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We present a theoretical study of compact magnetic skyrmions in ferromagnetic films with perpendicular mag-
netic anisotropy that accounts for the full stray field energy in the thin film and low interfacial Dzyaloshinskii-
Moriya interaction (DMI) regime. In this regime, the skyrmion profile is close to a Belavin-Polyakov profile,
which yields analytical expressions for the equilibrium skyrmion radius and energy. The obtained formulas
provide a clear identification of DMI and long-range dipolar interaction as two physical mechanisms determining
skyrmion size and stability.
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I. INTRODUCTION

Magnetic skyrmions are a prime example of topologically
nontrivial spin textures observed in a variety of magnetic
materials. Their nucleation and annihilation in an otherwise
uniformly magnetized ferromagnet is enabled by the discrete
nature of matter [1–4]. Magnetic skyrmions emerge when
the exchange and anisotropy energies promoting parallel
alignment of spins in a ferromagnet enter in competition
with energies favoring noncollinear alignment of spins such
as the Dzyaloshinskii-Moriya interaction (DMI) [5,6], the
long-range dipolar interaction [7,8], or higher order exchange
interactions [9–11]. In particular, DMI is at the heart of a
large number of magnetic skyrmion observations in recent
years. This antisymmetric exchange interaction is related to
the lack of structural inversion symmetry and is present in
a variety of bulk chiral magnets [12–16]. Interfacial DMI
induced by the symmetry breaking in ferromagnetic het-
erostructures with asymmetric interfaces [17–19] also leads
to the formation of skyrmions in thin ferromagnetic layers
[1,20,21] and multilayers [22]. Another classical energy term
known to favor noncollinear spin alignment in ferromagnets
is the dipolar energy, also called stray field or demagnetizing
energy [23]. A manifestation of the long-range nature of this
energy in thin films with perpendicular magnetic anisotropy
is the appearance of micron-sized magnetic bubble domains
[8,24–26]. The equilibrium shape and size of these domains
is determined by the balance between the long-range dipolar
interaction and the energy cost of the bubble related to the
domain wall energy and the Zeeman energy [27].

The orthodox theory of skyrmions in ultrathin ferromag-
netic layers with interfacial DMI relies on a model that
accounts for the dipolar interaction through an effective
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anisotropy term, neglecting long-range effects [9,28]. At the
same time, in single ferromagnetic layers with interfacial
DMI, large chiral skyrmions, also called skyrmionic bubbles,
have been observed [29–33], suggesting a nontrivial interplay
between DMI and long-range dipolar effects. The competition
between these two energies also leads to the formation of
skyrmions exhibiting spin rotations with intermediate angles
between Néel and Bloch [34–36], a phenomenon also present
in domain walls [37]. In addition, there is a growing body
of theoretical evidence that points to a need to take into ac-
count the long-range dipolar energy in the models describing
magnetic skyrmions [27,34,38,39]. In particular, Büttner et al.
[34] used a 360◦-wall ansatz [40] to numerically calculate
the skyrmion equilibrium radius and energy as functions of
the material parameters for intermediate thicknesses, focusing
on room-temperature stable skyrmions and predicting the
existence of room temperature skyrmions stabilized solely by
the stray field.

The above considerations put into question the validity
of the commonly used assumption that the contribution of
the long-range dipolar interaction is negligible. Another open
question is whether there exists a size difference between
the skyrmions stabilized by the DMI and those stabilized by
the stray field [27,34,38,39]. In this paper, we address these
questions using an ansatz-free analysis of a micromagnetic
model that is valid for sufficiently small film thicknesses.
We provide explicit analytical expressions for the skyrmion
radius, rotation angle, and energy valid in the low DMI and
thickness regime, taking into account the long-range dipolar
energy contribution. We obtain a prediction for the critical
DMI value at which the skyrmion character changes from pure
Néel to a mixed Néel-Bloch type. These findings are corrob-
orated by micromagnetic simulations. Our rigorous treatment
of the stray field contribution sheds light on the necessity to
tune both the magnetic layer thickness and the DMI constant
to optimize the skyrmion size and stability for applications.
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II. MODEL

