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Enhanced hydrodynamic transport in near magic angle twisted bilayer graphene
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Using the semiclassical quantum Boltzmann theory and employing the Dirac model with twist angle-
dependent Fermi velocity, we obtain results for the electrical resistivity, the electronic thermal resistivity, the
Seebeck coefficient, and the Wiedemann-Franz ratio in near magic angle twisted bilayer graphene, as functions
of doping density (around the charge-neutrality point) and modified Fermi velocity ṽ. The ṽ dependence of
the relevant scattering mechanisms, i.e., electron-hole Coulomb, long-range impurities, and acoustic gauge
phonons, is considered in detail. We find a range of twist angles and temperatures, where the combined effect
of momentum-nonconserving collisions (long-range impurities and phonons) is minimal, opening a window for
the observation of strong hydrodynamic transport. Several experimental signatures are identified, such as a sharp
dependence of the electric resistivity on doping density and a large enhancement of the Wiedemann-Franz ratio
and the Seebeck coefficient.

DOI: 10.1103/PhysRevB.101.045421

I. INTRODUCTION

Since the 2018 discovery of exotic superconductivity and
correlated insulating phases in magic angle twisted bilayer
graphene (tBLG) [1–3], this system has been the subject of
many theoretical and experimental investigations; e.g., see
Ref. [4] and references therein. The intense interest arises
mainly from the new physics brought in by the low-lying flat
bands near magic angles in tBLG [5]. The average Coulomb
interaction [6,7] between the quasiparticles in narrow bands is
far larger than the kinetic energy, giving access to a strongly
correlated regime and providing an ideal system for the obser-
vation of collective many-body phenomena.

In this paper, we focus on a particular collective
phenomenon, namely, hydrodynamic transport in tBLG. Hy-
drodynamic transport is expected whenever the momentum-
conserving collisions between particles are much more
frequent than the momentum-nonconserving collisions with
impurities and/or lattice vibrations (phonons). In addition,
umklapp processes must be negligible. Under these condi-
tions, the electric and thermal transport can be described
by hydrodynamic equations for the flow of quasiparticles—
electrons in the conduction band and holes in the valence
band. Close to the charge-neutrality point (CNP), where the
densities of electrons and holes are nearly equal, a key in-
dicator of the hydrodynamic regime is the ratio γ = τd/τeh

between the electron-hole scattering rate 1/τeh and the single-
particle scattering rate 1/τd from momentum-nonconserving
collisions with impurities and phonons. A large value of
γ � 1 defines the so-called hydrodynamic transport window
[8], which has been theoretically predicted and experimentally
observed in single-layer graphene [9,10], as well as in AB-
stacked bilayer graphene [10–14].

One important finding of the present work is that for
some of the experimental samples in the literature, e.g.,

Refs. [3,15], these are already of sufficiently low disorder
that our formalism predicts a robust hydrodynamic window
close to twist angle of 1.11◦. (From the very low-temperature
electrical transport, we estimate a charged impurity density
of 1.6 × 1011 cm−2 for sample D5 in [3].) Other groups have
data [1] where the impurity concentration is just above the
threshold to observe hydrodynamic features and, therefore,
the predictions we make below should be seen in cleaner
samples in the near future.

In the hydrodynamic regime, the electric and thermal trans-
port have distinctive features that are described by the follow-
ing expressions for the electric resistivity ρel and the thermal
resistivity ρth, as functions of the dimensionless doping away
from charge neutrality μ̄ ≡ μ/(kBT ):

ρel(μ̄) � ρC
�2

�2 + (αμ̄)2
, (1)

ρth(μ̄) � ρC[�2 + (αμ̄)2]

(
e2

k2
BT

)
, (2)

where α = 4 ln 2/9ζ (3) ≈ 1/4 is constant and μ̄ � 1. In
these formulas, ρC ∝ 1/(e2τeh ) is the electric resistivity due
to Coulomb electron-hole scattering at the CNP [12,16–18],
and � = (kB/e)

√
T ρth(0)/ρC, where ρth(0) is the thermal

resistivity at charge neutrality, which is due to momentum-
nonconserving collisions only because the thermal current
density coincides with the conserved momentum density at
the CNP. Making use of the conventional Wiedemann-Franz
law for noninteracting systems, we can express � more inci-
sively as a ratio of disorder and interaction contributions to the
electric resistivity, i.e.,

� � 0.35

√
ρel,d(0)

ρC
∝ 1

γ 1/2
, (3)
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and ρel,d(0) is the noninteracting electric resistivity collisions.
Thus, we see that the cumulative effect of all types of disorder,
e.g., charged impurities, phonons, etc., is included in the
single parameter �, which becomes effectively a measure of
“hydrodynamicity.”

