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Phase diagram and phonon-induced backscattering in topological insulator nanowires
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We present an effective low-energy theory of electron-phonon coupling effects for clean cylindrical topolog-
ical insulator nanowires. Acoustic phonons are modelled by isotropic elastic continuum theory with stress-free
boundary conditions. We take into account the deformation potential coupling between phonons and helical
surface Dirac fermions, and also include electron-electron interactions within the bosonization approach. For
half-integer values of the magnetic flux �B along the wire, the low-energy theory admits an exact solution
since a topological protection mechanism then rules out phonon-induced 2kF -backscattering processes. We
determine the zero-temperature phase diagram and identify a regime dominated by superconducting pairing
of surface states. As an example, we consider the phase diagram of HgTe nanowires. We also determine the
phonon-induced electrical resistivity, where we find a quadratic dependence on the flux deviation δ�B from the
nearest half-integer value.
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I. INTRODUCTION

The spin-momentum locked Dirac fermion surface states
of three-dimensional (3D) topological insulators (TIs) [1–6]
have been intensely studied over the past decade. For sev-
eral established TI materials, phonon-induced effects have
been examined for various physical observables, e.g., the
temperature-dependent quasiparticle lifetime measured from
the linewidth in angle-resolved photoemission spectroscopy
(ARPES), or the electrical resistivity obtained from transport
experiments, cf. Refs. [7–24]. On the theoretical side, substan-
tial progress has also been made; see, e.g., Refs. [25–35]. Here
the effective four-band model for the low-energy electronic
structure of 3D TIs [4] provides a convenient starting point
for analytical studies, where surface states follow by imposing
Dirichlet boundary conditions at the surface. Apart from the-
oretical studies of phonon-induced effects for the half-space
[27,29,30,32,33] and thin-film [28] TI geometries, surface
states have also been constructed for one-dimensional (1D) TI
nanowires [36–42], typically by assuming a cylindrical cross
section to simplify calculations.

Measurements of the quasiparticle lifetime of surface states
in 3D TIs can give precious information on the electron-
phonon coupling strength. For instance, the phonon disper-
sion relation can be measured using coherent helium beam
surface scattering, where the observation of a Kohn anomaly
may allow one to extract the coupling constant. (However,
this method may encounter difficulties for acoustic phonons
[7,9].) Coupling values for acoustic phonons have also been
reported from other experimental approaches such as ARPES,
mostly for TIs belonging to the Bi2Se3 family [8,10–24]. A
rather wide discrepancy between the reported values exists
which (at least partially) may be due to additional optical-
phonon effects; see, e.g., Ref. [15]. The remaining differences
can likely be explained by noting that different experiments
were carried out at different Fermi energies, sample qualities,

and/or temperatures. All these parameters can strongly influ-
ence the expected value of the coupling constant [29,33]. Most
likely, the electron-phonon coupling between surface states
and acoustic phonons is of intermediate strength for TIs in
the Bi2Se3 family.

In this paper, we investigate phonon-induced effects in
cylindrical TI nanowires, taking into account the deformation
potential coupling between surface Dirac fermion states and
acoustic phonons, electron-electron interactions, as well as the
presence of a dimensionless magnetic flux �B (in units of the
flux quantum) piercing the nanowire. The deformation poten-
tial is expected to be the dominant coupling mechanism, af-
fecting both the low-temperature resistivity and the linewidth
of photoemission peaks. Following Refs. [27,28], acoustic
phonons are here modelled in terms of isotropic elastic con-
tinuum theory [43]. In view of the complex quintuple-layer
structure of Bi2Se3 or Bi2Te3, the validity of the isotropic
continuum approach with just two elastic Lamé constants may
come as a surprise. Nonetheless, the usefulness of isotropic
elastic continuum theory for modeling low-energy phonons
for bulk 3D TI materials has been established by ab initio
studies [25]. Using stress-free boundary conditions at the
sample boundaries, the uncoupled phonon eigenmodes can
then be determined for the geometry of interest. Thereby one
also obtains the electron-phonon coupling Hamiltonian from
the deformation potential. Below we define a dimensionless
electron-phonon coupling parameter A, see Eq. (4.11), to
quantify the electron-phonon interaction strength. We note in
passing that for rectangular quantum wires described by the
Schrödinger equation, the coupled electron-phonon problem
has been studied in Ref. [44]. However, for the helical Dirac
surface states of interest below, the physics turns out to be
rather different. For instance, in our system phonon-induced
2kF backscattering is forbidden for half-integer �B.

The probably most important restriction of our the-
oretical approach comes from the neglect of disorder.
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Magnetotransport measurements for TI nanowires have been
performed by different groups [45–49]. While most of the
published experimental results need to invoke disorder effects
for a consistent explanation, ballistic (basically disorder free)
experiments for TI nanowires have also been reported [47].
In addition, the TI material HgTe has emerged as a particu-
larly clean platform [50,51], with nanowire experiments being
already available [48]. Moreover, direct evidence for Dirac
surface state subbands in (Bi1−xSbx )2Te3-based TI nanowires
has recently been obtained from transport experiments [49].
We note in passing that albeit those TI nanowires have a
hexagonal cross section, the observed Dirac subbands essen-
tially follow analytical predictions obtained for cylindrical
nanowires; see Ref. [49]. While we neglect disorder, we
will include electron-electron interactions on a nonpertur-
bative level within the helical Luttinger liquid framework
[40,52]. Note that electron-electron interactions may also give
temperature-dependent contributions to the surface resistivity,
as described for a semi-infinite TI geometry in Ref. [53]. In
terms of the helical Luttinger liquid framework, interactions
are encoded by a parameter K . The value K = 1 describes the
noninteracting case, while for repulsive Coulomb interactions,
one finds K < 1. The gapped phonon branches neglected in
our analysis below could be included by a renormalization
of K towards larger values [52]. In that way, also the regime
K > 1 may become reachable.

After the construction of the low-energy theory for the
interacting electron-phonon system in a TI nanowire, we will
use this theory to discuss two different physical questions.
First, we will study the zero-temperature phase diagram for
half-integer �B. Following standard practice [52], a “phase”
will here be identified by the slowest algebraic decay of
order-parameter correlations. We will, in particular, search for
superconducting instabilities of the surface Dirac fermions
due to the effectively attractive interactions mediated by
acoustic phonons. Previous theoretical works have studied
related questions for the semi-infinite TI geometry: While the
authors of Ref. [33] have argued that surface superconduc-
tivity appears below Tc ≈ 1.3 K, complementary work found
a parametrically smaller critical temperature Tc � 1 mK [32].
Similar issues have also been studied for standard (nonheli-
cal) Luttinger liquids arising, e.g., in carbon nanotubes; see
Refs. [54–56]. The issue of intrinsic superconductivity in TI
nanowires is also of relevance for the possible existence of
Majorana bound states in such systems [57–60]. Such states
are highly promising candidates for topological quantum in-
formation processing schemes. Our nonperturbative analysis
of the zero-temperature phase diagram for half-integer �B

arrives at the scenario shown in Fig. 1, where we depict
the dominant order-parameter correlations in the K-A plane.
In particular, for material parameters corresponding to HgTe
nanowires, we thereby can identify the parameter regions
where superconducting pairing of surface states is expected to
be dominant. We provide a detailed derivation and discussion
of the phase diagram in Sec. V.

As second application, we will study the phonon-induced
electrical resistivity for �B close to half-integer values. For
precisely half-integer �B, the topological protection of sur-
face states [36–42] implies the absence of phonon-induced
2kF backscattering. As a consequence, the resistivity of a

FIG. 1. Zero-temperature phase diagram of a TI nanowire
(pierced by half-integer flux �B) in the K-A plane, where A in
Eq. (4.11) parametrizes the electron-phonon coupling strength and
K is the Luttinger liquid parameter, encoding the effective electron-
electron interaction strength. We use material parameters for HgTe;
see main text. For A � 1/K , the system is unstable (Wentzel-Bardeen
regime, “WB”). For A < 1/K , three phases are possible: Supercon-
ducting correlations dominate in the “SC” part of the phase diagram.
A spin-density wave phase (with ordering along the nanowire axis)
is denoted by “SDW.” The inset gives a magnified view of a region
where the tiny intermediate “metallic” phase (white) is visible. Here
conventional 1D current-current correlations represent the slowest
decay. For details, see Sec. V.

disorder-free interacting TI nanowire vanishes even in the
presence of electron-phonon coupling. However, once the flux
�B is tuned away from half-integer values, we will see that a
finite resistivity emerges at T �= 0. The specific predictions
for the T dependence and for the dependence on �B made
below should allow for direct experimental tests of our the-
ory. For conventional 1D quantum wires, phonon-induced
conductance corrections have been studied theoretically in
Refs. [61–68].