We consider a ferromagnetic thin film with perpendicular
magnetic anisotropy (PMA) and infinite extent in the plane.
The film is assumed to be sufficiently thin in order for the
magnetization vector m to be constant in the direction normal
to the film plane. Under these conditions, the micromagnetic
energy [23] reduces to [41–43]

E (m) =
∫
R2

(|∇m|2 + (Q − 1)|m⊥|2)d2r

+ κ

∫
R2

(m‖∇ · m⊥ − m⊥ · ∇m‖) d2r

− δ

8π

∫
R2

∫
R2

(m‖(r) − m‖(r′))2

|r − r′|3 d2r d2r′

+ δ

4π

∫
R2

∫
R2

∇ · m⊥(r) ∇ · m⊥(r′)
|r − r′| d2r d2r′. (1)

Here E is measured in the units of Ad , where A is the exchange
stiffness and d is the film thickness, lengths are measured in
the units of the exchange length �ex = √

2A/(μ0M2
s ), Ms is

the saturation magnetization, and δ = d/�ex � 1 is the dimen-
sionless film thickness (for further details, see Ref. [44]). Fur-
thermore, in Eq. (1) we set m = (m⊥, m‖), where m⊥ ∈ R2

and m‖ ∈ R are the respective in-plane and out-of-plane com-
ponents of m, and introduced the dimensionless quality factor
Q = Ku/Kd, where Ku is the magnetocrystalline anisotropy
constant, Kd = 1

2μ0M2
s , and the dimensionless DMI strength

κ = D/
√

AKd. The first three energy terms are local and
represent, respectively, the exchange energy, the effective
anisotropy energy, which corresponds to the magnetocrys-
talline energy renormalized to take into account the local stray
field contribution, and the DMI energy. The last two terms
correspond to the long-range part of the dipolar energy, which
splits into two contributions. The first contribution is due to
the out-of-plane component of m and accounts for surface
charges at the top and bottom interfaces of the film. The
second energy term corresponds to volume charges and is due
to the in-plane divergence of the magnetization.

III. RESULTS AND DISCUSSION

A. Definition of a skyrmion

Magnetic skyrmions were originally predicted to exist
using a fully local micromagnetic model that is obtained from
Eq. (1) by setting δ = 0 [5,6,45]. Within this model [46,47],
the ground state for PMA materials (Q > 1) and sufficiently
small values of |κ| is the monodomain state m = ±ẑ, where
ẑ is the unit normal vector to the film plane (the xy plane)
[41,45]. Therefore, one should identify magnetic skyrmions
with metastable magnetization configurations that locally
minimize the energy in Eq. (1). In addition, skyrmions possess
a nonzero topological charge q ∈ Z defined as [48–50]

q(m) = 1

4π

∫
R2

m ·
(

∂m
∂x

× ∂m
∂y

)
dx dy, (2)

provided lim|r|→∞ m(r) = −ẑ in order to fix the sign conven-
tion so that q = +1 for either the Néel or Bloch skyrmion
profiles. In a fully local micromagnetic model with bulk DMI

and no anisotropy term, Melcher [51] studied the existence
of minimizers among nontrivial topological sectors in the
presence of a sufficiently strong Zeeman term. He found
that in this class the energy is globally minimized by a
configuration with q = +1 (in our convention) and identified
this energy-minimizing magnetization configuration with a
magnetic skyrmion.

In contrast, in the absence of an applied magnetic field
and in the presence of long-range dipolar interaction, the
monodomain state is never the ground state in an extended
ferromagnetic film [42,52]. This can be seen by noting that
the energy in Eq. (1) with Q > 1 and δ > 0 goes to negative
infinity for configurations consisting of a growing bubble
domain in which the m = +ẑ core is separated from the
m = −ẑ background by a Bloch or Néel wall, depending on
the magnitude of |κ|, and which carry the topological charge
q = +1 [27,42]. Thus, it is not possible to carry out the anal-
ysis of Ref. [51] to establish existence of skyrmion profiles
via direct energy minimization without introducing further
restrictions on the admissible configurations distinguishing
compact magnetic skyrmions from skyrmionic bubbles.

