to the unique property originating from
gyromagnetic materials, i.e., the breaking of time-reversal
symmetry and Lorentz reciprocity, significant nonreciprocal
characteristics are exhibited: a class of MDs with the spec-
ified rotating direction is supported, whereas another one in
inversely rotating MDs vanishes. In contrast to the resonance
of an isolated gyromagnetic rod, the collective response for
the array system, i.e., the collective CMD and CED resonance,
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shows remarkable difference in the resonant frequency as well
as the radiative width. The investigation on unique optical
properties of subwavelength gyromagnetic structures may
lead to potential applications in on-chip isolators, circulators,
and nonreciprocal metasurfaces, which are expected to be key
elements in modern communication.
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APPENDIX: DYNAMIC POLARIZABILITY OF AN
ISOLATED GYROMAGNETIC ROD

We consider a two-dimensional (2D) scattering problem
of an isolated gyromagnetic rod with radius r under the
normal illumination of an external TE-polarized plane wave
(Hx, Hy, Ez). The material parameters and other geometrical
settings are the same as those for the single rod depicted
in Fig. 1(a). For convenience, we solve this problem by
using a system of local cylindrical coordinates (ρ, φ) with an
origin located at the center of the single rod. We expand the
incident electric field by the cylindrical wave functions with
Einc(ρ, φ) = ∑

n AnJn(k0ρ)einφez. Near the dipolar resonance
of the subwavelength rod, one may treat it as a corresponding
dipole. The magnetic field scattered by such a single rod
is equivalent to that by a magnetic dipole m, and thereby
reads

Hsca (ρ, φ) = k2
0G0(ρ)m = k2

0G0(ρ)αHinc(ρ, φ), (A1)

where α denotes the dynamic polarizability tensor for the
isolated gyromagnetic rod, and G0(ρ) is the free-space 2D
Green’s function expressed by

G0(ρ) = i

4

[
1
x f

H (1)
1 (x f ) 0

0 H (1)
0 (x f ) − 1

x f
H (1)

1 (x f )

]
, (A2)

and

Hinc(ρ, φ) =
∑

n

k0An

iωμ0

[ in
x f

Jn(x f )
−J ′

n(x f )

]
einφ, (A3)

Hsca (ρ, φ) =
∑

n

k0Bn

iωμ0

[ in
x f

H (1)
n (x f )

−H ′(1)
n (x f )

]
einφ (A4)

are the incident and scattered magnetic fields, respectively.
The Mie scattering coefficient Dn(≡ Bn/An) reads

Dn = x f Jn(xg)J ′
n(x f ) − ζ (xg)Jn(x f )

x f Jn(xg)H ′(1)
n (x f ) − ζ (xg)H (1)

n (x f )
, (A5)

with

ζ (xg) = nμkJn(xg) + xgμrJ ′
n(xg), (A6)

where Jn(x f ), Jn(xg), H (1)
n (x f ), H (1)

n (xg), and the primes in
Eqs. (A2)–(A6) respectively denote the nth-order Bessel and

the first kind of Hankel functions and their correspond-
ing derivatives with the argument of x f = k0r (or xg =
x f

√
εm/μr), μr = μ1/(μ2

1 − μ2
2), and μk = −μ2/(μ2

1 − μ2
2),

and k0 is the wave vector in free space.
Notice that here the incident wave we are concerned with

should be the averaged local external magnetic field applied to
the rod; thus the external incident wave at the center of the rod
H inc(ρ = 0) is only considered. However, most of the terms in
Eq. (A3) at ρ = 0 can be proven to vanish, except the n = ±1
terms which reduce the field to

Hinc(ρ = 0) = k0

2ωμ0

([
1
i

]
eiφ +

[
1
−i

]
e−iφ

)
. (A7)

Meanwhile, the main contribution of dipolar scattering field
which comes from the n = ±1 items in Eq. (A4) combines
Eq. (A1) and (A2), giving the effective magnetic dipole mo-
ment as follows:

m = 4i

ωk0μ0

(
D1

[
1
i

]
eiφ + D−1

[
1
−i

]
e−iφ

)
. (A8)

Substituting Eqs. (A7) and (A8) into Eq. (A1), and matching
the exponential term e±iφ , the relation between the dynamic
polarizability tensor and Mie scattering coefficients yields

α

[
1
±i

]
= 8i

k2
0

D±1

[
1
±i

]
, (A9)

and the dynamic polarizability is finally written as

α = 8i

k2
0

[
(D1 + D−1)/2 −i(D1 − D−1)/2
i(D1 − D−1)/2 (D1 + D−1)/2

]
. (A10)

For a single gyromagnetic rod, the Mie scattering coeffi-
cients Dn and D−n are no longer the same, due to the breaking
of time-reversal symmetry arising from the presence of the
external static magnetic field [seen from Eqs. (A5) and (A6)].
Let us look at a concrete example of a single YIG rod with
radius r = 0.08 cm. The top view in the xy plane is similar to
that in Fig. 1(a). The external static magnetic field is along
the axis z of the rod. It is seen that the responses of the
order n and −n of magnetic dipole or quadrupole terms are
different and not symmetric. Here, the scattering D−1 of the
counterclockwise rotating magnetic dipole, with the moment
(my = imx ), is dominant over all other terms, including D1 for
the clockwise rotating dipole. Thereby, it is a good approxima-
tion for such a YIG rod to act as a specified rotating magnetic
dipole, i.e., for the frequency range between 3.7 and 3.9 GHz.
In Fig. 8(b), we further take a look at the radiation pattern
of a 2D counterclockwise rotating magnetic dipole at the
dipolar resonance, and plot the electric field (Ez component)
distribution maps for its radiation in free space. It is found that
a nonreciprocal spiral-like radiation pattern is formed, and the
handedness associated with the rotating direction of MD will
be flipped upon the magnetization reversal.
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