As shown in Ref. [18], the derivation of Eqs. (1) and (2)
requires that the conditions �2 � 1 and μ̄ � 1 be satisfied.
These conditions define a temperature window for the ob-
servation of hydrodynamic effects: μ̄ � 1 implies that the
temperature is not too low and � � 1 excludes high temper-
atures, where the phonon contribution to the resistivity would
become very large. In practice, intermediate temperatures in a
50–100 K range are most suitable. Equations (1) and (2) pro-
vide us with explicit analytical expressions for the resistivities
as functions of doping density, via the chemical potential.

Following the theory outlined above, the purpose of this
paper is to understand how the electric and thermal resistivity,
as well as the Wiedemann-Franz (WF) and the Seebeck co-
efficient, behave as functions of the angle-dependent Fermi
velocity in tBLG near charge neutrality. While employing
a linear Dirac model to describe the low-energy bands of
tBLG, we note that the twist angle acts as a new knob to vary
the Fermi velocity and thus the strength of interactions. An
incomplete theory, taking into account only electron scatter-
ing from long-range impurities, would suggest hydrodynamic
effects to gain strength at higher temperatures and as the
magic angle is approached. Careful consideration of the role
of gauge phonons, which remain unscreened and contribute
strongly to the resistivity [19], reveals quite a different reality.
A strong hydrodynamic regime is found in the vicinity of
the magic twist angle and at rather low-temperature range
(10 � T � 50 K) compared to single and bilayer graphene
systems [12,18]. This enhanced hydrodynamic is traced back
to the strong suppression of electronic screening in tBGL near
the magic angle.

Experimentally, the signature of the hydrodynamic regime
should be clear and strong in the electrical resistivity, which
is predicted to decrease sharply as a function of increasing
doping density as nearly free electrons become available for
conduction [see Fig. 3(a)]. By contrast, the noninteracting
electric resistivity is nearly independent of density, as seen
by comparing Figs. 3(a) and 3(b). Differently stated, Eq. (1)
predicts that the electric conductivity (inverse of the resistiv-
ity) grows as μ̄2/�2 as one moves away from the CNP. The
positive curvature of the conductivity versus density is thus
proportional to 1/�2 and provides a direct measure of “hy-
drodynamicity.” Another striking signature of hydrodynamics,
although more challenging to observe experimentally, would
be the value of the Wiedemann-Franz ratio between the elec-
tric and thermal resistivity at the CNP, which, from Eqs. (1)
and (2), is seen to be proportional to 1/�2. The position of
a maximum in the Seebeck coefficient, which is predicted
to occur at αμ̄ = �, would be yet another signature. The
behavior of the key parameter � as a function of temperature
and twist angle is summarized in Fig. 4, which we hope will
be a valuable guide to experimentalists hunting for signatures
of hydrodynamic transport in tBLG.

This paper is organized as follows. In Sec. II, we first eval-
uate the angle dependence of the screened intrinsic electric
and thermal resistivities. In Sec. III, we obtain the resistivities

associated with the long-range charged impurity as well as the
gauge phonons. Having the key ingredients, i.e., ρC and �, in
Sec. IV we calculate the electric resistivities and the Seebeck
coefficient, and show that the WF ratio—a direct indicator of
the hydrodynamic regime—is strongly enhanced at the CNP
as the magic angle is approached. Section V presents our
outlook and conclusions.