The remainder of this paper is organized as follows. We
describe the surface states of a TI nanowire in Sec. II,
where we also include electron-electron interactions within
the Abelian bosonization approach [52]. For modeling the
acoustic-phonon spectrum, in Sec. III we start from isotropic
elastic continuum theory for an infinitely long cylindrical
wire. Although this problem has been studied long ago
[69–72], in order to keep the paper self-contained, we present
an independent derivation. By employing angular momentum
eigenstates, our formulation also yields particularly transpar-
ent expressions. In Sec. IV, as the dominant electron-phonon
coupling term, we take into account the deformation potential
and analyze the resulting low-energy theory for the coupled
electron-phonon system. In Sec. V, we derive the phase
diagram in Fig. 1 which applies to TI nanowires pierced by
half-integer flux �B. Next, in Sec. VI, we discuss the phonon-
induced electric resistivity for �B close to half-integer values
but in the absence of electron-electron interactions (corre-
sponding to K = 1). We use the Boltzmann equation approach
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by Gurevich et al. [65] to obtain the temperature-dependent
resistivity in the linear-response regime. Finally, we offer
some concluding remarks in Sec. VII. Throughout the paper,
we use units with h̄ = kB = 1.

II. ELECTRONIC SURFACE STATES OF TOPOLOGICAL
INSULATOR NANOWIRES

We first describe our model for the low-energy electronic
states of a cylindrical TI nanowire. Typically, TI materials
are characterized by a sizable bulk gap of order �b � 0.3 eV
[1–5]. As long as the Fermi energy resides well within the
bulk gap and provided that one has sufficiently clean materials
to realize the ballistic transport regime, only surface states
will be relevant for the low-energy transport properties. For
a cylindrical wire of radius R, the electronic surface spectrum
consists of massive 1D Dirac fermion modes with conserved
momentum k along the cylinder axis (êz) [36–42]. Below we
include an axial magnetic field B giving rise to the dimension-
less flux �B = πR2B/(h/e) piercing the nanowire.

In cylindrical coordinates (r, φ, z), with unit vectors
(êr, êφ, êz ), the electronic single-particle Hamiltonian describ-
ing surface states with conserved momentum k is a Dirac
Hamiltonian wrapped onto the cylinder surface [36,40,41],

Hel(k) = e−iφσz/2
(
v1kσy − v2

R
(−i∂φ + �B)σz

)
eiφσz/2, (2.1)

with the Fermi velocities v1 (v2) along êz (perpendicular to
êz). The Pauli matrices σx,y,z act in spin space. The dispersion
relation of the 1D fermion modes is thus given by (± refers to
conduction and valence bands) [36,37,39]

Ej,±(k) = ±
√

v2
1k2 + v2

2 ( j + �B)2/R2. (2.2)

Different bands are distinguished by the half-integer eigen-
value j of the conserved z component of the total angular
momentum operator.

We next note that for integer �B, a time-reversal (T ) trans-
formation connects the states (k, j + �B) ↔ (−k,− j − �B).
Due to this emergent T symmetry, all states are arranged
into doubly degenerate Kramers pairs. While elastic scattering
between such pairs is forbidden by virtue of the Kramers
theorem, 2kF backscattering (k → −k) for given j is allowed
and there is no protection against elastic disorder effects.
However, for half-integer �B, the emergent T symmetry
now comes with a topological protection against weak spin-
conserving backscattering. This is because for the special
massless 1D Dirac mode with j = −�B, the two states with
momentum ±k constitute a protected Kramers pair [36–39].
While this scenario—a single Dirac fermion species protected
by an emergent T symmetry—is ruled out for conventional
systems by the Nielsen-Ninomiya theorem [3], it can be real-
ized using the surface states of TI nanowires with half-integer
flux �B. The special mode with j = −�B is protected against
elastic disorder effects and dominates the physics on energy
scales below Eg � v2/R. On higher energy scales, also other
transverse bands with j �= −�B have to be included in the
theory.

We consider the case of low energies, |E | � �g ≡
min(Eg,�b), throughout this paper. Putting �B to an half-
integer value, we then keep only the gapless Dirac mode with

j = −�B and E±(k) = ±v1|k|. The electron field operator is
now represented in terms of the spinor [40]

	el(r, φ, z) = f⊥(r)√
4π

∑
ν=±

eiνkF zei( j−1/2)φψν (z)

(
ν

ieiφ

)
(2.3)

with Fermi momentum kF = μ/v1. For simplicity, we shall
assume that the chemical potential is within the range
0 < μ � �g. The slowly varying 1D fermion operators,
ψν=+/−(z), correspond to right and left movers, respectively.
The radial part f⊥(r), with normalization

∫ ∞
0 rdr| f⊥(r)|2 =

1, vanishes for r > R and decays exponentially away from the
surface for r < R. Here the radial width ξ⊥ of the surface state
depends on microscopic details [40]. For ξ⊥ � R, we have

f⊥(r) �
√

2

ξ⊥R
e−(R−r)/ξ⊥ (R − r), (2.4)

with the Heaviside step function .
Using the standard bosonization approach, we next express

the 1D field operators appearing in Eq. (2.3) in terms of the
dual boson field operators θ (z) and ϕ(z) [52],

ψν=±(z) � 1√
2πξ⊥

ei
√

π [ϕ(z)+νθ (z)], (2.5)

where we identify the short-distance cutoff length with ξ⊥.
Using Eq. (2.3), the electron density operator is then given by

ρel(r) ≡ 	
†
el	el = 1√

4π3
| f⊥(r)|2 ∂zθ (z). (2.6)

We emphasize that the standard 2kF term in the density
operator is not present for this topological band [40]. This
fact implies that charge-density wave ordering is not possible.
However, once �B deviates from half-integer values, we will
see in Sec. VI B that a 2kF -oscillatory term appears in the
density operator since backscattering is now allowed.

The bosonization approach is particularly advantageous for
1D systems because it allows one to easily take into account
Coulomb interaction effects [52]. Including the dominant
long-range interactions within the helical Luttinger liquid
picture of Ref. [40], the effective low-energy Hamiltonian for
the many-electron system with half-integer flux �B is given
by a noninteracting boson theory,

Hel = v1

2

∫
dz[(∂zϕ)2 + K−2(∂zθ )2], (2.7)

where the Luttinger liquid parameter K takes into account the
effect of electron-electron interactions. (For detailed expres-
sions of K in terms of microscopic details, see Ref. [40].)
The noninteracting limit corresponds to K = 1, and repulsive
interactions imply K < 1. For instance, K ≈ 0.5 has been
estimated for Bi2Se3 or Bi2Te3 nanowires assuming that there
is no close-by metallic gate [40].