In the present work, we assign a mathematical meaning to
the notion of compact magnetic skyrmion by defining a class
of admissible configurations in which the topological charge
is fixed to q = +1 and the exchange energy cannot exceed
twice the topological lower bound, i.e., twice the exchange
energy of the Belavin-Polyakov profile [27,34,53]. Within this
class, we establish the existence of compact skyrmions as
minimizers of the energy in Eq. (1) for an explicit range of
the parameters.

Theorem 1. Let Q > 1, δ > 0 and κ ∈ R be such that

(2|κ| + δ)2 < 2(Q − 1). (3)

Then there exists a minimizer of E among all m such
that q(m) = +1,

∫
R2 |∇m|2d2r < 16π , and m(r) → −ẑ as

|r| → ∞.
A more precise statement and a sketch of the proof of this

result may be found in the Supplemental Material [44]. In the
following, we always refer to the minimizers in the above
theorem as skyrmion solutions. We note that Eq. (3) is only
a sufficient condition for their existence.

B. Skyrmion solutions in the low |κ| and δ regime

Once existence of a compact skyrmion solution is es-
tablished, we proceed with an asymptotic analysis of the
skyrmion profile at low values of |κ| and δ (for a fully rigorous
treatment, see Ref. [54]). It is known that in a model with
exchange energy alone the minimizer is given explicitly by
all rigid in-plane rotations, dilations, and translations of the
Belavin-Polyakov profile [53]. It can be expected that in
the limit where additional energy terms appear as perturba-
tions (low |κ| and δ) of the dominating exchange energy,
skyrmions retain the Belavin-Polyakov profile [10]. This has
been demonstrated recently via a formal asymptotic analysis
of radial skyrmion solutions in the local model with bulk
DMI in the limit of vanishing DMI constant [55]. In the
full model given in Eq. (1), we were able to prove [54] that
as κ, δ → 0 the energy-minimizing profile m converges to a
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FIG. 1. Dependences of the skyrmion characteristics on the parameters obtained from the asymptotic analysis for |κ|, δ � √
Q − 1: (a) the

dimensionless skyrmion radius r0 from Eq. (6); (b) the skyrmion collapse energy barrier �E0 from Eq. (8); and (c) the rotation angle |θ0| from
Eq. (5). The solid line shows the transition from Néel to mixed Néel-Bloch skyrmions governed by Eq. (9). The dashed line corresponds to
the boundary of the region defined in Eq. (3) in which existence of skyrmion solutions is guaranteed. The dotted line shows the parameters at
which the skyrmion radius achieves its minimum value as a function of δ according to Eq. (11).

Belavin-Polyakov profile m0 given by

m0(r) =
(

− 2r0Rθ0 r
|r|2 + r2

0

,
r2

0 − |r|2
r2

0 + |r|2
)

r ∈ R2, (4)

where Rθ0 is the 2 × 2 matrix of in-plane rotations by angle

θ0 =
⎧⎨
⎩

0 if κ � 3π2

32 δ,

−π if κ � − 3π2

32 δ,

± arccos
(

32κ
3π2δ

)
else,

(5)

and the dimensionless skyrmion radius is asymptotically

r0 � 1

16π
√

Q − 1

ε̄(κ, δ, Q)

| ln (βε̄(κ, δ, Q))| , (6)

for βε̄ � 1 with β ≈ 0.04816 and

ε̄(κ, δ, Q) = 1√
Q − 1

{
8π |κ| − π3

4 δ if |κ| � 3π2

32 δ,

128κ2

3πδ
+ π3

8 δ else.
(7)

