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The Su–Schrieffer–Heeger (SSH) model is one of the simplest topological lattice models and is a promising
candidate for quantum simulations of topological systems. In this study we investigate an interacting SSH
model with nearest-neighbor interactions using mean field theory and an exact diagonalization method after
the Jordan-Wigner transformation. We obtain a rich phase diagram with six different phases. Majorana bound
states are found and confirmed by analyzing wave functions and Majorana number. In addition, we propose
to use superconducting devices to construct a one-dimensional quantum circuit, where Cooper pair boxes and
Josephson junctions are alternately connected in series, to theoretically simulate the interacting SSH model. This
approach also provides us a toolkit to simulate correlated topological systems.
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I. INTRODUCTION

Topological materials are at the frontier of physics re-
search [1–7]. They have various interesting and novel prop-
erties; for example, quantum anomalous and spin Hall
effects, Weyl semimetals, Majorana fermions, etc. These
topological characteristics have so far been observed in sev-
eral materials, such as Bi bilayer films [8], HgTe/CdTe [9]
and InAs/GaSb [10] quantum wells for the quantum spin
Hall effect, Cr-doped (Bi,Sb)2Te3 thin films [11] for the
quantum anomalous Hall effect, the (Ta, Nb)(As, P) family
of compounds [12–15] for Weyl semimetals, and the topo-
logical insulator-superconductor Bi2Te3/NbSe2 heterostruc-
ture [16,17] for Majorana fermion states. These materials can
be well understood in a single particle picture using topolog-
ical band theory. However, the topological materials in the
presence of strong correlation are less investigated experimen-
tally, because the preparation of samples of related materials
and observation of their properties are difficult and require
high-level experimental technologies. It also makes theoret-
ical research into strongly correlated topological systems far
ahead of experimental research. Many theoretical models and
novel properties remain to be verified by experiments.

Quantum simulations provide a fresh approach to this
situation. A quantum physics problem may be mapped onto a
mathematical model, which in turn can be straightforwardly
implemented in a quantum simulator. Among various ele-
ments of quantum simulators, the Cooper-pair box (CPB),
which servers as a prototypical charge qubit, is one of the most
promising candidates. It uses the macroscopic quantum phe-
nomena of superconductivity [18,19] and offers the advantage
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that it can be built using familiar, scalable micro-fabrication
methods of conventional semiconductor fabrication. In par-
ticular, transmons [20], which are built up from a modified
version of the CPB, have long experimental coherence times
of ∼100 μs [7]. Compared with the 0 and 1 states in a classical
bit, an important feature of a qubit is that any superposition of
0 and 1 states can be produced. It behaves like an artificial
atom. Thus, we can use qubits to simulate condensed-matter
systems and even the rich properties of various quasiparticles.
Single qubits can already simulate interesting properties of
condensed matters systems [6,21–32]. With improved coher-
ence and control capability, we can use multiple qubits to sim-
ulate many-body systems [33], including simulations based
on the Fermi–Hubbard model [34], the Ising model [35],
anyonic fractional statistical behavior [36,37], Greenberger–
Horne–Zeilinger states [38], the ground states of H2, LiH,
BeH2 [39,40], frustrated quantum magnetism [41], the dis-
crete time crystal [42,43], etc. Therefore, theoretical studies
based on the related simulations are highly desirable to point
the way toward feasible experimental schemes. In addition,
such studies can also improve understanding of topological
systems and predict new topological properties.

In this work, we study an interacting Su–Schrieffer–Heeger
(SSH) model with nearest-neighbor interactions by mean field
theory (MFT) and an exact diagonalization (ED) method. At
the mean-field level, our self-consistent solution shows a rich
phase diagram consisting of six different phases. The sym-
metry of wave functions, topological invariant, and Majorana
number are also investigated to confirm the topological phase
transitions. We then use superconducting qubits to construct a
one-dimensional quantum circuit where CPBs and Josephson
junctions (JJs) are connected alternately in series and find
that the same Hamiltonian can be obtained in the quantum
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FIG. 1. (a) Schematic diagram of structure of the interacting SSH
model. Blue and green circles are sites on sublattice A and sublattice
B, respectively. Solid and dashed lines represent intra- and intercell
interactions, respectively. (b) Schematic diagram of serial system of
CPBs and JJs.

circuit as in the interacting SSH chain. The rest of this
paper is organized as follows: the interacting SSH model and
calculation methods are described in Sec. II; self-consistent
results based on mean field theory are presented in Sec. III;
finally, Sec. V is devoted to the quantum simulation of the
interacting SSH model.

II. MODEL AND METHODS

A. Hamiltonian

The SSH model is one of the simplest topological lattice
models; its Hamiltonian includes only nearest-neighbor hop-
ping terms. Each unit cell consists of two sites, as illustrated
in Fig. 1(a). Changing the ratio of inter- to intracell hopping
parameters can induce phase transitions between topologi-
cally trivial and nontrivial states [44]. This model and its
extended versions have been studied extensively over many
decades [45–58]. In the extended versions, different inter-
actions have been considered, such as Coulomb interaction,
spin-orbit coupling, and superconducting pairing. Most of
them focus on the spinful case. In this study we consider an in-
teracting SSH chain of spinless fermions that includes nearest-
neighbor interactions. The corresponding Hamiltonian reads

H = −
∑

i

(
tc†

iAciB + tc†
iBciA + t ′c†

iBci+1,A + t ′c†
i+1,AciB

)

+
∑

i

[
V (2n̂iA − 1)(2n̂iB − 1)

+V ′(2n̂iB − 1)
(
2n̂i+1,A − 1

)]

−μ
∑

i

∑
α=A,B

c†
iαciα, (1)

where c†
iα and ciα are fermionic creation and annihilation op-

erators, respectively, and n̂iα = c†
iαciα . The first line of Eq. (1)

corresponds to the original SSH model. The second line
contains nearest-neighbor interactions and chemical potential
terms. The intra- and intercell interactions are expressed as
V and V ′, respectively. We focus on the half-filling case, in
which the occupation number is constrained by

∑
α 〈c†

iαciα〉 =
1. The mean-field method is employed to decouple four-
operator terms, which are approximated by a sum of two-
operator interactions.

n̂iα n̂ jβ ≈ nα n̂ jβ + n̂iαnβ − nαnβ + �∗
xc jβciα + �xc†

iαc†
jβ

−|�x|2 − δ∗
x c†

jβciα − δxc†
iαc jβ + |δx|2, (2)

where the index x = in or out corresponds to the intra- or
intercell interaction, respectively, and the site-independent
parameters are defined as nα = 〈n̂iα〉,�in = 〈ciBciA〉,�out =
〈ciBci+1,A〉, δin = 〈c†

iBciA〉, δout = 〈c†
iBci+1,A〉. A finite �x in-

dicates a superconducting correlation produced by nearest-
neighbor interactions. After the Fourier transformation ci =

1√
N

∑
k ckeikri , the Hamiltonian can be written in the Nambu

representation ( c†
kA c†

kB c−kA c−kB ). Upon diagonal-
ization, the corresponding eigenvalues and eigenvectors
can be obtained. All order parameters are calculated self-
consistently.