III. ACOUSTIC-PHONON MODES

In this section, we construct the acoustic-phonon modes of
a cylindrical wire by assuming that its elastic properties can
be described as isotropic continuum [27,28].
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A. 3D isotropic elastic continuum

We start by considering a 3D isotropic elastic continuum
described by the linearized strain tensor, ui j (r) = (∂iu j +
∂ jui )/2, with i, j = x, y, z and the displacement field u(r, t ).
The elastic free-energy density then reads [43]

F[u] = λ

2
(Tru)2 + μTr(u2), (3.1)

with the Lamé constants λ and μ, and the stress tensor takes
the form

σi j = λTr(u) δi j + 2μ ui j . (3.2)

From Eq. (3.1), the equations of motion are given by

ü = c2
t �u + (

c2
l − c2

t

)∇(∇ · u), (3.3)

with the velocities for transverse, ct = √
μ/ρM , and longi-

tudinal, cl = √
(λ + 2μ)/ρM , sound waves. Here ρM is the

mass density. For Bi2Te3, the isotropic elastic continuum
approximation is expected to work reasonably well and one
finds ρM � 7860 kg/m3, ct � 1600 m/s, and cl � 2800 m/s
[27]; cf. Refs. [25,73]. For later use, we also define the
dimensionless ratio

ξ = ct/cl < 1. (3.4)

The displacement field can always be represented as the
sum of longitudinal and transverse parts,

u(r, t ) = ul + ut = ∇� + ∇ × �, (3.5)

with a scalar potential �(r, t ) and a vector potential �(r, t ),
where Eq. (3.3) implies decoupled wave equations,(

∂2
t − c2

l �
)
� = 0,

(
∂2

t − c2
t �

)
� = 0. (3.6)

However, boundary conditions will generally couple both
potentials. We next write Eq. (3.6) in cylindrical coordinates.
Translation invariance along êz (we assume periodic boundary
conditions with length L and eventually let L → ∞) implies
the (z, t ) dependence �,� ∼ ei(qz−�t ), where q is a conserved
wave number along êz and � > 0 is a possible eigenfre-
quency. For convenience, we define the two wave numbers

kl =
√

�2

c2
l

− q2, kt =
√

�2

c2
t

− q2. (3.7)

Second, to exploit rotation symmetry around êz, we expand �

and � in terms of eigenstates of the conserved total angular
momentum operator Jph

z . This operator has integer eigenval-
ues denoted by m.

For the longitudinal part, ul = ∇�, we observe that Jph
z

acts like −i∂φ on �. Solutions to Eq. (3.6) are of the form

�(r, t ) = f (r)
eimφ

√
2π

eiqz

√
L

e−i�t , (3.8)

with a radial Bessel equation for f (r),(
1

r
∂r (r∂r ) − m2

r2
+ k2

l

)
f (r) = 0. (3.9)

The general solution of Eq. (3.9) is given by

f (r) = A1Jm(klr) + A2Ym(klr), (3.10)

with kl in Eq. (3.7), arbitrary constants A1,2, and the Bessel
functions Jm(z) and Ym(z) [74]. Regularity at r → 0 imposes
A2 = 0 unless one considers a hollow cylinder. After straight-
forward algebra we obtain, for given (m, q), the longitudinal
part of the displacement field as

ul (r, t ) = a

[
klJ

′
m(klr)êr + im

r
Jm(klr)êφ (3.11)

+iqJm(klr)êz

]
eimφ

√
2π

eiqz

√
L

e−i�t ,

with an arbitrary coefficient a and J ′
m(z) = dJm(z)/dz. The

above expressions hold for real kl , but analytic continuation,
kl → iκl with κl =

√
q2 − �2/c2

l , produces the corresponding
results for � < cl |q|. For R → ∞, this step does not yield
physical solutions since Jm(klr) → eimπ/2Im(κl r) diverges for
r → ∞. (The other modified Bessel function Km diverges at
the origin and is also not acceptable.) However, such solutions
are admitted for finite R. With the replacement kl → kt , see
Eq. (3.7), the same remarks apply for ut in Eq. (3.16) below.

Next we address the transverse part, ut = ∇ × �, where
Jph

z acts like (the spin-1 operator �z is here expressed in
Cartesian coordinates)

Jph
z = −i∂φ + �z, �z =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 1

⎞
⎟⎠. (3.12)

The �z eigenstates, �z|s〉 = s|s〉, for the respective eigenval-
ues (s = −1, 0, 1) are given by

|1〉 =
⎛
⎝1

i
0

⎞
⎠, |0〉 =

⎛
⎝0

0
1

⎞
⎠, |−1〉 =

⎛
⎝ 1

−i
0

⎞
⎠. (3.13)

In cylindrical coordinates, solutions to Eq. (3.6) then have the
form

�(r, t ) = ([ f−1(r) + f1(r)]êr + i[ f−1(r) − f1(r)]êφ

+ f0(r)êz )
eimφ

√
2π

eiqz

√
L

e−i�t , (3.14)

where fs(r) is the radial function for the respective �z eigen-
state. Using kt in Eq. (3.7), the wave equation (3.6) then yields
Bessel equations that are solved by

fs=−1,0,1(r) = BsJm+s(kt r), (3.15)

with arbitrary constants Bs. As a result, we obtain the trans-
verse part of the displacement field as

ut (r, t ) =
[

q

(
b1

m

kt r
Jm(kt r) + b2J ′

m(kt r)

)
êr

+iq(b1J ′
m(kt r) + b2

m

kt r
Jm(kt r))êφ

−ikt b2Jm(kt r)êz

]
eimφ

√
2π

eiqz

√
L

e−i�t . (3.16)

Due to the constraint ∇ · ut = 0, here only two linear com-
binations of the three Bs parameters appear, namely b1 =
B−1 − B1 + ikt B0/q and b2 = B−1 + B1.
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For a given set � of conserved phonon quantum numbers
(see below), the normal modes of the displacement field,
u�(r, t ) = ul + ut , then follow from Eqs. (3.11) and (3.16).
This result still depends on three arbitrary constants (a, b1, b2)
which must be determined by geometry-specific boundary
conditions and by overall normalization.

B. Cylindrical nanowire

To calculate the acoustic-phonon eigenmodes of an in-
finitely long cylindrical wire with radius R, we now impose
stress-free boundary conditions at the surface r = R. After
expressing the stress tensor (3.2) in cylindrical coordinates
[43], one finds that

u�(r, t ) = urêr + uφ êφ + uzêz (3.17)

has to obey the following boundary conditions at r = R:

iqur + ∂ruz = 0, ∂ruφ − uφ

r
+ im

r
ur = 0, (3.18)

(1 − 2ξ 2)

(
∂rur + ur

r
+ im

r
uφ + iquz

)
+ 2ξ 2∂rur = 0,

with ξ in Eq. (3.4). We start by solving the simplest case with
m = 0.

1. Angular momentum m = 0

We first consider torsional modes [71], where ur = uz =
0 and only uφ �= 0. This corresponds to the case a = b2 =
0 in our general solution, where uφ ∼ J1(kt r). For m = 0,
the boundary conditions (3.18) simplify to ∂ruφ − uφ/r = 0.
Inserting our solution, we arrive at a radial quantization con-
dition, J2(kt R) = 0, such that only certain eigenfrequencies
� = �T,i(q) (with i = 0, 1, . . .) are allowed. We obtain

�T,i(q) = ct

√
q2 + z2

2,i/R2, (3.19)

where zk,i denotes the non-negative zeros of the Bessel func-
tion Jk (z). The only gapless torsional mode comes from i = 0
since z2,0 = 0, where we find

�T (q) = ct |q|, uT
q (r) = 2r

R2

eiqz

√
2πL

êφ. (3.20)

For all i > 0, the dispersion relation acquires the finite gap
z2,ict/R. Using z2,1 � 5.1356, we estimate the smallest of
these gaps as ≈34 meV for Bi2Te3 wires of radius R ≈ 100
nm. Staying on energy scales well below this gap, we can ne-
glect all gapped torsional phonon modes. This step is assumed
in our low-energy theory from now on where only the i = 0
torsional mode in Eq. (3.20) will be retained. We note that
torsional modes cannot exist for � < ct |q|, since the modified
Bessel function I2(κt R) obtained after analytic continuation
has no zeros except at the origin.

All other phonon eigenmodes for m = 0 follow by setting
uφ = 0, corresponding to b1 = 0 in our general expression for
u�. The boundary conditions (3.18) then yield the condition
M(a, b2)T = 0, with the matrix M given by(

qkl J1(klR) −(k2
t − q2)J1(kt R)

(k2
t − q2)J0(klR) − 2kl J1(kl R)

R 4qkt J ′
1(kt R)

)
.

(3.21)

A nontrivial solution exists only for detM = 0, which yields
the radial quantization condition in the form of Pochhammer’s
frequency equation [72],

4q2kl kt J1(klR)J0(kt R) + (
k2

t − q2
)2

J1(kt R)J0(klR)

= 2kl�
2

Rc2
t

J1(klR)J1(kt R). (3.22)

As we show next, Eq. (3.22) describes both longitudinal
modes [71] for � > ct |q|, and Rayleigh surface modes for
� < ct |q|.