The above expressions may be obtained by considering a
suitably truncated magnetization profile in the form of Eq. (4),
optimizing in θ0 and r0, and expanding the obtained expres-
sions in the leading order of δ and |κ| (see Ref. [44] for more
details). Our analysis also yields the following asymptotic
expression for the skyrmion energy:

E0 � 8π − ε̄2(κ, δ, Q)

32π | ln (βε̄(κ, δ, Q))| . (8)

The associated skyrmion collapse energy barrier �E0 = 8π −
E0 gives an indication of the skyrmion stability as it rep-
resents the energy necessary to suppress the skyrmion via
compression [3,27,34]. The solution described in Eqs. (4)–(8)
is asymptotically exact to the leading order for |κ| � √

Q − 1
and δ � √

Q − 1, but in practice remains at least qualitatively
correct also up to κ ∼ √

Q − 1 and δ ∼ √
Q − 1. Neverthe-

less, to avoid artifacts from the predictions of our formulas
outside their range of validity, we somewhat arbitrarily restrict
the considered parameters to those for which βε̄(κ, δ, Q) �
e−1, ensuring | ln (βε̄(κ, δ, Q))| � 1.

C. Asymptotic properties of skyrmion solutions

The dependences of the dimensionless skyrmion radius
r0, the collapse energy �E0, and the rotation angle θ0 on
the model parameters obtained from the asymptotic analysis
of Sec. III B are presented in Fig. 1. The first important
characteristic of the solution is the existence of a minimum
or threshold |κ| value

|κ|thresh
sky = 3π2

32
δ, (9)

above which pure Néel skyrmions (θ0 = 0 or θ0 = −π , de-
pending on the sign of κ) are obtained and below which
skyrmions are characterized by a nonzero rotation angle θ0.
This angle tends to ±π/2, corresponding to pure Bloch
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skyrmions when κ → 0. It is a direct consequence of the
competition between long-range dipolar interaction, which
favors a Bloch rotation, and interfacial DMI, which favors a
Néel rotation. Note that a similar threshold is observed in the
case of straight domain walls [37,56]:

|κ|thresh
wall = 4 ln 2

π2
δ. (10)

Thus, a larger DMI is necessary to obtain a pure Néel
skyrmion as compared to the case of a one-dimensional (1D)
Néel wall, as can be seen from the factor of ≈ 3 difference
between the values of |κ|thresh

sky and |κ|thresh
wall . This is an indi-

cation that dipolar effects play a stronger role for skyrmions
compared to domain walls.

The second characteristic associated with the interplay
between DMI and the dipolar interaction that is visible in
Figs. 1(a) and 1(b) is the nonmonotone dependence of the
dimensionless skyrmion radius r0 and collapse energy �E0

on δ for Q and κ fixed. For δ below the critical value
where skyrmions are of Néel character, the skyrmion radius
decreases with increasing δ, while for large enough δ, in the
regime with nonzero θ0, the radius increases with δ. As can be
seen from Eq. (6), the skyrmion radius reaches its minimum
at δ = δopt, where

δopt = 32|κ|
π2

√
3
. (11)

This observation is of importance for applications, as the
thickness of the film is the parameter which is the most
easy to tune experimentally for a thin film in order to
optimize the skyrmion size and stability. Interestingly, at
δ = δopt the rotation angle θ0 attains a universal value of
θ

opt
0 = ± arccos (sgn(κ )/

√
3), i.e., θ

opt
0 ≈ ±54.74◦ for κ > 0

or θ
opt
0 ≈ ±125.3◦ for κ < 0.

The third important result illustrated in Fig. 1 is the
existence of skyrmions stabilized solely by the long-range
dipolar interaction for κ = 0. Such dipolar skyrmions possess
a pure Bloch character (θ0 = ±π/2), with volume charges
not contributing to the energy. We observe in Fig. 1(a) that,
starting from κ = 0 and following a skyrmion solution of
fixed radius while decreasing δ, one goes continuously from
a Bloch skyrmion at κ = 0 to a Néel skyrmion at δ = 0.
Consequently, skyrmions stabilized by DMI and stray field
cannot be distinguished by their radius.