II. INTRINSIC RESISTIVITY

At low densities around the CNP, the energy spectrum of
tBLG can be approximated by the Dirac model εk,± = ±h̄ṽk
with a twist angle-dependent Fermi velocity ṽ,

ṽ = 1 − 3λ2

1 + 6λ2
, λ = w

h̄v
K
, 
K ≈ kDθ, (4)

where ṽ is in units of the graphene Fermi velocity v �
106 m/s, θ is the twist angle, w = 110 meV is the interlayer
hopping, and kD = 4π/3a with a = 0.246 nm is the graphene
lattice constant. Comparing with the tight-binding band struc-
ture, the authors in Ref. [19] show that the Dirac model is
a valid model at densities n � 8 × 1010 cm−2 and for twist
angles θ � 1◦.

In our recent work [18], we have demonstrated that within
a Dirac model and in the absence of any disorder (i.e., for
� = 0), the electrical and thermal resistivities can be identi-
fied as

ρel,C(0) = ρC = ICa2/e2, ρel,C(μ̄ 
= 0) = 0,

ρth,C(0) = 0, ρth,C(μ̄ 
= 0) = ICb2/
(
k2

BT
)
, (5)

where IC(μ̄, T ) is the Coulomb collision kernel, given by
Eq. (21) in Ref. [18], a ∼ πβ h̄2/ ln 4, and b ∼ [2πβ h̄2/

9ζ (3)]μ̄ for μ̄ → 0. The intrinsic electric resistivity ρC (first
calculated in Refs. [16,17] for graphene) is associated with
the Coulomb drag between the electrons and holes at the CNP
(μ = 0). In agreement with Refs. [16,17], we find that in the
absence of screening,

ρ unscreened
C = Iunscreened

C a2 ∝ ṽ−2. (6)

With screening, the bare Coulomb interaction vq is modified
to

V (q, ω → 0) = vq

|1 − vq�0| , (7)

where, throughout our results in this paper, we have calculated
the finite-temperature polarizability �0(q, ω, T ) numerically
over the full range of frequencies ω and wave vectors q. To
explain the dependence of the resistivities on the renormalized
Fermi velocity ṽ close to the CNP, we employ the asymptotic
low-frequency form of �0(q, ω → 0, T ) at T � TF [20,21],

�0(q, T ) = 8kF

2π h̄ṽ

[
T

TF
ln 4 + 1

24

q2

k2
F

TF

T

]
, (8)

using which we can write

ρC ∼ ρ unscreened
C

|1 − vq�0|2 ∝ (c + ṽ)−2, (9)

where c has the dimension of a velocity and we obtain its value
numerically, e.g., c ≈ 1.2v at T = 50 K. In Fig. 1(a), we show
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FIG. 1. (a) Electric resistivity ρC from electron-hole Coulomb
scattering at μ̄ = 0 (Coulomb drag resistivity) approaches a constant
value as the modified Fermi velocity ṽ tends to zero. ρC also has
a very weak (logarithmic) dependence on temperature, which is
neglected here. (b) Two-dimensional (2D) contour plot of the intrin-
sic Coulomb thermal resistivity ρC,th ≡ ρC(αμ̄)2e2/(k2

BT ) obtained
from Eq. (2) in the limit of zero disorder (� = 0) as a function of
doping density n and ṽ (in units of graphene Fermi velocity v) at
fixed T = 50 K. Notice that ρC,th vanishes at μ̄ = 0, reflecting the
conservation of momentum.

the numerical results for the screened ρC as a function of ṽ.
In contrast to the T -dependent ρunscreened, it is interesting to
note that the screened ρscreened

C has a very weak (logarithmic)
dependence on temperature, which is neglected here [17]. At
the magic twist angle (ṽ → 0), we obtain ρC ≈ 0.7 (h̄/e2).

In Fig. 1(b), we have shown a 2D contour plot of the
Coulomb thermal resistivity ρC,th as a function of doping
density n and Fermi velocity ṽ at fixed T = 50 K. At the
CNP, ρC,th(0) vanishes for any value of ṽ; see Eqs. (5). Within
the Dirac model, n ≈ 8μ̄/[πβ2(h̄ṽ)2] (note that the Dirac
model breaks down at precisely magic twist angle ṽ = 0), and
therefore away from the CNP, we obtain

ρC,th(μ̄ 
= 0) = ρC(b2/a2)
(
e2/k2

BT
) ∝ ρC μ̄2 ∝ ṽ4

(c + ṽ)2
,

(10)

which exhibits a substantial suppression of ρC,th as ṽ → 0, as
seen in Fig. 1(b).