We start with the longitudinal phonon modes. First, for
q → 0, Eq. (3.22) simplifies [with ξ in Eq. (3.4)] to

J1(� )[�J0(ξ� ) − 2ξJ1(ξ� )] = 0, � ≡ R�/ct . (3.23)

Noting that � = � = 0 solves Eq. (3.23), we observe that
a gapless longitudinal phonon mode will always exist. In
addition, Eq. (3.23) admits gapped longitudinal modes as for
the torsional case, which we again do not take into account in
the low-energy theory. Second, for long wavelengths, |q|R �
1, by expanding the Bessel functions in Eq. (3.22), we find the
dispersion relation for the gapless longitudinal mode [71],

�L(q) = cL|q|[1 − (σqR/2)2] + O(|qR|5). (3.24)

The sound velocity for this mode is given by cL = √
E/ρM

with the Young modulus E = 2(1 + σ )μ. For Bi2Te3, the
value for E in Refs. [25,73] results in cL � 2500 m/s. In
Eq. (3.24), we also use Poisson’s ratio σ = λ/[2(λ + μ)].
Since usually the latter quantity is within the window 0 <

σ < 1/2, we find that ct < cL < cl . As a consequence, the
longitudinal mode (3.24) has imaginary wave number kl = iκl

but real wave number kt .
At short wavelengths, |q|R � 1, the longitudinal mode

evolves into a Rayleigh mode with � < ct |q|. From Eq. (3.22),
after analytic continuation kl,t → iκl,t , no physical solutions
are found for |q|R � 1, i.e., there are no cylindrical Rayleigh
waves in the long + wavelength limit. However, for |q|R �
1, asymptotic expansion of Eq. (3.22) shows that Rayleigh
modes do exist at short wavelength, with dispersion relation

�R(q) = cR|q| + η0cR

R
+ O

(
1

|q|R
)

, (3.25)

where cR = ζct is the Rayleigh mode velocity for a planar
surface [27,75] which follows by letting R → ∞. The di-
mensionless number ζ < 1 is a lengthy function of ξ = ct/cl ,
with ζ � 0.92 for Bi2Te3 [27]. In Eq. (3.25), we also use the
number

η0 = γt (1 − γlγt )

2ζ 2[2
√

γlγt − ξ 2γt/γl − γl/γt ]
, (3.26)

with γt =
√

1 − ζ 2 and γl =
√

1 − ζ 2ξ 2.
The longitudinal mode with �L(q) � cL|q| thus gradually

evolves into the Rayleigh mode with �R(q) � cR|q| as |q|R
increases. Since we here focus on the low-energy regime, only
the longitudinal mode will be kept in what follows. To leading
order in |q|R � 1, we find the dispersion relation and the
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normalized eigenmode as

�L(q) = cL|q|, uL
q (r) =

√
2 sgn(q)

R

eiqz

√
2πL

(σqrêr + iêz ).

(3.27)

2. Angular momentum m �= 0

We now briefly turn to the case of finite phonon angular
momentum, m �= 0. The boundary conditions (3.18) then yield
the condition Mm(a, b2, b1)T = 0, where the m = 0 matrix M
in Eq. (3.21) is replaced by

Mm =

⎛
⎜⎜⎝

qkl Jl′
m

(
q2 − k2

t

)
Jt ′

m
mq2

kt R
Jt

m(
q2 + 2m2

R2 − k2
t

)
Jl

m − 2kl
R Jl′

m qkt
(
Jt

m−2 + Jt
m+2 − 2Jt

m

)
qkt

(
Jt

m−2 − Jt
m+2

)
1
2 k2

l

(
Jl

m−2 − Jl
m+2

)
qkt

(
Jt

m−2 − Jt
m+2

)
qkt

(
Jt

m−2 + Jt
m+2

)
⎞
⎟⎟⎠. (3.28)

We use the shorthand notations Jl,t
m ≡ Jm(kl,t R) and Jl,t

m
′ for

the respective derivative. One easily checks that for m = 0,
the above results are recovered from these expressions.

For |q|R � 1 and m = ±1, one obtains flexural modes
with a quadratic dispersion relation [71],

�F(q) = cLRq2 + O(|qR|3). (3.29)

These are the energetically lowest phonon modes in a cylin-
drical wire at long wavelengths. However, for the deformation
potential coupling in Sec. IV, we will find that only m =
0 phonons couple to electrons. For that reason, we do not
discuss m �= 0 phonon modes in more detail here.

C. Quantization

The quantization of the phonon theory now proceeds along
standard paths. The displacement field is expressed in terms
of bosonic annihilation operators, b�, with the commutation
relation [b�, b†

�′ ] = δqq′δmm′δλλ′ , where � denotes the set of
quantum numbers (q, m, λ). The index λ labels the differ-
ent branches (e.g., torsional or longitudinal modes) and, in
general, includes gapless as well as gapped modes. Inserting
the eigenfrequencies � = �� into the above normal-mode
expressions u�(r, t ), we have

u(r, t ) =
∑
�

1√
2ρML��

u�(r, t )b� + H.c., (3.30)

with the noninteracting second-quantized phonon Hamilto-
nian

Hph =
∑
�

��(b†
�b� + 1/2). (3.31)

We end this section by briefly summarizing the above
results as far as we need them in what follows. As shown
in the next section, the only gapless phonon branch that
couples to electrons via the deformation potential is given
by longitudinal phonons with zero angular momentum. Their
dispersion relation and the corresponding normal-mode ex-
pression are specified for |q|R � 1 in Eq. (3.27). All other
phonon branches are either gapped (and can thus be included
by a renormalization of the Luttinger liquid parameter), or
they do not couple to electrons within our low-energy theory.

IV. ELECTRON-PHONON COUPLING

A. Deformation potential

We next turn to the electron-phonon coupling, assuming
that the dominant contribution arises from the deformation
potential, cf. Refs. [27,28],

He-ph = α

∫
drρel(r)Tru(r), (4.1)

where Ref. [25] estimates the bare coupling strength α ≈
35 eV for Bi2Te3. However, this value could be significantly
reduced by internal screening effects and we only use it
as a rough estimate. Inserting Eq. (2.6) for the electronic
density operator, we first notice that since we keep only a
single Dirac fermion subband corresponding to TI surface
states with angular momentum j = −�B, only phonon modes
with angular momentum m = 0 can couple to electrons. (This
statement continues to be valid in Sec. VI B, where we study
slight deviations of �B from half-integer values. Also in such
a case, only a single subband needs to be kept.) Moreover,
at low energy scales, we can restrict ourselves to the gapless
torsional and longitudinal phonon modes with m = 0; see
Eqs. (3.20) and (3.27), respectively. Since Tru = ∇ · uT = 0
for the torsional phonon mode in Eq. (3.20), the only contri-
bution of the deformation potential (4.1) to our low-energy
theory arises from the m = 0 longitudinal phonon mode in
Eq. (3.27). Assuming that only phonon momenta with |q|R �
1 are important and taking the continuum limit L → ∞ in
Eqs. (3.30) and (3.31), we find

∇ · u(r, t ) = −(1 − 2σ )
∫

dq

2π

|q|√
2ρ̄�q

eiqz

× (bqe−i�qt + b†
−qei�qt ), (4.2)

and

Hph =
∫

dq

2π
�q(b†

qbq + 1/2), �q ≡ cL|q|. (4.3)

Here the linear mass density is given by ρ̄ = πR2ρM , and the
phonon operators bq refer to m = 0 longitudinal modes, with
commutator [bq, b†

q′ ] = 2πδ(q − q′).
Using Eqs. (2.6), (3.27), and (3.30), we then find from

Eq. (4.1) the coupling Hamiltonian

He−ph = − iα(1 − 2σ )

cL

∫
dq

2π

√
�q

2πρ̄
qθ̃ (q)(bq + b†

−q),

(4.4)
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where θ (z) = ∫ dq
2π

eiqz θ̃ (q) with [θ̃ (q)]† = θ̃ (−q) is the boson
field introduced in Sec. II.