B. Topological invariant

To calculate the topological invariant of the mean-field
Hamiltonian where there exist superconducting pairing terms,
we first transform the Hamiltonian matrix into a block off-
diagonal form. The unitary transformation

U =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ (3)

is introduced to transform the Hamiltonian matrix:

Uh(k)U † =
(

0 F
F † 0

)
(4)

with

F =

⎛
⎜⎜⎝

1
2

(
t + t ′e−ika

−4V δin − 4V ′δoute−ika

)
2(V �in + V ′�oute−ika)

−2
(
V �in + V ′�oute−ika

) − 1
2

(
t + t ′e−ika

−4V δin − 4V ′δoute−ika

)
⎞
⎟⎟⎠. (5)

The topological invariant v is then calculated as fol-
lows [58–60],

v = −Tr
∫ π

−π

dk

i2π
F−1∂kF = −

∫ π

−π

dk

i2π
∂k ln Z, (6)

where

Z = det F = 4(V �in + V ′�oute
−ik )2

− 1
4 (t − 4V δin + t ′e−ika − 4V ′δoute

−ik )2. (7)

C. Majorana number

To determine whether a phase contains Majorana bound
states (MBSs), besides analyzing the symmetry of wave func-
tions in a finite-length system, a more reliable method is to
calculate Majorana number [50,61]. The Majorana number
is defined at the time-reversal-invariant momenta k = 0 and
π . However, the Hamiltonians at k = 0 and π do not satisfy
hT (k) = −h(k) for Pfaffian calculations. Thus, we transform
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the Hamiltonians by ηx ⊗ τ0. The Majorana number can then be calculated from

M = sgn{P f [ηx ⊗ τ0h(k = 0)]P f [ηx ⊗ τ0h(k = π )]} = sgn

{[
1
4 (t − 4V δin + t ′ − 4V ′δout )

2 − 4(V �in + V ′�out )
2][

1
4 (t − 4V δin − t ′ + 4V ′δout )

2 − 4(V �in − V ′�out )
2]

}
. (8)

D. Quantum circuit Hamiltonian and Jordan–Wigner transformation

Figure 1(b) shows a serial circuit of CPBs and JJs. Each isolated JJ connects two CPBs. In the following calculations, N
is the number of CPBs, Cgi and Vgi are, respectively, the capacitance and the gate voltage of the ith CPB, CJi, VJi, and φi

are, respectively, the capacitance, voltage, and phase of the JJ in the ith CPB, and CJi,i+1, VJi,i+1, and φi,i+1 are, respectively,
the capacitance, voltage, and phase of the isolated JJ. These parameters are also marked in Fig. 1(b). The kinetic part of the
Hamiltonian of the one-dimensional system is a charging term for all capacitances:

EK =
N∑

i=1

[
1

2
CJiV

2
Ji + 1

2
Cgi(Vgi − VJi)

2

]
+

N−1∑
i=1

1

2
CJi,i+1V

2
i,i+1, (9)

where VJi = h̄
2e φ̇i, Vi,i+1 = h̄

2e (φ̇i − φ̇i+1). The potential energies from the JJs are [62,63]

EP =
N∑

i=1

EJi(1 − cos φi ) +
N−1∑
i=1

EJi,i+1[1 − cos(φi − φi+1)], (10)

where EJi and EJi,i+1 are the Josephson energies of the CPB and the isolated JJ, respectively. We then obtain the system
Lagrangian L = EK − EP. We introduce m̂i as the number of Cooper pairs conjugated to the superconducting phase φi.

⎛
⎜⎜⎝

m̂1 − mg1

m̂2 − mg2
...

m̂N − mgN

⎞
⎟⎟⎠ = h̄

(2e)2

⎛
⎜⎜⎜⎜⎜⎜⎝

CJ1 + Cg1 + CJ1,2 −CJ1,2 0 · · ·
−CJ1,2 CJ1,2 + CJ2 + Cg2 + CJ2,3 −CJ2,3

...

0 −CJ2,3
. . .

. . .

... · · · . . . CJN−1,N + CJN + CgN

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

φ̇1

φ̇2

...

φ̇N

⎞
⎟⎟⎟⎟⎠,

(11)

where mgi = −CgiVgi

2e . It may be shortened to M = C� and C is a N-dimensional tridiagonal matrix. For convenience we define

φ̇i =
N∑

j=1
ui j (m̂ j − mgj ), where ui j is the matrix element of C−1. The Hamiltonian then reads

H =
N∑

i=1

h̄m̂iφ̇i − L =
N∑

i=1

⎡
⎣1

2

(
h̄

2e

)2

(CJi + Cgi )

⎛
⎝ N∑

j=1

ui j (m̂ j − mgj )

⎞
⎠

2

− 1

2
CgiV

2
gi

⎤
⎦

+
N−1∑
i=1

(
h̄

2e

)2 CJi,i+1

2

⎡
⎣ N∑

j=1

(ui j − ui+1, j )(m̂ j − mgj )

⎤
⎦

2

+
N∑

i=1

EJi(1 − cos φi ) +
N−1∑
i=1

EJi,i+1[1 − cos(φi − φi+1)]. (12)

We ignore the constant term in the following. As per
Ref. [62], the full Hamiltonian is projected onto the two
charge states |0〉 and |1〉. The four terms of Eq. (12) can be
rewritten as

H1+2=
N∑

i, j=1 (i 
= j)

Yi jσ
z
i σ z

j , (13)

H3= −
N∑

i=1

EJiσ
x
i , (14)

H4 = −
N−1∑
i=1

EJi,i+1

2
(σ+

i σ−
i+1 + σ−

i σ+
i+1), (15)

where the first two terms of Eq. (12) are merged into H1+2, the
third and fourth terms correspond to H3 and H4, respectively,
σ is the Pauli matrix, and

Yi j = 1

4

(
h̄

2e

)2 N∑
l=1

[
(CJl + Cgl )uliul j+
CJl,l+1(uli − ul+1,i )(ul j − ul+1, j )

]
.