III. MOMENTUM-NONCONSERVING COLLISIONS

A. Long-range charged impurity

We now evaluate the contribution of charged impurities
and its ṽ dependence within the Dirac-modeled tBLG. We
recall that the momentum-nonconserving collision integral
of the scattering potential of randomly distributed screened
(long-range) impurity charge centers is given by [20]

Idis(k, η) = 8 × 2πnimp

h̄

∑
η′

∑
k′

∣∣∣∣ vq

1 − vq�0(q, T )

∣∣∣∣
2

F ηη′
k,k′

× ( fk,η − fk′,η′ )δ(εk,η − εk′,η′ ), (11)

where η(η′) = ±1 sums over the two bands, q = k − k′, and
nimp is the disorder density. The factor 8 accounts for the
spin and both graphene and Moiré valley degeneracies. Insert-
ing the nonequilibrium distribution function f = f0 + f ′

0vk ·

FIG. 2. Thermal resistivity associated with the long-range
charged impurity (red curves) and acoustic gauge phonons (blue
curves) as functions of (a) ṽ/v (at T = 50 K) and (b) temperature
T (at ṽ/v = 0.05). Both sets of curves are calculated at the charge-
neutrality point and the charged impurity density in (a) is set to
nimp = 1 × 1010 cm−2. ρth,dis can be linked to the corresponding
electric resistivity ρel,dis, through the Wiedemann-Franz law for non-
interacting electronic systems, which takes the form ρel,dis/ρth,dis �
2.4π 2k2

BT/(3e2) for the Dirac model near charge neutrality.

(pn + βε̃k,γ ps), where pn and ps are the momentum shifts
due to the charge and heat (entropy) currents, respectively, we
write the linearized collision kernels as

I (m)
imp = 4nd

h̄3

(
e2

κ

)2 ∫ 2π

0
dθ (1 + cos θ )

×
∫ ∞

0
d ε̄

(ε̄ − μ̄)m f ′(ε̄) + (−1)α (ε̄ + μ̄)m f ′(−ε̄)

|ε(ε̄, θ )|2 ,

(12)

where m = 0, 1, 2 give the matrix elements I11
imp, I12

imp = I21
imp,

and I22
imp, respectively. ε̄ = βεk, f ′(ε̄) = exp(ε̄ − μ̄)/[1 +

exp(ε̄ − μ̄)]2, and, using Eq. (8), the dielectric function
ε(ε̄, θ ) is

ε(ε̄, θ ) = 1 + 8(e2/κ )

h̄ṽ
√

2(1 − cos θ )

[
ln 4

ε̄
+ ε̄

12

]
. (13)

The resistivity matrix is obtained using ρ = D−1 · Iimp · D−1,
where D is a symmetric 2 × 2 matrix of Drude weights, which
are functions of μ̄. These functions are calculated analytically
in Ref. [18] and do not depend on ṽ since we work within the
same Dirac model. Therefore, the ṽ dependence of ρdis,th is
completely defined through the ṽ dependence of Iimp,

ρ
long−range

imp,th (ṽ → 0) ∝ ṽ2. (14)

The red curves in Figs. 2(a) and 2(b) show, respectively, the
ṽ and T dependence of ρimp,th at the CNP (n = 0). We note
that ρth,dis can be linked to the disorder electric resistivity
ρel,dis, through the standard WF relation, i.e., for the Dirac
model ρel,dis/ρth,dis � 2.4π2k2

BT/(3e2). While we see that Iimp

in Eq. (12) is independent of T , the T dependence of the ρimp

[see Fig. 2(b)] comes entirely from the 1/T 2 dependence of
the inverse Drude weights.
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B. Gauge phonons

In addition to the long-range charge impurities, the impor-
tance of phonons has been highlighted in the recent theoretical
and experimental literature, e.g., Refs. [15,19,22]. We leave a
detailed discussion of the differences between the theoretical
formulations and the degree to which it explains available
experimental data to a future paper [23]. For our purposes,
we need the collision integral for electron-phonon scattering
that is given by