For half-integer flux �B, the coupled electron-phonon
problem can now be solved exactly even in the presence
of electron-electron interactions. We proceed in analogy to
Refs. [54,55], where nonhelical Luttinger liquids coupled to
acoustic phonons have been studied. The Euclidean action
for the entire system, S = Sel + Sph + Se−ph, follows from the
low-energy Hamiltonian terms in Eqs. (2.7), (4.3), and (4.4),
respectively. Instead of the bq and b†

q phonon operators, it is
convenient to use the oscillator amplitude operators

uq = 1√
2�q

(bq + b†
−q), pq = −i

√
�q

2
(bq − b†

−q), (4.5)

with the commutator [uq, pq′ ] = 2πδ(q + q′). Using bosonic
Matsubara frequencies, ωn = 2πnT (integer n), the depen-
dence on imaginary time τ is resolved by the expansion

uq(τ ) = T
∑
ωn

e−iωnτ ũq(ωn), ũ∗
q(ωn) = ũ−q(−ωn), (4.6)

and likewise for pq(τ ) and θq(τ ). With the shorthand notation∫
[dq] (. . . ) = T

∑
ωn

∫
dq

2π
(. . . ), (4.7)

and writing ũq(ω) → uq(ω) (and so on), we obtain the action
contributions

Sel = 1

2vK

∫
[dq]

(
ω2

n + v2q2
)|θq(ωn)|2,

Sph = 1

2

∫
[dq]

(
ω2

n + �2
q

)|uq(ωn)|2, (4.8)

Se-ph = iα(1 − 2σ )

π
√

ρ̄

∫
[dq] sgn(q)q2uq(ωn)θ−q(−ωn).

Here v ≡ v1/K is the plasmon velocity in the helical Luttinger
liquid. We recall that v1 is the Fermi velocity along the wire
axis and K is the Luttinger liquid parameter. In practice, one
has v � cL. We thus arrive at an exactly solvable Gaussian
functional integral for the coupled electron-phonon system.

B. Integrating over the phonon degrees of freedom

In this work, we focus on the electronic degrees of free-
dom and therefore proceed by integrating over the phonon
amplitudes uq(ωn). As a result of this Gaussian functional
integration, the effective action for the bosonized θ field
describing the electronic sector is given by

Seff = 1

2

∫
[dq] D−1

θθ (ωn, q)|θq(ωn)|2, (4.9)

with the inverse propagator

D−1
θθ (ωn, q) = 1

vK

[
ω2

n + v2q2 −
(

AvK

cL

)2 �4
q

ω2
n + �2

q

]
,

(4.10)
where we define the dimensionless electron-phonon coupling
parameter

A = (1 − 2σ )α

πcL
√

ρ̄v1
. (4.11)

Inserting theoretical estimates for the parameters in Eq. (4.11)
for Bi2Se3 and/or Bi2Te3 [25,73], one finds typical values of
the order A � 1. Our approach represents a controlled approx-
imation in the low-energy regime. In particular, we assume
that the relevant energy scales are well below v1/R such
that higher electronic subbands can be neglected. However,
gapped phonon bands could be included by a renormalization
of the Luttinger liquid parameter [52], and we only have to
explicitly retain the gapless phonon mode considered above.

With the velocities v± > 0 defined from

v2
± = 1

2

(
v2 + c2

L ±
√(

v2 − c2
L

)2 + (2AvKcL )2
)

(4.12)

and the residues

F± = v2
± − c2

L

v2± − v2∓
, (4.13)

the propagator follows as

Dθθ (ωn, q) = vK
∑
s=±

Fs

ω2
n + v2

s q2
. (4.14)

We note that Eq. (4.13) implies F+ + F− = 1 and∑
s Fs(v/vs)2 = 1/(1 − A2K2). Similarly, the propagator

for the dual boson field ϕ in Eq. (2.5) follows as

Dϕϕ (ωn, q) = 1

vK

∑
s=±

v2
s Fs

ω2
n + v2

s q2
, (4.15)

For A = 0, one finds v+ = v and v− = cL, with F+ = 1 and
F− = 0.

Using the above expressions, the electronic Green’s
function,

G(r, τ ) = −〈Tτ	el(r, τ )	†
el(0, 0)〉, (4.16)

with the electron operator in Eq. (2.3) and the time ordering
operator Tτ , can be computed in an exact manner. The nontriv-
ial (z, τ ) dependence, G(z, τ ) ∝ ∑

ν=± eiνkF zGν (z, τ ), follows
from the 1D Green’s functions,

Gν (z, τ ) = −〈Tτψν (z, τ )ψ†
ν (0, 0)〉, (4.17)

where off-diagonal contributions (with ν �= ν ′) vanish iden-
tically. Using the bosonized 1D operators in Eq. (2.5), we
obtain

Gν=±(z, τ ) = sgn(τ )

4πξ⊥

∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣
(vK/2vs+vs/2Kv)Fs

×
(

z + iνvsτ

z − iνvsτ

)Fs

. (4.18)

Given this result, one can compute the spectral function
from the imaginary part of G, cf. Refs. [52,56]. The latter
quantity could in principle be measured by photoemission
spectroscopy. However, in what follows we shall focus on
simpler observables.

V. PHASE DIAGRAM

We next turn to the zero-temperature phase diagram of the
coupled electron-phonon system with half-integer flux �B.
The effective low-energy action (4.9) for the electronic sector,
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obtained after integration over the phonon degrees of freedom,
allows us to obtain the exact correlation functions of all
possible order parameters. In this 1D system, long-range order
is not possible and one can at best find an algebraic decay of
correlation functions (at T = 0). It is then common practice
to define the phases according to the smallest decay exponent
[52]. For extremely strong electron-phonon couplings with
A � 1/K in Eq. (4.11), one encounters the so-called Wentzel-
Bardeen singularity, where the system becomes unstable and
undergoes phase separation [54,55]. In what follows, we
assume that A < 1 and the system is stable. We then examine
different candidate order-parameter correlations.

First, as pointed out in Sec. II, charge-density wave (CDW)
correlations cannot exist in our system due to the absence
of 2kF backscattering. However, spin-density wave (SDW)
correlations are possible. For the surface state of the TI wire,
we can either have a spin-density operator component sφ

along the circumferential direction, or a component sz along
the wire axis. In bosonized form, they are given by [40]

sφ (z, τ ) = 1

2
√

π
∂zϕ(z, τ ),

sz(z, τ ) = − 1

2πξ⊥
cos[2kF z + 2

√
πθ (z, τ )]. (5.1)

The first relation is due to spin-momentum locking of the TI
surface state: the current density operator along the z axis
has precisely the same form. We obtain the T = 0 correlation
functions (the mixed correlator vanishes)

〈sz(z, τ )sz(0, 0)〉 ∝ cos(2kF z)
∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣
2vKFs/vs

,

〈
sφ (z, τ )sφ (0, 0)

〉 ∝
∏

s

|z + ivsτ |−νφ/2, (5.2)

which yields the corresponding decay exponents νz =
2vK

∑
s Fs/vs and νφ = 2. Here the F± have been defined in

Eq. (4.13). For material parameters where νφ represents the
slowest decay, we call the phase “metallic” since here the
current-current correlations have the same decay law as in
an unperturbed Luttinger liquid. Next, the order parameter
for singlet superconductivity is proportional to Osc(z, τ ) =
ψ+(z, τ )ψ−(z, τ ) ∝ e2i

√
πϕ [76,77]. Pairing correlations thus

decay along the wire direction as

〈Osc(z, τ )O†
sc(0, 0)〉 ∝

∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣
2vsFs/(Kv)

. (5.3)

The resulting decay exponent is given by νsc =
(2/vK )

∑
s vsFs.

Using the above results for the three exponents (νz, νφ, νsc),
the phase diagram in the K-A plane is readily determined by
finding the smallest exponent for given parameter choice; see
Fig. 1. For our TI nanowire pierced by a half-integer flux
�B, the radius R appears only implicitly via the definition of
the dimensionless electron-phonon coupling parameter A in
Eq. (4.11), and possibly through a weak R dependence of the
Luttinger liquid parameter K [40]. The latter parameter can
encode both the effects of Coulomb interactions and those
of residual optical-phonon modes not taken into account in
our model, cf. Ref. [52], where K = 1 in the absence of

interactions, K < 1 for repulsive interactions, and K > 1 for
effectively attractive interactions. In Fig. 1, we show the phase
diagram using parameters appropriate for the TI material
HgTe, with v1 � 5 × 105 m/s [48] and cL � 2400 m/s [78].
The HgTe case is especially interesting since it has been
established by recent nanowire experiments that the ballistic
regime is reachable in practice [48]. We thus expect that our
predictions can be tested in the immediate future. We note that
the phase diagram for Bi2Te3 looks qualitatively very similar.