D. Phase diagram

To complete our description, we locate the skyrmion so-
lutions on a phase diagram (see Fig. 2). For that purpose,
we fix a representative set of parameters: exchange constant
A = 20 pJ/m, film thickness d = 1 nm, and DMI constant
D = 0.3 mJ/m2, and vary the saturation magnetization Ms

and magnetocrystalline anisotropy constant Ku over a wide
range. The solid black line represents the threshold at which
the magnetization reorientation transition between in-plane
and out-of-plane occurs (Q = 1, i.e., for Ku = Kd). In the
dark blue region above this line, the magnetization prefers
to lie in the film plane, and no compact skyrmion solutions
exist in an infinite film. Below this line, the easy axis is
perpendicular to the film plane. In the zone represented in

FIG. 2. Skyrmion phase diagram for A = 20 pJ/m, D =
0.3 mJ/m2, and d = 1 nm. The dark red zone is the domain of
existence of our skyrmion solutions (see Sec. III D for a complete
description of the different zones and lines).

light blue, the domain wall energy density defined as σwall =
4
√

A(Ku − Kd ) − πD is negative. Here, the expected ground
state of the thin film is the helicoidal state [58], and isolated
compact skyrmions do not exist in the absence of an applied
magnetic field [1]. Below the dashed blue line correspond-
ing to Kcrit

u = π2D2

16A + Kd, the ferromagnetic ground state is
restored, the domain wall energy becomes positive again, and
compact skyrmions may exist as metastable states. In the light
red region, the existence of compact skyrmion solutions as
metastable state is not guaranteed. Indeed, in this region close
to the transition to the helicoidal state, skyrmions may be
subject to elliptical instabilities favored by both the DMI and
the long-range dipolar interaction [23,59]. The dark red zone
represents the domain of existence of our skyrmion solutions.
It is delimited on one side by a dashed black line, which
represents the boundary of the region defined by Eq. (3),
below which we have existence of a compact skyrmion. When
the anisotropy is further increased (or Ms is decreased), the
limit of validity of our 2D thin film model is reached as the
skyrmion radius becomes of the order of the film thickness.
The white dashed line represents the line at which rsky = d as
a guide to the eye. We point out that below this line skyrmion
solutions may exist and develop z dependence [35,39]. Further
below this line, the continuum micromagnetic model is no
longer valid, as the skyrmion radius becomes of the order of
the interatomic spacing.

E. Application to specific examples for low and
intermediate D values

In this section, we apply our compact skyrmion results
to the case of ferrimagnetic materials, i.e., materials with
low Ms and Ku values (e.g., GdCo [60]). These conditions
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FIG. 3. Dependences of the skyrmion characteristics in the low-DMI regime. The parameters are A = 20 pJ/m, Ms = 105 A/m, and Ku =
6346 J/m3 corresponding to Q = 1.01. (a) The skyrmion radius rsky. (b) The normalized skyrmion collapse energy barrier �Esky/(kBT293K ).
(c) The rotation angle |θ0|. (d) The skyrmion profile obtained numerically for d = 5 nm and D = 0.018 mJ/m2, corresponding to the white
dots in panels (a)–(c), using MuMax3 [57] on a 4096 × 4096 nm2 square domain subject to periodic boundary conditions, with the mesh size
of 4 × 4 × 5 nm3. The image in panel (d) is constructed by superimposing the in-plane magnetization m⊥ represented with arrows and the
out-of-plane magnetization m‖ represented by a color map. The lines in panels (a)–(c) are the same as in Fig. 1.

favor the observation of skyrmions in the absence of an
applied magnetic field, as discussed in the previous section.
An observation of room-temperature zero-field skyrmions in
this material was recently reported [60].