(16)

The total Hamiltonian in the spin representation is then given
by

HPauli = H1+2 + H3 + H4. (17)

Furthermore, we employ the Jordan–Wigner transforma-
tion to transform the Hamiltonian [64,65]. The transformation

045422-3



YU, JIANG, QUAN, WU, CHEN, ZOU, AND WU PHYSICAL REVIEW B 101, 045422 (2020)

is σ+
j = 2c†

j e
iψ j and σ−

j = 2c je−iψ j , where c†
j and c j are,

respectively, creation and annihilation operators, the phase
ψ j = π

∑
l< j n̂l , and n̂l = c†

l cl is the occupation number
of fermions. In addition, e±iψ j = e±iπ n̂1 e±iπ n̂2 · · · e±iπ n̂ j−1 =
(1 − 2n̂1)(1 − 2n̂2) · · · (1 − 2n̂ j−1). Thus, the relations be-
tween Pauli operators and creation and annihilation operators
can be further rewritten as

σ+
j = 2c†

j (1 − 2n̂1)(1 − 2n̂2) · · · (1 − 2n̂ j−1), (18)

σ−
j = 2c j (1 − 2n̂1)(1 − 2n̂2) · · · (1 − 2n̂ j−1), (19)

σ x
j = (σ+

j + σ−
j )/2

= (c†
j + c j )(1 − 2n̂1)(1 − 2n̂2) · · · (1 − 2n̂ j−1), (20)

σ z
j = 1

2σ+
j σ−

j − 1 = 2c†
j c j − 1. (21)

Substituting these equations into the Hamiltonian HPauli and
simplifying it gives

HJW = −
N−1∑
i=1

2EJi,i+1(c†
i ci+1 + c†

i+1ci )

+
N∑

i, j=1 (i 
= j)

Yi j (2n̂i − 1)(2n̂ j − 1)

−
N∑

i=1

EJi[(c
†
i + ci )(1 − 2n̂1)(1−2n̂2) · · · (1−2n̂i−1)].

(22)

The third term is a particle nonconserving term and can be
made negligible by tuning EJi to a quite small value (even
zero). It will be discussed in detail.

III. SELF-CONSISTENT SOLUTIONS

A. Phase diagrams

To demonstrate the ground-state physics of this interacting
system, we plot the V − V ′ phase diagram with different
hopping integrals in Fig. 2. When V = V ′ = 0, the system,
which corresponds to the original SSH model, can be in
a topologically trivial or nontrivial phase. Finite V and V ′
can induce rich phase transitions. The phase diagram shows
six phases, including intra- and intercell-hopping (intra- and
inter-CH) phases, intra- and intercell-superconducting-pairing
(Intra- and Inter-CSP) phases, a coexisting (CE) phase,
and a charge-density-wave (CDW) phase. The number of
corresponding zero-energy modes in a finite-length system
is 0, 2, 0, 4, 2, and 0, respectively. We first focus on
the case of t = 1, t ′ = 2 [Fig. 2(a)] to perform a detailed
analysis.

(i) When V or V ′ is negative and its strength is suffi-
ciently large, it will produce an attractive interaction between
nearest-neighbor sites, leading to a superconducting phase. In
this phase, all order parameters are nonzero, but the Intra-
or Inter-CSP order strength (|�in| or |�out|) is much larger
than the others. To clearly exhibit the characteristics of the
superconducting phase and the phase transitions, we plot in

FIG. 2. Phase diagrams as functions of V and V ′ with (a) t =
1, t ′ = 2, (b) t = 2, t ′ = 1, (c) t = 1, t ′ = 1, and (d) t = 1, t ′ = 3.
Each phase diagram consists of six phases, including intra- and
intercell-hopping (Intra- and Inter-CH) phases, intra- and intercell-
superconducting-pairing (Intra- and Inter-CSP) phases, a coexisting
(CE) phase, and a charge-density-wave (CDW) phase. The number
in parentheses gives the number of zero-energy modes in the corre-
sponding finite-length system. The stars are the critical points that
are calculated in detail. Triple points are approximated.

Fig. 3 total energy, occupation number, and order param-
eters as functions of V ′ with V = 3. Figs. 3(c)–3(f) show
the evolution of |�in|, |�out|, |δin|, |δout| in the Inter-CSP,
Intra-CH, and CDW phases, respectively. When V ′ < −4, the
one-dimensional system is in the Inter-CSP phase and |�out|

FIG. 3. For t = 1, t ′ = 2,V = 3, (a) total energy, (b) occupation
number. and (c-f) order parameters as functions of V ′. Green, blue,
and red background colors respectively correspond to the Inter-CSP,
Intra-CH, and CDW phases in Fig. 2.
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is much greater than the other order parameters. In addition,
since there exist intrinsic hopping terms t and t ′, the Intra- and
Inter-CH order parameters are always nonzero in any given
phase.

(ii) When V or V ′ is positive and sufficiently large, the cor-
responding superconducting pairing is completely suppressed
because of the repulsive interaction between nearest-neighbor
sites. From the decoupled mean-field terms in Eq. (2), we
know that the minus sign in front of δx hopping terms favors
system stability with increasing V or V ′. These hopping terms
also affect the intrinsic hopping terms mathematically. This
can enhance the hopping integral and also induce a topological
phase transition. For example, for t = 1, t ′ = 2 the system is
topologically nontrivial without nearest-neighbor interactions.
When V is large enough, the system enters into a topologically
trivial phase without any topological edge mode at the Fermi
level.

(iii) When both V and V ′ are sufficiently large, the re-
pulsive interactions between nearest-neighbor sites will cause
spontaneous symmetry breaking so that the occupation num-
bers of sublattices A and B differ [Fig. 3(b)]. This makes
the system enter a CDW phase. With increasing repulsive
interaction, one sublattice gradually fills and the other one
empties. Meanwhile, the superconducting pairing is totally
suppressed.

(iv) When both V and V ′ are small and negative, the system
enters a CE phase, where the strengths of four order param-
eters (|�in|, |�out|, |δin|, |δout|) are comparable to each other.
Fig. 4 shows energy, band gap, and order parameters as func-
tions of V ′ with V = −1. Upon increasing V ′, the system goes
through the Inter-CSP, CE, and Inter-CH phases. In particular,
from the Inter-CSP phase to the CE phase the band gap closes
and then reopens, which corresponds to a topological phase
transition. The number of zero-energy modes changes from 4
to 2. Note also that all order parameters and the total energy
change smoothly during this process. In Figs. 4(g)–4(i) we
plot the energy levels and weight distribution of zero-energy
wave functions in the CE phase, where we use a length of 100
unit cells and V = −1, V ′ = −1. There are two states at the
Fermi level. In Fig. 4(h) the contribution from the B sublattice
are totally suppressed, and the electron and hole parts of
the A-sublattice components have opposite signs. The wave
function satisfies iϕ = (iϕ)† and is localized at the left end of
the chain. Thus, it may be a MBS. In Fig. 4(i) the A-sublattice
components are totally suppressed, and the electron and hole
wave functions of the B-sublattice components are equal to
each other. The corresponding wave function satisfies ϕ = ϕ†

and is localized at the right end of the chain. It also looks
like a MBS. Naturally, the linear combinations of the two
zero-energy modes also share the same characteristics.