In the absence of electron-electron interactions (K = 1),
we observe that superconducting correlations dominate for
arbitrary electron-phonon coupling strength 0 < A < 1, in ac-
cordance with earlier studies for nonhelical Luttinger liquids
[54,55]. Unless electron-electron interactions are screened off,
however, we expect that the superconducting correlations are
quickly overcome by SDW correlations which are favored for
K < 1 and small values of A. For large A (but A < 1/K), we
also find a tiny intermediate metallic phase; see the inset of
Fig. 1. The phase boundary curves separating the metallic
phase from the SDW and the SC phases, respectively, can be
analytically shown to merge at the special point (K = 1, A =
0). However, no merging point exists in the limit K → 0.
Ultimately, for A � 1/K , the system becomes unstable.

Our theory therefore suggests the possibility of dominant
intrinsic pairing fluctuations when Coulomb interactions are
well screened off. The resulting superconducting wire could
then even harbor Majorana bound states; see Ref. [58]. Such
states can exist even in 1D wires with intrinsic superconduct-
ing pairing [59]. However, we expect that proximity-induced
superconductivity will be needed in practice to achieve this
goal since the relevant energy scales protecting the Majorana
states will otherwise be tiny.

Finally, we note that the phase diagram can significantly
change when �B does not have half-integer values. As we
discuss in detail in Sec. VI B, the presence of 2kF scattering
then implies that also regions with CDW ordering become
possible. We leave the exploration of the phase diagram for
general �B to future work.

VI. PHONON-INDUCED RESISTIVITY

We now turn to the phonon-induced electrical resistivity
ρ of a long cylindrical TI nanowire pierced by a magnetic
flux �B, taking into account electron-phonon couplings of
dimensionless strength A < 1/K ; see Eq. (4.11). We start in
Sec. VI A with the case of half-integer flux �B for arbitrary
Luttinger liquid parameter K . From the Kubo formalism, we
show that phonons do not generate a finite resistivity correc-
tion ρ(T ) due to the absence of 2kF -backscattering processes.
In Sec. VI B, focusing on the case without electron-electron
interactions (K = 1), we allow for small flux deviations δ�B

away from half-integer values. Backscattering then becomes
possible and one obtains a finite resistivity for T > 0. For
quantitative results, we follow the Boltzmann equation ap-
proach of Ref. [65]. Alternatively, one could proceed along
the bosonization route of Ref. [67], which also allows us to
cover the K �= 1 case for δ�B �= 0. However, in Sec. VI B
we confine ourselves to the physically transparent Boltzmann
approach for K = 1.
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A. Half-integer flux: Kubo formula

We begin with the case of precisely half-integer flux �B

and start from the Kubo formula for the (ω, q)-dependent
conductivity [52],

σ (ω, q) = i

ω

(
e2vK

π
+ �(ω, q)

)
, (6.1)

where �(ω, q) is the retarded current-current correlation
function. The latter quantity is first computed in Matsubara
frequency space,

�(iωn, q) = −〈J∗(iωn, q)J (iωn, q)〉Seff , (6.2)

followed by the analytic continuation iωn → ω + i0+. The
charge current operator is here given by J = evK√

π
∂zϕ [52].

Using Eq. (4.15), we obtain

�(iωn, q) = e2vK

π

(
−1 +

∑
s=±

ω2
n

ω2
n + v2

s q2
Fs

)
. (6.3)

Performing the analytic continuation, Eq. (6.1) yields

σ (ω, q) = e2vK

2π

∑
s=±,ν=±

Fs

×
(

πδ(ω − νvsq) + iP 1

ω − νvsq

)
,

where P denotes the principal part and the velocities v± have
been specified in Eq. (4.12). We thus obtain

lim
q→0

Reσ (ω, q) = e2vKδ(ω)
∑
s=±

Fs = e2vKδ(ω). (6.4)

The real part of the conductivity yields a δ-function Drude
peak at ω = 0 for q → 0, and hence a vanishing resistivity
at all temperatures (where the above model applies). Since
vK = v1 by Galilean invariance, neither electron-electron nor
electron-phonon interactions cause corrections to the con-
ductivity. This result is rationalized by the absence of 2kF -
backscattering processes in TI nanowires pierced by a pre-
cisely half-integer flux �B. In the next subsection, we address
what happens when �B deviates from half-integer values.

B. Away from half-integer flux

We now focus on the case without electron-electron inter-
actions, K = 1, and study the effects of a static deviation of
�B from half-integer values, δ�B �= 0. Such a situation may
arise either due to changes in the magnetic field strength or
its direction, or from fluctuations of the cross-sectional area
of the nanowire. For simplicity, we assume |δ�B| � 1 below.
For δ�B �= 0, since the electron density operator (2.6) will
now have a 2kF -oscillatory contribution due to the absence of
topological protection, phonons can cause electron backscat-
tering. We then expect a temperature-dependent correction
to the electrical conductance of a TI nanowire. To study
this effect in quantitative terms, we follow Ref. [65] and
use the Boltzmann equation to evaluate the phonon-induced
conductance correction for a long TI nanowire of length L.
Without coupling to phonons (A = 0), the ballistic system
has the quantized and temperature-independent conductance
G = G0 = e2/h [40].

To determine the low-energy form of the electron density
operator, we first generalize the electron operator in Eq. (2.3)
to the case δ�B �= 0. At low energies, we may focus on
the single band with total angular momentum j such that
�B = − j + δ�B. Assuming that the chemical potential μ is
located in the conductance band, Eq. (2.2) implies that the
Fermi momentum is now given by

kF � μ

v1
(1 − 2γ 2), γ = v2δ�B

2μR
. (6.5)

We here study the consequences of γ �= 0 to leading order in
γ , i.e., for |γ | � 1. Taking the conduction-band eigenstate of
Hel(k) in Eq. (2.7) with angular momentum j from Ref. [40],
the low-energy electron operator follows as

	el(r, φ, z) = f⊥(r)√
4π

∑
ν=±

eiνkF zei( j−1/2)φψν (z)

×
(

ν(1 − γ )

i(1 + γ )eiφ

)
, (6.6)

where we drop all O(γ 2) terms. As for γ = 0 in Eq. (2.3),
the 1D field operators ψν=±(z) describe right- or left-moving
fermionic quasiparticles. Indeed, linearization of the disper-
sion relation (2.2) around the respective Fermi point, k =
νkF + p with |p| � kF , yields Eν=±(p) � μ ± v1 p.

The 1D electron density operator ρ1D(z) is obtained by
integration over the cross section of the nanowire and follows
(to leading order in γ ) as

ρ1D(z) =
∫

rdrdφ 	
†
el(r)	el(r)

=
∑
ν=±

ψ†
ν ψν + 2γ

∑
ν

e−iν2kF zψ†
ν ψ−ν

= 1√
π

∂zθ (z) + 2γ

πξ⊥
cos[2kF z + 2

√
πθ (z)]. (6.7)

In the last step, we have used the bosonization identity (2.5).
Equation (6.7) shows that for δ�B �= 0, the electron density
operator contains a 2kF -oscillatory term corresponding to
electron backscattering. By variation of the flux δ�B, the
relative importance of this term compared to the forward
scattering contribution—the first term in Eq. (6.7)—can be
changed. For γ �= 0, on top of Eq. (4.4) the electron-phonon
interaction Hamiltonian then receives an additional term from
the deformation potential in Eq. (4.1),

H ′
e−ph = −v1Z

∫
dz

∑
ν=±

e−iν2kF zψ†
ν ψ−ν

×
∫

dq

2π
eiqz

√
|q|(bq + b†

−q ), (6.8)

which describes electron backscattering with the simultane-
ous absorption or emission of a phonon. The corresponding
dimensionless coupling constant is given by

Z =
√

2π2cL/v1 Aγ , (6.9)

with the electron-phonon coupling parameter A in Eq. (4.11)
and γ ∝ δ�B in Eq. (6.5).
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The transition probability for absorption (−) or emission
(+) of a phonon during a quasiparticle scattering process with
momentum p → p′ with respect to the Fermi points ν → ν ′
can be estimated from Fermi’s “golden rule” as

W ±
ν ′,ν (p′, p) ∝ �p−p′ δ[Eν ′ (p′) − Eν (p) ± �p−p′+(ν−ν ′ )kF ].