Ie−ph =
∑

k′,λ′=±1

W λ′λ
k′k fk′,λ′ (1 − fk,λ) − W λλ′

kk′ fk,λ(1 − fk′,λ′ ),

(15)

where W λ′λ
k′k is the probability of scattering from state |k, λ〉 to

state |k′, λ′〉 [with λ(λ′) = ±1 are band indices], given by

W λλ′
k,k+q = 2π

h̄

∣∣gλλ′
kq

∣∣2[
Nqδ(εk+q,λ′ − εk,λ − h̄vAq)

+ (1 + Nq)δ
(
εm

k+q,λ′ − εk,λ + h̄vAq
)]

, (16)

which describes phonon absorption and emission. Here, Nq =
1/{exp[h̄vAq/(kBT )] − 1} is the Bose-Einstein distribution
function and gλλ′

kq is electron-phonon coupling, given by

gλλ′
kq = β̃Aq

√
2h̄

Aρωq
Fλλ′

k,k+q, (17)

with effective gauge phonon coupling constant β̃A and chiral-
ity factor Fλλ′

kk′ = (1 + λλ′ cos θk,k′ )/2. Employing the ansatz
fk,λ = f 0

k,λ + λeE ṽ cos θkτk,λ(∂ f 0
k,λ/∂εk,λ), we obtain (up to

linear order) the electron-phonon scattering time,

1

τλ
e−ph(k)

=
∑
k′,λ′

W λ′λ
k′k

1 − f 0
k′,λ′

1 − f 0
k,λ

(1 − λλ′ cos θk,k′ ), (18)

which can be evaluated numerically. For this work, we use
μs = 7.66 × 10−7 kg/m2 for the mass density of graphene,
vA = 1.62 × 104 m/s is the effective acoustic phonon veloc-
ity, and β̃A ≈ βA(ṽ/vF )/[2 tan(θ/2)] is the effective electron-
phonon coupling constant [19], where βA = 3.6 eV is the best
estimate for monolayer graphene determined from density
functional perturbation theory and tight-binding calculations
[24,25].

The contribution of gauge phonon limited resistivity is
obtained by averaging

1

ρe−ph
= e2

∫ ∞

−∞
dεND(ε)

ṽ2

2
τe−ph(ε)[− f ′

0(ε)], (19)

where ND(ε) = 4|ε|/[π (h̄ṽ)2] is the density of states and
τe−ph(ε) is the electron-phonon scattering time (18). At
ṽ/vA � 2, we can use quasielastic approximations and obtain

ρe−ph(T � TBG) � 1

ṽ2

48ζ (4)β̃2
A(kBT )4

e2h̄4μsv
5
A(π |n|)3/2

,

ρe−ph(T � TBG) � 1

ṽ2

πβ̃2
AkBT

2e2h̄μsv
2
A

. (20)

In both cases, ρe−ph is proportional to (β̃A/ṽ)2 ∝
1/ tan2(θ/2) ∼ (1 − ṽ)/(1 + 2ṽ) at fixed T and linearly

TABLE I. The dependence of relevant resistivities on Fermi
velocity ṽ and temperature T for T � TF .

Resistivity ṽ dependence T dependence

Intrinsic e-h Coulomb ρscreened
C (const + ṽ)−2 independent

Long-range charged impurity ρe−imp ṽ2 1/T 2

Gauge phonons ρe−ph(ṽ � 2vA)a (1 − ṽ)/(1 + 2ṽ) T
Gauge phonons ρe−ph(ṽ → 0) ṽ4 T

avA = 1.62 × 104 m/s is the effective acoustic phonon velocity.

increases with T for T � TBG, where TBG is the
Bloch-Gruneisen temperature (kBTBG = 2h̄vAkF ) (see the
blue curves in Fig. 2). In the limit of ṽ → 0, the interband
scattering dominates and this changes the dependence on ṽ