In Fig. 3, we present the case of low D values for which
the transition from pure Néel to pure Bloch skyrmion ap-
pears, as seen in Fig. 3(c). For comparison, we carried out
micromagnetic simulations for the parameters corresponding
to the white dots in Fig. 3(a)–3(c) (see figure caption for
details). From the simulations, we obtain a skyrmion with
a rotation angle θ0 � 46◦ and a radius rsky � 52 nm, versus
θ0 � 52◦ and rsky � 80 nm from the analytical formulas.
This confirms the transition from purely Néel, to interme-
diate Néel-Bloch rotation angle, predicted by our analysis
at lower thicknesses compared to 1D walls as discussed in
Sec. III C. Indeed, for 1D walls, a purely Néel character is
expected up to thicknesses of ≈ 10 nm. This validates the
increased importance of dipolar interaction in the case of
compact skyrmions predicted by our theory compared to 1D
walls. Figure 3(b) shows the skyrmion collapse energy barrier
�Esky = �E0Ad normalized by the room temperature thermal
energy kBT293K. The collapse energy barrier �Esky obtained
by our analysis is 13 kBT293K, compared to 15.5 kBT293K from
the micromagnetic simulations. We observe that in the low
D regime the collapse barrier increase with film thickness.

This consideration justifies the choice of systems with bulk
out-of-plane anisotropy (like the ferrimagnetic alloy GdCo) or
multilayers [e.g., (Pt/Co/Ir)n] to optimize skyrmion lifetime,
since it allows one to increase the film thickness (or effec-
tive thickness) without losing the out-of-plane anisotropy,
as would be the case for single ferromagnetic layers with
surface-induced anisotropy alone [22,60].

In Fig. 4, we present the results for an intermediate DMI
range where the D values are an order of magnitude larger
than those in Fig. 3. We use the same parameters as in Fig. 3,
except Ku = 1.26 × 104 J/m3 corresponding to Q = 2. All
the solutions in Fig. 4 are the iconic Néel skyrmions with � 10
nm radii that grow with an increase of the DMI strength [see
Fig. 4(a)]. The skyrmion collapse barrier can be heightened by
either increasing the film thickness or the DMI strength [see
Fig. 4(b)]. In the low thickness regime, the decrease of the col-
lapse barrier with the film thickness is due to the dimensional
scale factor of Ad . The same phenomenon is at the origin of
the short skyrmion lifetime (≈1s) observed experimentally at
low temperature in ferromagnetic monolayers [1], despite a
large DMI constant [61].

We observe in Fig. 4(b) that the collapse energy barrier
of ≈ 8 nm radius skyrmions reaches 22 kBT293K, which cor-
responds to a lifetime of a few seconds, considering the
Néel-Brown model with the attempt frequency ν = 109 s−1.
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FIG. 4. Dependences of the skyrmion characteristics in the intermediate DMI regime. The parameters are A = 20 pJ/m, Ms = 105 A/m,
and Ku = 1.26 × 104 J/m3 corresponding to Q = 2. (a) The skyrmion radius rsky. (b) The normalized skyrmion collapse energy barrier
�Esky/(kBT293K ). The gray zone corresponds to the region where rsky < d .

At fixed thickness d , the skyrmion radius decreases with the
DMI strength, and the limit of validity of our thin film model
is reached as the skyrmion radius becomes of the same order
as the film thickness. In this regime, 3D models and full 3D
micromagnetic simulations will be needed to take into account
the long-range dipolar effects.

IV. SUMMARY

We have used rigorous mathematical analysis to develop a
skyrmion theory that takes into account the full dipolar energy
in the thin film regime and provides analytical formulas for
compact skyrmion radius, rotation angle and energy. While
long-range interactions are often assumed to have a negligible
impact on skyrmions in this regime, we demonstrate that
the DMI threshold at which a compact skyrmion loses its
Néel character is a factor of ≈ 3 higher than that for a 1D
wall. A reorientation of the skyrmion rotation angle from
Néel to intermediate Néel-Bloch angles is predicted as the

layer thickness is increased in the low DMI regime, which
is confirmed by micromagnetic simulations. The estimation
of this reorientation thickness is important for applications as
the skyrmion angle affects its current-induced dynamics [62].
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