(6.10)
Using the linearized dispersion relation Eν (p) = μ + νv1 p,
we first observe that energy conservation requires v1|p −
p′| = cL|p − p′| for forward scattering processes (ν ′ = ν).
Unless one accidentally has cL = v1, the only solution is given
by p = p′. Transition probabilities for forward scattering pro-
cesses thus vanish identically, W ±

ν,ν (p′, p) = 0, in accordance
with our results in Sec. VI A. For γ �= 0, phonon-induced
backscattering transitions (with ν ′ = −ν) become possible
because of H ′

e−ph in Eq. (6.8). Fermi’s golden rule then yields
the transition probabilities

W ±
−ν,ν (p′, p) = 2πv2

1Z2|2νkF + p − p′|
× δ{−ν[2kF + v1(p + p′)] ± �p−p′+2νkF}.

(6.11)

We now turn to the conductance correction, G = G0 +
�G(T ), arising due to phonon-induced backscattering transi-
tions. We follow Ref. [65] and consider a TI wire of length L
across which a small bias voltage V is applied. The quasiclas-
sical distribution function of fermionic quasiparticles at posi-
tion z with momentum νkF + p (where |p| � kF and ν = ±
for right- or left-moving particles) is denoted by fν (z, p). For
A = 0, this distribution function reduces to a z-independent
Fermi-Dirac distribution,

fν (z, p)|A=0 = f (0)
ν (p) ≡ 1

eν(v1 p−eV/2)/T + 1
. (6.12)

Writing fν (z, p) = f (0)
ν (p) + � fν (z, p), the Boltzmann equa-

tion is given by [65]

νv1∂z� fν = I[ f (0)] + e∂zφe ∂p f (0)
ν , (6.13)

where φe(z) is the electrostatic potential along the wire.
With the shorthand notation qν = p − p′ + 2νkF , the collision
integral [omitting the superscripts “(0)” in intermediate steps]
is given by

I[ fν (p)] = −
∫

d p′

2π
(W +

−ν,ν (p′, p){ fν (p)[1 − f−ν (p′)]

×(1 + Nqν
) − f−ν (p′)[1 − fν (p)]Nqν

}
+W −

−ν,ν (p′, p){ fν (p)[1 − f−ν (p′)]N−qν

− f−ν (p′)[1 − fν (p)](1 + N−qν
)}), (6.14)

where phonons are distributed according to the Bose-Einstein
distribution function, Nq = 1/(e�q/T − 1). Inserting the tran-
sition probabilities (6.11) into Eq. (6.14), we find

I[ fν (p)] = − 2 sinh

(
νeV

2T

)
fν (p)

∫
d p′

2π
f−ν (p′)Nqν

× [W +
−ν,ν (p′, p)eνv1 p/T + W −

−ν,ν (p′, p)e−νv1 p′/T ].
(6.15)

By using the identity W +
ν ′,ν (p′, p) = W −

ν,ν ′ (p, p′), we observe

that
∑

ν=±
∫ d p

2π
I[ fν (p)] = 0.

Solving the Boltzmann equation (6.13) as detailed in
Ref. [65], the conductance correction then follows as

�G = lim
V →0

eL

V

∫
d p

2π
I[ f (0)

+ (p)]. (6.16)

Next we observe that the δ function in the transition prob-
abilities (6.11) enforces the energy conservation condition
v1(p′ + p) = ±cL|2kF + p − p′|. Taking into account that
cL � v1 and |p|, |p′| � kF , the solution is given by p′ �
−p ± 2kF cL/v1. To lowest order in V , Eq. (6.15) then gives

I[ f+(p)] � −2kF v1Z2N2kF

eVeTBG/2T

T

×
∑
±

f+(p)[1 − f+(p ∓ TBG/v1)]e±TBG/2T ,

(6.17)

with the Bloch-Grüneisen temperature TBG ≡ 2cLkF . Once
T drops below TBG, phonon-induced 2kF backscattering be-
comes suppressed since phonon modes with the required
energy of order �2kF are not available anymore. One then
basically has only forward scattering processes, where the
corresponding transition amplitudes vanish and one therefore
expects an exponential suppression of the phonon-induced
resistivity; see Refs. [65–67].

Performing the integration in Eq. (6.16), the conductance
reduction is given by

�G(T )

e2/h
= −2kF LZ2 TBG/(2T )

sinh2 [TBG/(2T )]
. (6.18)

As a consequence, the phonon-induced electrical resistivity is

ρ(T ) = h

e2

2(v2/v1)2

πρMTBG

(
(1 − 2σ )α δ�B

v1R2

)2

× TBG/(2T )

sinh2 [TBG/(2T )]
, (6.19)

where we have used the definitions of A and γ in Eq. (6.9)
as well as kF ≈ μ/v1; see Eq. (6.5). At fixed temperature
and chemical potential, the resistivity thus scales as ρ ∝
(αδ�B/R2)2 with the deformation potential coupling α, the
deviation δ�B of magnetic flux from the nearest half-integer
value, and the nanowire radius R. In particular the prediction
ρ ∝ δ�2

B may allow for direct tests of our theory using
available TI nanowires [48,49]. At low temperatures com-
pared to the Bloch-Grüneisen temperature, Eq. (6.19) implies
an exponential suppression of the resistivity, ρ(T � TBG) ∝
(TBG/T )e−TBG/T , as expected from Refs. [65–67]. On the other
hand, at high temperatures, the standard linear T dependence,
ρ(T � TBG) ∝ T/TBG, is recovered.

VII. CONCLUSIONS

In this work, we have constructed an analytical theory for
the coupled electron-phonon system in a topological insulator
nanowire pierced by the magnetic flux �B. For half-integer
�B, the electronic surface states are represented by topologi-
cally protected helical Dirac fermions, where phonons cannot
induce 2kF backscattering. A nonvanishing phonon-induced
resistivity emerges only when one has a finite deviation δ�B
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from half-integer flux values, where we give detailed pre-
dictions for the dependence of the resistivity on temperature
and on δ�B. We have also shown that the phase diagram for
half-integer flux contains a significant region where super-
conducting pairing of the surface states is possible. Future
theoretical work could analyze the resistivity for finite δ�B

taking into account electron-electron interactions (K �= 1),
where the approach of Ref. [67] should allow for progress.
Another interesting avenue for further research concerns the
multichannel generalization of our theory. This case will
become important, for instance, at large values of the TI

nanowire radius R, where our assumption of a single relevant
subband breaks down.

ACKNOWLEDGMENTS

We acknowledge support by the Deutsche Forschungsge-
meinschaft (Bonn) under Grant No. EG 96/12-1 and under
Germany’s Excellence Strategy - Cluster of Excellence Matter
and Light for Quantum Computing (ML4Q) EXC 2004/1 -
390534769.

[1] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[2] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,

195424 (2008).
[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[4] C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C.

Zhang, Phys. Rev. B 82, 045122 (2010).
[5] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[6] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[7] X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C.

Chou, C. Chamon, and M. El-Batanouny, Phys. Rev. Lett. 107,
186102 (2011).

[8] R. C. Hatch, M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen,
L. Nilsson, L. Hornekaer, and P. Hofmann, Phys. Rev. B 83,
241303(R) (2011).

[9] X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C.
Chamon, and M. El-Batanouny, Phys. Rev. Lett. 108, 185501
(2012).

[10] Y. H. Wang, D. Hsieh, E. J. Sie, H. Steinberg, D. R. Gardner,
Y. S. Lee, P. Jarillo-Herrero, and N. Gedik, Phys. Rev. Lett. 109,
127401 (2012).

[11] D. Kim, Q. Li, P. Syers, N. P. Butch, J. Paglione, S. Das Sarma,
and M. S. Fuhrer, Phys. Rev. Lett. 109, 166801 (2012).

[12] Z.-H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T.
Valla, Phys. Rev. Lett. 108, 187001 (2012).

[13] Z.-H. Pan, E. Vescovo, A. V. Fedorov, G. D. Gu, and T. Valla,
Phys. Rev. B 88, 041101(R) (2013).