Fig. 2(b) shows the phase diagram with t = 2, t ′ = 1.
Comparing the shape of the phases between the two cases
of t = 1, t ′ = 2 and t = 2, t ′ = 1 reveals an interesting phe-
nomenon in which the two phase diagrams are symmet-
ric about the diagonal line V = V ′. The physical reason
for this result is that the exchange of the values of t
and t ′ leads to the exchange of the strength of intra-
and intercell order parameters, so that the shape of the
area in the two phase diagrams has a mirror symmetry
about V = V ′. Note that this result is based on the shape

FIG. 4. For t = 1, t ′ = 2,V = −1, (a) total energy, (b) band gap,
and (c-f) order parameters as functions of V ′. Green, purple, and
orange background colors respectively correspond to the Inter-CSP,
CE, and Inter-CH phases in Fig. 2. (g) Energy levels and (h-i) spatial
distribution of two zero-energy wave functions in a one-dimension
system of 100 unit cells with V ′ = −1. The two wave functions are
purely real. In panels (h) and (i), left and right parts correspond
to electron states (ciA/B) and hole states (c†

iA/B), respectively. Red
and green bars label the components of the A and B sublattices,
respectively.

of phase areas but not on the specific phases for the
symmetry.

To present how hopping integrals affect on the phase transi-
tions, we plot phase diagrams for t = 1, t ′ = 1 and t = 1, t ′ =
3 in Figs. 2(c) and 2(d), respectively. Two significant changes
occur with increasing t ′. (i) The CE phase moves downward,
which can be explained as follows. Increasing t ′ suggests
enhanced itinerancy of particles between nearest-neighbor
unit cells. In order to keep the strength of the superconducting
pairing between unit cells not completely suppressed by the
intercell hopping, it requires to increase the attractive inter-
action V ′, leading to the downward shift of the CE phase.
(ii) The phase boundary between the Inter-CH and CDW
phases moves rightward and the phase boundary between the
Inter-CH and Intra-CSP phases moves downward. A direct
competitive relationship exists between the Inter-CH phase
and other phases. When t ′ is increased, it will make the size
of the Inter-CH phase expanded.

B. Symmetry classification of Hamiltonians

Our self-consistent results show that the hopping order
parameters δin and δout are real numbers and that the supercon-
ducting order parameters �in and �out have U (1) symmetry.
Without loss of generality, �in and �out are set to be real.
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TABLE I. Symmetry classification of Hamiltonians of the six phases (Intra- and Inter-CH, Intra- and Inter-CSP, CE, and CDW phases)
depending on the presence or absence of time-reversal symmetry (TRS), particle-hole symmetry (PHS), and sublattice symmetry (SLS).
Symmetry operators are presented. +1, −1, and 0 in brackets are defined as per Ref. [66].

Phase TRS PHS SLS Class

Intra-/Inter-CH K (+1) τzK (+1) τz (1) BDI
Intra-/Inter-CSP, CE η0 ⊗ τ0K (+1) ηx ⊗ τ0K (+1) ηx ⊗ τ0 (1) BDI
Intra-/Inter-CH K (+1) (0) (0) AI

We use two sets of standard Pauli matrices (τμ and ημ) and
the complex-conjugation operator K to describe symmetry
operations of Hamiltonians. Furthermore, μ = 0, x, y, z, τ0

and η0 are 2 × 2 unit matrices, τμ acts on the two sublattice
indices, and ημ is used to represent the particle-hole space
appearing in the Bogoliubov–de Gennes (BdG) Hamiltonian
for quasiparticles in superconducting phases. The symmetry
classification of the Hamiltonians of the Intra- and Inter-CH
phases, Intra- and Inter-CSP phases, CE phase, and CDW
phase is shown in Table I. The first five phases belong to the
BDI class and the last phase belongs to the AI class [66].

C. Topological invariant and Majorana number

To verify the topological phase transitions and the exis-
tence of MBSs, we further calculate the topological invariant
and the Majorana number. Since the Hamiltonians of the
five phases (Intra- and Inter-CSP, Intra-and Inter-CH, and
CE phases) belong to BDI class, they have an associated Z
topological invariant v (winding number) [66]. The Majorana
number M is calculated by following Ref. [50,61]. Details
are in the Methods. When M = −1, there are MBSs at the
ends of the one-dimensional chain. When M = 1, there are no
MBSs. In Fig. 5 we plot v and M in two different directions
(V = −1 and V ′ = −1), both of which cross the CE phase.
All of the order parameters are determined by self-consistent
calculations. For V = −1, upon increasing V ′, the system
goes through three phases: the Inter-CSP phase, CE phase,
and Inter-CH phase. The critical point between the Inter-
CP and CE phases in Figs. 5(a) and 5(b) is in quantitative

FIG. 5. For t = 1, t ′ = 2, evolution of topological invariant and
Majorana number in directions V = −1 and V ′ = −1.

agreement with that obtained by analyzing zero-energy gap
and edge states. In the two phases, there are respectively two
and one edge states at each end of the one-dimensional chain.
It is consistent with the topological invariant v = 2 and 1.
However, there is also one zero-energy edge state at each
end in the Inter-CH phase, which can not be distinguished
from the CE phase only by the topological invariant. The
Majorana number can further distinguish the two phases. The
results of the calculation show that M = −1 only in the CE
phase, which means that MBSs exist only in the CE phase,
whereas the zero-energy edge states are not MBSs in the other
phases. This result is consistent with our previous analysis of
wave functions. For V ′ = −1 in Figs. 5(c) and 5(d), there
are also three phases: the Intra-CSP phase, CE phase, and
Intra-CH phase, with increasing V ′. Fig. 2(b) has shown
that in the Intra-CSP and Intra-CH phases there is no zero-
energy state, which is consistent with the topological invariant
v = 0.

Up to now, MBSs in one-dimension systems have been
widely studied [61,67–76]. Most of related researches focus
on the Kitaev chain, which describes the dynamics of one-
dimensional spinless fermions with superconducting p-wave
pairing. One may wonder whether the interacting SSH chain
at mean-field level can be reduced to the Kitaev chain for
t = t ′ and V = V ′. The phase diagram with t = t ′ = 1 has
been plotted in Fig. 2(c). We find that when the attraction
(V = V ′) is samll, the system is in the CE phase with MBSs
and shows a similar topological feature as the Kitaev chain.
When the attraction is sufficiently large, there is a spontaneous
symmetry breaking with |�in| 
= |�out|, which is different
from the result of the Kitaev chain. The main reason is that
the SSH chain is separated into two sublattices and calculated
self-consistently, while the superconducting pairing in the
Kitaev model is induced by proximity of a p-wave supercon-
ductor [61].