[23]. In particular, for T � TF , while ρe−ph remains linear
with T , it scales as ṽ4 at fixed T . The dependence of the
considered resistivities on the renormalized Fermi velocity ṽ

and temperature T is summarized in Table I.
In Figs. 3(a) and 3(b), we, respectively, show the total elec-

tric resistivity ρ total
el , defined in Eq. (1), and the noninteracting

(only the charged impurity and gauge-phonon contributions)
electric resistivity ρdis

el as functions of ṽ and doping density
n. The total resistivity ρ total

el follows the Lorentzian form of
Eq. (1) as a function of density (n ∝ μ). When μ → 0, the
relevant contribution is the Coulomb term ρC, i.e., ρel → ρC,
which increases as ṽ → 0. In the absence of Coulomb inter-
actions, we observe that the ṽ and density dependence of ρdis

el
is completely dominated by the behavior of the total contri-
butions of ρel,imp + ρel,e−ph [see Fig. 2(a)]. Accordingly, we
observe a minimum in Fig. 3(b) at ṽ ∼ 0.4. As a function of
density, it is interesting to note that ρdis

el is density independent
at small ṽ, where the gauge phonons dominate. Although the
WF ratio and 1/�2 are the main parameters for identifying
the hydrodynamic regime, we note that ρel has a localized

-5 0 5

n (1010 cm-2)

0.1

0.2

0.3

0.4

0.5

0.7 0.8 0.9 1 1.1

-5 0 5

n (1010 cm-2)

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6(a) (b)

FIG. 3. (a) Contour plot of the total electric resistivity, given by
Eq. (1)—including the contributions of charged impurities, gauge
phonons, and Coulomb scattering—as a function of ṽ/v and doping
density n at fixed T = 50 K. The charged impurity density is set to
nimp = 1 × 1010 cm−2. (b) Same plot for the noninteracting electric
resistivity, including only charged impurity and gauge-phonon scat-
tering: ρdis

el = ρel,imp + ρel,e−ph. Observe how the total resistivity in
(a) decreases sharply with increasing doping density, in contrast to
ρdis

el in (b), which is weakly density dependent. Thus, a sharp peak
of ρ total

el around the charge-neutrality point constitutes experimental
evidence of strong hydrodynamic transport.
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peak around the CNP. This is the opposite behavior from
the noninteracting contributions and observing this feature in
the experiments would be an immediate indication of strong
hydrodynamic transport directly from electrical conductivity
measurements. The strong density dependence of the electric
resistivity on a scale controlled by � near the CNP can be,
in general, used as a signature of hydrodynamic transport in
semimetals with dominating electron-hole scattering; e.g., see
Refs. [26,27].

C. Calculation of �

We define the parameter 1/�2, where � is given in Eq. (3),
as a hydrodynamic parameter which shows the strength of the
momentum-nonconserving disorder collisions vs the intrinsic
electron-hole momentum-conserving Coulomb collisions,

1

�2
∝ ρC

ρth,imp + ρth,ph
≡ τ−1

eh

τ−1
imp + τ−1

ph

. (21)

Note that at the CNP, 1/�2 is the physical thermoelectric
parameter WF(0), which is given at finite doping density by
the square Lorentzian law [18]

WF(μ̄) �
[

�

�2 + (αμ̄)2

]2(kB

e

)2

. (22)

In Fig. 4, we mapped out the (T − ṽ) 2D contour plot of
1/�2 at velocities very close to the magic angle and at low
temperatures. We point out that � has a weak dependence
on the doping density n around the CNP [see Fig. 3(b)].
When ṽ → 0, ρe−ph is the dominant disorder mechanism
which linearly increases with T . At the other limit ṽ → 1
(which is the case of monolayer graphene), ρe−imp becomes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ṽ/v

10

20

30

40

50

60

70

80

90

100

110

T
 (

K
)

2

4

6

8

10

12

1.28 1.941.12 5.153.512.752.281.681.47

1/Γ2

FIG. 4. Contour plot of 1/�2 in the (T − ṽ) plane, where �,
defined in Eq. (3), determines the width in density of the hydro-
dynamic transport region. An enhanced “hydrodynamic window”
characterized by exceptionally large values of 1/�2 � 10 is clearly
visible in a range of twist angles on the left side of the figure.

important and decays as 1/T 2 (see Fig. 2). Since ρC is fairly
independent of T (has a weakly logarithmic dependency) and
slowly varying with ṽ [see Fig. 1(a)], the competition between
ρe−imp and ρe−ph in Eq. (21) results in the two different regions
with stronger hydrodynamic effects (1/�2 � 1) in Fig. 4: (i)
near magic angle and for 10 � T � 50 K, and (ii) ṽ → 1 with
T � 70 K (we have neglected the effect of acoustic phonons
which are relevant for T � 150 K in graphene [28] and should
suppress the hydrodynamicity as T increases). The crossover
between these two regions occurs at ṽ ∼ 0.4, associated with
the velocity at which ρe−ph = ρe−imp [see Fig. 2(a)].