IV. QUANTUM SIMULATION

A. Hamiltonian

Recently, the noninteracting SSH model has been success-
fully simulated using 87Rb atoms in a momentum-space lat-
tice [53], a resistor-inductor-capacitor (RLC) circuit [54], and
a superconducting circuit [55], respectively. Especially for the
last one, it is the first time to report an observation of topo-
logical insulator states through measuring a time-averaged
chiral displacement in a superconducting qubit chain. For
the interacting SSH model, we propose a simulation method
through coupling multiple superconducting qubits and JJs,
as shown in Fig. 1(b). The Hamiltonian for this quantum
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circuit is derived in Sec. II D using a standard procedure.
Projected on the two charge states {|0〉 |1〉}, it is given in a
spin representation,

HPauli = −
N−1∑
i=1

EJi,i+1

2
(σ+

i σ−
i+1 + σ−

i σ+
i+1)

+
N∑

i, j=1 (i 
= j)

Yi jσ
z
i σ z

j −
N∑

i=1

EJiσ
x
i , (23)

where Yi j has been defined in Eq. (16). Further use the
Jordan–Wigner transformation to change the system Hamil-
tonian from the spin representation to a fermion representa-
tion [64,65]

HJW = −
N−1∑
i=1

2EJi,i+1(c†
i ci+1 + c†

i+1ci )

+
N∑

i, j=1 (i 
= j)

Yi j (2n̂i − 1)(2n̂ j − 1), (24)

where the third term of Eq. (23) has been ignored. In practice,
the JJ in a CPB can be split as two parallel ones and the
corresponding Josephson energy EJi can be tuned to zero by
applying an external flux [19,77,78]. Nevertheless, we still
investigated its effects on properties of the designed quantum
circuit, and the results will be presented in the following.
We theoretically determine that the third term of HPauli, as
a particle nonconserving term, can be made negligible by
decreasing EJi to a small value. In the first term of Eq. (24)
EJi,i+1 is the Josephson energy of the JJ that connects nearest-
neighbor CPBs; this term can correspond to the hopping term
for electrons. The second term Yi j contains charge energies
contributed by all the capacitances; this term can be used to
describe the Coulomb interaction.

The intrinsic capacitance of the JJ is close to zero [33].
Thus, CJi and CJi,i+1 are much less than Cgi, implying that Yi j

can change only in a very limited range. There is an effective
solution to enlarge the range: Add a shunt capacitance across
the JJ, as done in a transmon [20]. Since the capacitance
is added in parallel with JJs, it can increase CJi and CJi,i+1

equivalently and make Yi j change in a larger range. To show
the short-range character of Yi j , we consider a simple case
where we set Cgi = Cg,CJi = CJi,i+1 = CJ and use 12 CPBs.
Fig. 6(a) plots Yi j as a function of i and j with CJ/Cg = 1.
Because Yii corresponds to a constant term in the Hamiltonian,
we neglect it here. One can see that Yi j rapidly decays with
increasing the distance between i and j, suggesting that Yi j

is a short-range interaction. In Fig. 6(b), Y1 j with different
CJ/Cg also presents a short-range character. To display more
intuitively the character over a large range of CJ/Cg, we plot
Y12, Y13, and their ratio as functions of CJ/Cg in Fig. 6(c).
As CJ/Cg increases, Y12 and Y13 first increase and then de-
crease. They peak at about CJ/Cg = 0.5 and 1, respectively.
However, their ratio decreases monotonically. To simulate
the interacting SSH model, we ignore all interactions except
the nearest-neighbor one, and the nearest-neighbor interaction
strength should be appropriate. Although a smaller CJ/Cg

leads to a shorter-range interaction, the interaction strength
will be weaker. The capacitance must be suitable to simulate

FIG. 6. A system with 12 CPBs is considered. (a) Yi j as a
function of i and j for CJ/Cg = 1. (b) Y1 j as a function of j with
different CJ/Cg. (c) Y12, Y13 (inset), and their ratio Y12/Y13 as functions
of CJ/Cg.

different states. By further changing the Josephson energies
and the capacitances, the CPBs can be separated into A and
B sublattices, then a form of the interaction SSH Hamiltonian
can be obtained.

Note that the simulation of superconducting phases (in-
cluding Intra-CSP, Inter-CSP, and CE phases) requires an
attractive interaction, implying that Yi j must be negative.
From the definition of Yi j [Eq. (16)], we find that it requires
negative capacitances. Although Khan et al. detected a neg-
ative capacitance experimentally in ferroelectrics [79,80], it
can not be used in a quantum circuit due to its intrinsic
instability and a negative capacitance may also invalidate the
projection onto the two charge states |0〉 and |1〉. Therefore,
the negative-interaction part of the phase diagram in Fig. 2
is thermodynamically unstable in the current quantum circuit.
But we find that several groups have investigated and real-
ized quantum simulations of the attractive interactions. For
example, the quantum simulation of the Hubbard model with
attractive interactions using atoms in optical lattices has been
discussed in detail by Ho et al. [81]; Bloch et al. showed
quantum simulations of attractive interactions with ultracold
quantum gases [82]; a proposal by Cai et al. suggested that
nuclear spins attached to a diamond surface and addressed
through nitrogen-vacancy centers could offer an attractive
route toward a large-scale quantum simulator for strongly cor-
related systems [83]; in particular, Lu et al. [84] and Barends
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et al. [35] could successfully simulate near-neighbor attractive
interactions based on nuclear magnetic resonance (NMR) and
superconducting circuit, respectively. Although our proposed
quantum circuit based on superconducting qubits can not
simulate the attractive interactions in practice, we still perform
theoretical calculations for different interactions including
attractive ones, in order to provide theoretical predictions for
future quantum simulations of the interacting SSH model.

B. Numerical simulations based on 12 qubits
and finite-size scalings

Since experimental operations on superconducting devices
are based on the spin representation, here we perform direct
numerical simulations of the spin model of the interacting
SSH chain with different numbers of qubits to predict possible
results of experimental measurements in different phases.
However, Greiter et al. suggested that nontrivial states will
not be topologically protected after the Jordan–Wigner trans-
formation from the fermion representation to the spin repre-
sentation [85]. Thus, our considered spin model may only be
a conventional system. But what is important is that its local
properties should remain unchanged, including occupation of
particles, edge states, and local orders. Therefore, we can
simulate the interacting SSH model by using superconducting
qubits to study its local properties and further verify the mean-
field results.

From Eq. (23), with considering the nearest-neighbor in-
teraction and ignoring the particle nonconserving term the
Hamiltonian can be rewritten as

H =
∑

i

[−(Einσ
+
iAσ−

iB + Eoutσ
+
iBσ−

i+1,A + H.c.)

+Uinσ
z
iAσ z

iB + Uoutσ
z
iBσ z

i+1,A

]
, (25)

where Ein (Uin) and Eout (Uout) correspond to intra- and in-
tercell hopping integrals (Coulomb interactions), respectively.
We consider a finite-length chain and investigate spatial dis-
tributions of particles and local order parameters for different
interactions by an ED technique.

In fermion representation, we have defined three kinds
of order parameters (nα , δin/out, and �in/out) in Sec. II A.
Through employing the Jordan–Wigner transformation, we
can transform them into the spin representation.

nσ,i,A = 〈σ+
iAσ−

iA〉, nσ,i,B = 〈σ+
iBσ−

iB〉,
δσ,i,in = 〈σ−

iAσ+
iB〉, δσ,i+,out = 〈σ−

iBσ+
i+1,A〉,

�σ,i,in = 〈σ−
iAσ−

iB〉, �σ,i+,out = 〈σ−
iBσ−

i+1,A〉, (26)

where the subscript σ represents the spin representation, i is
the index of the unit cell, i+ corresponds to the interaction be-
tween the ith and (i + 1)th unit cells, and in (out) corresponds
to the intracell (intercell) order. In the following we use niα

instead of nσ,i,α (α = A, B). However, the superconducting
order parameter is not a good one in the ED method because
the number of particles is conserved in the basis. Instead, we
use the square of its operators to define new order parameters,

�σ,i,in = 〈σ+
iAσ+

iBσ−
iAσ−

iB〉 = 〈n̂iAn̂iB〉,
�σ,i+,out = 〈σ+

iBσ+
i+1,Aσ−

iBσ−
i+1,A〉 = 〈n̂iBn̂i+1,A〉, (27)

FIG. 7. Spatial distributions of particles for (a) Ein = 1, Eout = 5,
and (b) Ein = 5, Eout = 1 without any nearest-neighbor interactions.
The horizontal axis corresponds to 12 qubits (sites). nN th

iα = niα (n =
N ) − niα (n = N − 1). For Ein = 1, Eout = 5, (c) averaged occupation
numbers of the N th added particle at edges (nN th

1A or nN th
NB ) and inside

the chain (nN th
inside) and (d) averaged intra- and intercell hopping order

parameters (δσ,in and δσ,out) as functions of system size N . Dashed
lines are polynomial fits for 1/N . n jth

inside = 1
2N−2

∑
iα 
=1A,NB n jth

iα . Inset
of (d): Site-resolved hopping order parameters in the chain with
N = 6.

named as intra- and intercell pairing order parameters, respec-
tively. They can indirectly reflect the superconducting pairing.

In addition, we define an averaged hopping order parameter
as

δσ,in/out = 1

NdegNin/out

∑
j=1∼Ndeg

∑
i=1∼Nin/out

δσ,i/i+,in/out

∣∣∣∣
j

, (28)

and an averaged pairing order parameter as

�σ,in/out = 1

NdegNin/out

∑
j=1∼Ndeg

∑
i=1∼Nin/out

�σ,i/i+,in/out

∣∣∣∣
j

. (29)

Nin and Nout are the numbers of intra- and intercell interactions
in the one-dimensional SSH chain, respectively. Ndeg is the de-
gree of degeneracy of ground states. δσ,in/out and �σ,in/out will
be two main parameters to show finite-size scaling behavior
and to reflect the effects of EJi term in our following study.

We first study the noninteracting SSH chain. Figures 7(a)
and 7(b) show spatial distributions of particles for a total
number of particles n = 5 and 6 in a chain with N = 6. The
latter corresponds to a half-filling case. n jth

iα is the occupation
number of the jth added particle at the site iα and satisfies∑

i,α n jth
iα = 1. It can be obtained through calculating the dif-

ference of occupation number between the cases of n = j − 1
and j. When Ein = 5 and Eout = 1, the sixth added particle
n6th

iα mainly distributes inside the chain. When Ein = 1 and
Eout = 5, it distributes at the ends and shows a characteristic
of edge states. This numerical result is in agreement with
that obtained from the original SSH model in the fermion
representation [44,45]. We can understand this method from
the aspect of single-particle energy levels (bands). For the
case of N = 6 and n = 5, when we add a new particle into

045422-8



TOPOLOGICAL PHASE TRANSITIONS, MAJORANA … PHYSICAL REVIEW B 101, 045422 (2020)

FIG. 8. Spatial distributions of particles with different intercell
repulsive interactions Uout: niα for (a) n = 5 and (b) n = 6, and
(c) n6th

iα . In (b) one of two degenerate ground states is considered, and
the spatial distribution of the other ground state is opposite to that
in (b) (The same applies to following figures.). (d) Averaged intra-
and intercell hopping order parameters (δσ,in and δσ,out) as functions
of the system size N with Uout = 10. Inset of (d): Site-resolved hop-
ping order parameters with different Uout . The intracell interaction
Uin = 0.

the system, the particle must be at the highest occupied level.
When |Eout| > |Ein|, it corresponds to the topological zero-
energy edge state obtained in the fermionic model.

Furthermore, we perform a finite-size scaling to the numer-
ical simulation. Figure 7(c) shows the occupation number at
one of two ends of the SSH chain and the averaged occupation
number inside the chain as functions of 1/N with Ein = 1 and
Eout = 5. When the number of unit cell N tends to infinity
(1/N → 0), the occupation number at the end of the chain
is stable at 0.48 and the averaged occupation number inside
the chain tends to 0. A reasonable explanation can be given
for the latter. Actually, when N = 4 the occupation number
at the end has been around 0.48 (it is 0.96 at two ends in
total), leading to only 0.04 particles inside the SSH chain. As
the size increases, the number of inner sites becomes larger,
resulting in a smaller averaged occupation number at each
inner site, 0.04/(2N − 2). When N → +∞, the averaged
occupation number will inevitably tend to 0. In Fig. 7(d), we
plot finite-size scalings of the averaged hopping order param-
eters δσ,in/out and the site-resolved hopping order parameters
δσ,i/i+,in/out for N = 6. One can see that δσ,out 
 δσ,in and
δσ,i+,out 
 δσ,i,in. It is because the intercell hopping integral
is larger than the intracell one (Eout = 5Ein). In addition,
when 1/N < 0.2, n jth

iα , δσ,in, and δσ,out change slightly with
increasing N , meaning that N = 6 is sufficiently large for the
current ED study. We also note that, although we perform
a polynomial fit for 1/N , the scaling shows a nearly linear
behavior when 1/N < 0.2. The same behavior has also been
observed in the following scaling studies.

We further investigate the cases of nonzero Coulomb in-
teraction. In the following calculations, we set N = 6, n = 6,
Ein = 1, and Eout = 5 unless stated otherwise and choose
some specific interactions to show features of different phases
more obviously. For example, one of the two interactions is set
to be zero or Uin = Uout. Figures 8(a)–8(c) show spatial distri-
butions of particles for Uin = 0 and Uout = 2, 10, 20, 30, 40.
When n = 5, the spatial distribution is independent of Uout

and there are 0.5 particles per site (half filling) at the middle
ten sites. When n = 6, the occupation number only at the ends

FIG. 9. Averaged intra- and interhopping order parameters (δσ,in

and δσ,out) as functions of the system size N with Uin = 20 and
Uout = 0. Inset: Site-resolved hopping order parameters with differ-
ent intracell repulsive interactions Uin.

of the chain changes for different Uout and the distribution at
the middle ten sites remain unchanged. It causes that the sixth
added particle distributes at the ends of the chain and shows an
edge-state characteristic. Besides, in the inset of Fig. 8(d) we
can see that the intracell hopping order parameter is gradually
suppressed with increasing Uout, while the intercell one re-
mains at about 0.5. It is because when Uin = Uout = 0, Eout =
5Ein has lead to the result of δσ,i+,out 
 δσ,i,in and made
δσ,i+,out nearly reach a maximum, so that the increasing Uout

can not obviously raise δσ,i+,out. Figure 8(d) shows finite size
scalings of the averaged hopping order parameters δσ,in/out

with Uin = 0 and Uout = 10. With the increase of N , the
averaged intercell hopping order parameter tends to 0.4998,
and the intracell one remains a small value. We compare the
results of edge states and hopping order parameters with our
mean-field results. (Although their intercell hopping integrals
are different, we can perform a qualitative comparison.) They
can correspond to the inter-CH phase very well.