IV. WIEDEMAN-FRANZ RATIO
AND SEEBECK COEFFICIENT

Having all the ingredients, we can now calculate the WF
[see Eq. (22)], as well as the Seebeck coefficient, which near
the CNP takes the form [18]

Q(μ̄) � − αμ̄

(αμ̄)2 + �2

kB

e
. (23)

Figures 5(a) and 5(b) show, respectively, the results for the
WF and the Seebeck coefficient, including the contribution
of both the charged impurity and gauge phonons as functions
of doping density n and renormalized Fermi velocity (alias
twist angle) ṽ. For clarity, WF is scaled with the Lorentz
number π2k2

B/3e2 and shown as ln(WF). Consistent with
the results in Fig. 4, where at T = 50 K, 1/�2 is large for
0.1 � ṽ � 0.45, we observe a large enhancement of the WF at
these near magic twist angle velocities. The broadening of the
square-Lorentzian WF peak when ṽ → 0, i.e., approaching
the magic twist angle, is caused by the density-independent
ρe−ph, which is the dominant disorder scattering mechanism
in this regime. As seen in Fig. 3(b), ρdis becomes density
independent at small ṽ, while it decreases as a function of
density as ṽ increases. Therefore, we observe that the Seebeck
coefficient in Fig. 5(b), which is proportional to μ̄ ∝ n, peaks
at twist angles corresponding to ṽ � 0.4.

-8 -6 -4 -2 0 2 4 6 8

n (1010 cm-2)

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5

-8 -6 -4 -2 0 2 4 6 8

n (1010 cm-2)

0.1

0.2

0.3

0.4

0.5

-1 -0.5 0 0.5 1

(a) (b) Q (k
B

/e)log(WF)

FIG. 5. Contour plot of (a) ln(WF) and (b) Seebeck coefficient
Q as a function of doping density n and Fermi velocity ṽ at T =
50 K. WF is scaled with the Lorentz number π 2k2

B/3e2 and the
charged impurity density is set to nimp = 1 × 1010 cm−2. The large
enhancement of the WF and the peak in the Seebeck coefficient at
small ṽ are both signatures of the hydrodynamic regime.
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V. CONCLUDING REMARKS

In this paper, we have calculated the transport properties
of twisted bilayer graphene near magic twist angle and at
low densities around the charge-neutrality point (K point).
We have obtained our results for the electric and thermal
resistivities, the Wiedemann-Franz ratio, and the Seebeck co-
efficient. Momentum-nonconserving scattering mechanisms,
such as long-range (screened) charge impurities and acous-
tic gauge phonons, which become most relevant in twisted
bilayer graphene near the magic angle, are all included in a
single parameter � � 1, which controls the doping density
dependence of the thermoelectric transport coefficients in a
region of μ/(kBT ) � 1 around the charge-neutrality point.
Including the effect of screening, we obtained (renormalized)
Fermi velocity ṽ dependence of the resistivities pertinent to
the e-h Coulomb interaction, long-range charged impurities,
and the gauge phonons (see Table I).

Our most interesting result is that the hydrodynamic trans-
port anomaly, characterized by large values of the WF ratio

and the Seebeck coefficient, is very strong in the vicinity of
the magic twist angle and in a temperature range of 10 � T �
50 K, where the gauge phonons are the dominant disorder
mechanism. Besides the enhanced thermoelectric coefficients
that we have studied here, twisted bilayer graphene could
also be an interesting system for the realization of nonlinear
hydrodynamic effects such as turbulent viscous electron flow
[29]. This is due to the large fine-structure constant at the
magic twist angle which leads to a low viscosity-to-entropy
ratio.
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