In a similar way, the case of Uin > 0 and Uout = 0 is inves-
tigated. We find that the spatial distributions of particles do
not present any edge-state characteristic. In the inset of Fig. 9,
we plot hopping order parameters with different intracell
repulsive interactions Uin. With the increase of Uin, δσ,i,in is
gradually enhanced and δσ,i,out is suppressed. For sufficiently
large Uin, the result is similar to that of the intra-CH phase
in the mean-field phase diagram. In addition, Fig. 9 shows
finite size scalings of the averaged hopping order parameters
δσ,in/out for Uin = 20. With increasing N , δσ,in and δσ,out tend
to 0.495 and 0.033, respectively, determining that the system
is in the intra-CH phase.

For the case of Uin = 0 and Uout < 0, our calculations show
that the spatial distribution of the sixth added particle cannot
be obtained. It is because when the sixth particle is added
the attractive interaction will change the spatial distributions
of the other particles, leading to their rearrangement. But
we find an obvious feature of intercell pairing with strong
intercell attractive interaction in the half-filled case, as shown
in Fig. 10(a). In order to further confirm the feature, we cal-
culated hopping and pairing order parameters. The former are
gradually suppressed with increasing strength of the intercell
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FIG. 10. (a) Spatial distributions of particles, (b) hopping order
parameters, and [inset of (c)] pairing order parameters with Uin = 0
and different intercell attractive interactions Uout . (c) Averaged intra-
and intercell pairing order parameters (�σ,in and �σ,out) as functions
of the system size N with Uout = −20.

attractive interaction, as plotted in Fig. 10(b). For the latter,
we find an interesting phenomenon. In the inset of Fig. 10(c)
the 2mth intercell pairing order parameter increases with the
Uout strength, while the (2m − 1)th one first increases, reaches
a maximum at around Uout = −10, and then decreases to zero.
This behavior is totally different from the spatial distribution
of particles. From the definition of the intracell pairing order
parameter �σ,i,in = 〈n̂iAn̂iB〉 (rather than 〈n̂iA〉〈n̂iB〉), we think
this anomalous behavior may be caused by the intrinsic quan-
tum correlation. Next, we perform finite-size scalings of the
pairing order parameters with Uout = −20 in Fig. 10(c). With
the increase of size, the intracell pairing order parameter is
almost 0, while the intercell one tends to 0.5, corresponding
to the inter-CSP phase in the mean-field phase diagram.

Similarly, for the case of Uin < 0 and Uout = 0, spatial
distributions of particles and pairing order parameters show
a feature of intracell superconducting pairing and the hopping
order parameters are suppressed with increasing the strength
of the intracell attraction interaction Uin [Figs. 11(a)–11(c)],
corresponding to the mean-field intra-CSP phase. Figure 11(d)
shows finite-size scales of averaged pairing parameters with

FIG. 11. (a) Spatial distributions of particles, (b) hopping order
parameters, and (c) pairing order parameters with different intracell
attractive interactions Uin and Uout = 0. (d) Averaged intra- and
intercell pairing order parameters (�σ,in and �σ,out) as functions of
the system size N with Uin = −7.

FIG. 12. (a) Spatial distributions of particles and (c) hopping
order parameters with different intracell and intercell repulsive in-
teractions and Uin = Uout = U . (b) The difference of particles on A
and B sublattices |nA − nB| as a function of U . (d) Averaged intra-
and intercell hopping order parameters (δσ,in and δσ,out) as functions
of the system size N with U = 30.

Uin = −7 and Uout = 0. There exists another interesting
phenomenon that the results of odd unit cells and even unit
cells are completely different. They have different scaling
behaviors. Through analyzing spatial distributions and pairing
of particles with different sizes, we find that this phenomenon
can be attributed to the different lattice symmetries (The
inversion center of the former is inside the unit cell, while that
of the latter is between the unit cells.) and different global
pairing symmetries. For the global pairing symmetries, we
give a detailed explanation below. From Fig. 11(a), we can
see an obvious feature of intracell pairing with strong intracell
attractive interactions for N = 6. However, when N = 5, it is
not simple to remove the particles at 6A and 6B and the two
sites, otherwise it will lead to a deviation from half filling.
Actually, in the chain with odd unit cells particle occupation
shows a seemingly irregular spatial distribution, giving rise to
asymmetric pairing order parameters, as plotted in the inset
of Fig. 11(d). Thus, the systems with odd and even unit cells
have different global pairing symmetries. In Fig. 11(d) one
can also find that in the two cases (odd and even unit cells) the
trends of the pairing order parameters seem to be consistent
for N → +∞, but the slope of the former is larger than that
of the latter, leading to the fact that the calculation result of
even unit cells is closer to that of an infinite system than
that of odd unit cells. Hence, six unit cells are appropriate
and sufficient to simulate properties of the one-dimensional
system. When N → +∞, the averaged intracell pairing order
parameter tends to ∼0.46 and the averaged intercell pairing
order parameter tends to 0. Besides, it is worth mentioning
that there do not exist such scaling behaviors in the case of
the inter-CPS phase. It can be attributed to different pairing
channels between the two phases.

Figures 12(a) and 12(b) show spatial distributions of par-
ticles and the difference of occupation number at A and B
sublattices as a function of nearest-neighbor interactions for
Uin = Uout > 0, respectively. We find that with increasing the
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interactions, one sublattice gradually empties and the other
sublattice fills, leading to a CDW order. At the same time, the
hopping order parameters are gradually suppressed, as plotted
in Fig. 12(c). Finite-size scalings of δσ,in/out with Uin = Uout =
30 are shown in Fig. 12(d). We can see that the result of
N = 6 is very close to that of an infinite system. In addition,
Sirker et al. have also studied this interacting SSH model
with only repulsive interactions using ED, Arnoldi algorithms,
and light cone renormalization group [51]. Their results of
fidelity susceptibility and entanglement spectra show that for
sufficiently large nearest-neighbor repulsion the system is
forced into the CDW state, which is in qualitative agreement
with our result.

Although Greiter et al. suggested that nontrivial states
may not be topologically protected in a spin model [85],
which can be transformed into a fermion representation via
the Jordan–Wigner transformation, local properties in the two
representations remain unchanged. Our numerical ED results
show a qualitative agreement with the above mean-field re-
sults through comparing their local properties, such as edge
states, pairing states, and spatial distributions of particles.
These local properties, as important features of topologically
trivial or nontrivial phases, can be detected experimentally.

C. Effects of the nonconserving term

Although we have pointed out that for the particle non-
conserving term the Josephson energy EJi can be tuned to
zero by applying an external magnetic flux, one may wonder
whether its effects are still small when EJi is a small value. For
example, in fluxonium inductive energy is the smallest of the
fluxonium energies, but it has a nonperturbative influence on
the full energy spectrum, which presents strongly anharmonic
transitions [86]. So it is necessary to investigate the effects
of the particle nonconserving term on properties of our de-
signed quantum circuit. We introduce the nonconserving term
−EJiσ

x
i back to the total Hamiltonian, which can be rewritten

as

H =
∑

i

[−(Einσ
+
iAσ−

iB + Eoutσ
+
iBσ−

i+1,A + H.c.)

+Uinσ
z
iAσ z

iB + Uoutσ
z
iBσ z

i+1,A − EJiσ
x
i

]
. (30)

In the above calculations the corresponding Hilbert space is
limited to the half-filling case, while in the current condition
the Hilbert space has to be extended through considering
different occupation number due to the fact that the number of
particles are not conserved any more. The standard basis can

FIG. 13. Averaged hopping order parameters δσ,in/out as func-
tions of EJ with (a) Uin = 0,Uout = 10 and (b) Uin = 5,Uout = 0. In-
sets of (a) and (b): site-resolved hopping order parameters δσ,i/i+,in/out

for EJ = 0.1.

FIG. 14. (a) Occupation numbers n1A, n1B and (b) averaged pair-
ing order parameters �σ,in/out as functions of EJ with Uin = 0 and
Uout = −20. Spatial distribution of particles niα and site-resolved
pairing order parameters δσ,i/i+,in/out for EJ = 0.03 are plotted in the
insets of (a) and (b), respectively.

be expressed as |n1n2n3 · · · ni · · · nN 〉 (from |000 · · · 0 · · · 0〉 to
|111 · · · 1 · · · 1〉). For convenience, we assume that the Joseph-
son energies of all qubits are equal to each other (EJi = EJ )
and that EJ is smaller than Ein/out. For the case of Ein = 1 and
Eout = 5, the range of EJ is limited to 0 ∼ 1.

We first investigate the case of Uin = 0,Uout > 0. For EJ =
0, our results have shown the occupation number at edges
deviating from half filling and an edge-state characteristic,
as shown in Fig. 8. Once EJ > 0 (even a small value), each
site becomes half filled. This phenomenon can be attributed
to enhanced quantum fluctuation of the particle occupation
caused by the nonconserving term. Although the spatial distri-
bution of particles is changed, we find that the hopping order
parameters is barely affected. For instance, Fig. 13(a) shows
the averaged hopping order parameters δσ,in/out as functions
of EJ with Uout = 10. This means that EJ cannot lead to a
quantum phase transition at least in the considered range. In
the inset of Fig. 13(a), we can see that the intercell hopping
parameters are much larger than the intracell ones, suggesting
that the system is still in the inter-CH phase. For the case
of Uin > 0,Uout = 0, we find that EJ does not change the
spatial distribution of particles and each site remains half
filled. But with increasing EJ the intracell hopping order
parameter decreases and the intercell one increases, as shown
in Fig. 13(b) (Uin = 5,Uout = 0). Although a sufficiently large
EJ may lead to a quantum phase transition, for a small EJ

the system remains in the intra-CH phase. For example, when
EJ = 0.1, the intracell hopping parameter δσ,i,in is much larger
than the intercell one δσ,i+,out.

FIG. 15. (a) Occupation numbers n1B, n2A and (b) averaged pair-
ing order parameters �σ,in/out as functions of EJ with Uin = −7 and
Uout = 0. Spatial distribution of particles niα and site-resolved pairing
order parameters δσ,i/i+,in/out for EJ = 0.01 are plotted in the insets of
(a) and (b), respectively.
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FIG. 16. (a) Occupation numbers at A and B sublattices and
(b) averaged hopping order parameters δσ,in/out as functions of EJ

with Uin = Uout = 20. Inset of (b): site-resolved hopping order pa-
rameters δσ,i/i+,in/out for EJ = 0.03.

Figure 14 shows the calculation results of Uin = 0 and
Uout = −20. We find that with the increase of EJ the occupa-
tion number at different sites gradually tends to 0.5. For exam-
ple, we plot the occupation numbers at the two sites at the left
end of the chain (1A and 1B) as functions of EJ in Fig. 14(a).
One can see that both of them are stabilized at 0.5 with
sufficiently large EJ . At the same time, the averaged intercell
pairing order parameter �σ,out nearly reaches a saturation
value [Fig. 14(b)], while the intracell one �σ,in and averaged
hopping order parameters δσ,in/out are very small. It indicates
that the increasing EJ does not cause a phase transition and
the system is still in the inter-CSP phase. Figure 15 shows
the calculation results of Uin = −7,Uout = 0. Similar to the
case of the inter-CSP phase, the occupation number at each
site rapidly tends to 0.5 with the increase of EJ . δσ,in/out and
�σ,out are much lower than �σ,in, meaning that EJ does not
destroy the intra-CSP phase in the considered range.

Figure 16 shows the results of Uin = Uout = 20, which
correspond to the CDW phase in the mean-field phase dia-
gram. With increasing EJ , the occupation numbers at A and B
sublattices gradually tend to 0.5. Meanwhile, hopping order
parameters δσ,in/out remain small. When EJ is sufficiently
large, the one-dimensional chain will be transformed into a
normal insulator phase from the CDW phase.

According to the above calculation results about the effects
of EJ , we can see that the introduction of the nonconserving
term indeed changes properties of the interacting SSH chain.
But when EJ is small (e.g., EJ < 0.1EJ,in), its effects are
also small so that the system can be qualitatively unchanged.
Meanwhile, we also find that increasing the strength of inter-
actions can reduce the effects of EJ . Therefore, this term can
be made negligible by tuning EJ to a small value.

V. SUMMARY

In summary, we have explored topological phase tran-
sitions of the interacting SSH model with nearest-neighbor
interactions and presented a rich ground-state phase diagram,
where MBSs are confirmed by analyzing wave functions
and Majorana number. A quantum simulation based on this
model has also been proposed by connecting CPBs and JJs
alternately in series. Although the proposed quantum circuit
cannot simulate attractive interactions in practice, we hope
that our theoretical calculations could provide useful infor-
mation for future quantum simulations of the interacting SSH
model.
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