[14] C. Chen, Z. Xie, Y. Feng, H. Yi, A. Liang, S. He, D. Mou, J. He,
Y. Peng, X. Liu, Y. Liu, L. Zhao, G. Liu, X. Dong, J. Zhang, L.
Yu, X. Wang, Q. Peng, Z. Wang, S. Zhang et al., Sci. Rep. 3,
2411 (2013).

[15] T. Kondo, Y. Nakashima, Y. Ota, Y. Ishida, W. Malaeb, K.
Okazaki, S. Shin, M. Kriener, S. Sasaki, K. Segawa, and Y.
Ando, Phys. Rev. Lett. 110, 217601 (2013).

[16] A. Crepaldi, F. Cilento, B. Ressel, C. Cacho, J. C. Johannsen,
M. Zacchigna, H. Berger, Ph. Bugnon, C. Grazioli, I. C. E.
Turcu, E. Springate, K. Kern, M. Grioni, and F. Parmigiani,
Phys. Rev. B 88, 121404(R) (2013).

[17] C. Howard and M. El-Batanouny, Phys. Rev. B 89, 075425
(2014).

[18] M. V. Costache, I. Neumann, J. F. Sierra, V. Marinova, M. M.
Gospodinov, S. Roche, and S. O. Valenzuela, Phys. Rev. Lett.
112, 086601 (2014).

[19] J. A. Sobota, S.-L. Yang, D. Leuenberger, A. F. Kemper, J. G.
Analytis, I. R. Fisher, P. S. Kirchmann, T. P. Devereaux, and
Z.-X. Shen, Phys. Rev. Lett. 113, 157401 (2014).

[20] Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M.
Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Nano
Lett. 14, 6226 (2014).

[21] Yu. D. Glinka, S. Babakiray, T. A. Johnson, M. B.
Holcomb, and D. Lederman, J. Appl. Phys. 117, 165703
(2015).

[22] A. Tamtögl, P. Kraus, N. Avidor, M. Bremholm, E. M. J.
Hedegaard, B. B. Iversen, M. Bianchi, P. Hofmann, J. Ellis, W.
Allison, G. Benedek, and W. E. Ernst, Phys. Rev. B 95, 195401
(2017).

[23] X. Jia, S. Zhang, R. Sankar, F. C. Chou, W. Wang, K. Kempa,
E. W. Plummer, J. Zhang, X. Zhu, and J. Guo, Phys. Rev. Lett.
119, 136805 (2017).

[24] M. Wiesner, A. Trzaskowska, B. Mroz, S. Charpentier, S.
Wang, Y. Song, F. Lombardi, P. Lucignano, G. Benedek, D.
Campi, M. Bernasconi, F. Guinea, and A. Tagliacozzo, Sci. Rep.
7, 16449 (2017).

[25] B. L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).
[26] P. Thalmeier, Phys. Rev. B 83, 125314 (2011).
[27] S. Giraud and R. Egger, Phys. Rev. B 83, 245322 (2011).
[28] S. Giraud, A. Kundu, and R. Egger, Phys. Rev. B 85, 035441

(2012).
[29] J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phys. Rev.

Lett. 108, 086602 (2012); S. Groenendijk, G. Dolcetto, and T. L.
Schmidt, Phys. Rev. B 97, 241406(R) (2018).

[30] I. Garate, Phys. Rev. Lett. 110, 046402 (2013).
[31] P. Zhang and M. W. Wu, Phys. Rev. B 87, 085319 (2013).
[32] V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Phys.

Rev. B 88, 075432 (2013).
[33] S. Das Sarma and Q. Li, Phys. Rev. B 88, 081404(R) (2013).
[34] M. Q. Weng and M. W. Wu, Phys. Rev. B 90, 125306 (2014).
[35] R. Heid, I. Yu. Sklyadneva, and E. V. Chulkov, Sci. Rep. 7, 1095

(2017).
[36] Y. Zhang, Y. Ran, and A. Vishwanath, Phys. Rev. B 79, 245331

(2009).
[37] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett.

105, 036803 (2010).
[38] Y. Zhang and A. Vishwanath, Phys. Rev. Lett. 105, 206601

(2010).
[39] J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev.

Lett. 105, 156803 (2010).
[40] R. Egger, A. Zazunov, and A. L. Yeyati, Phys. Rev. Lett. 105,

136403 (2010).
[41] A. Kundu, A. Zazunov, A. L. Yeyati, T. Martin, and R. Egger,

Phys. Rev. B 83, 125429 (2011).

045402-11

https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevLett.107.186102
https://doi.org/10.1103/PhysRevB.83.241303
https://doi.org/10.1103/PhysRevB.83.241303
https://doi.org/10.1103/PhysRevB.83.241303
https://doi.org/10.1103/PhysRevB.83.241303
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.108.185501
https://doi.org/10.1103/PhysRevLett.109.127401
https://doi.org/10.1103/PhysRevLett.109.127401
https://doi.org/10.1103/PhysRevLett.109.127401
https://doi.org/10.1103/PhysRevLett.109.127401
https://doi.org/10.1103/PhysRevLett.109.166801
https://doi.org/10.1103/PhysRevLett.109.166801
https://doi.org/10.1103/PhysRevLett.109.166801
https://doi.org/10.1103/PhysRevLett.109.166801
https://doi.org/10.1103/PhysRevLett.108.187001
https://doi.org/10.1103/PhysRevLett.108.187001
https://doi.org/10.1103/PhysRevLett.108.187001
https://doi.org/10.1103/PhysRevLett.108.187001
https://doi.org/10.1103/PhysRevB.88.041101
https://doi.org/10.1103/PhysRevB.88.041101
https://doi.org/10.1103/PhysRevB.88.041101
https://doi.org/10.1103/PhysRevB.88.041101
https://doi.org/10.1038/srep02411
https://doi.org/10.1038/srep02411
https://doi.org/10.1038/srep02411
https://doi.org/10.1038/srep02411
https://doi.org/10.1103/PhysRevLett.110.217601
https://doi.org/10.1103/PhysRevLett.110.217601
https://doi.org/10.1103/PhysRevLett.110.217601
https://doi.org/10.1103/PhysRevLett.110.217601
https://doi.org/10.1103/PhysRevB.88.121404
https://doi.org/10.1103/PhysRevB.88.121404
https://doi.org/10.1103/PhysRevB.88.121404
https://doi.org/10.1103/PhysRevB.88.121404
https://doi.org/10.1103/PhysRevB.89.075425
https://doi.org/10.1103/PhysRevB.89.075425
https://doi.org/10.1103/PhysRevB.89.075425
https://doi.org/10.1103/PhysRevB.89.075425
https://doi.org/10.1103/PhysRevLett.112.086601
https://doi.org/10.1103/PhysRevLett.112.086601
https://doi.org/10.1103/PhysRevLett.112.086601
https://doi.org/10.1103/PhysRevLett.112.086601
https://doi.org/10.1103/PhysRevLett.113.157401
https://doi.org/10.1103/PhysRevLett.113.157401
https://doi.org/10.1103/PhysRevLett.113.157401
https://doi.org/10.1103/PhysRevLett.113.157401
https://doi.org/10.1021/nl502546c
https://doi.org/10.1021/nl502546c
https://doi.org/10.1021/nl502546c
https://doi.org/10.1021/nl502546c
https://doi.org/10.1063/1.4919274
https://doi.org/10.1063/1.4919274
https://doi.org/10.1063/1.4919274
https://doi.org/10.1063/1.4919274
https://doi.org/10.1103/PhysRevB.95.195401
https://doi.org/10.1103/PhysRevB.95.195401
https://doi.org/10.1103/PhysRevB.95.195401
https://doi.org/10.1103/PhysRevB.95.195401
https://doi.org/10.1103/PhysRevLett.119.136805
https://doi.org/10.1103/PhysRevLett.119.136805
https://doi.org/10.1103/PhysRevLett.119.136805
https://doi.org/10.1103/PhysRevLett.119.136805
https://doi.org/10.1038/s41598-017-16313-5
https://doi.org/10.1038/s41598-017-16313-5
https://doi.org/10.1038/s41598-017-16313-5
https://doi.org/10.1038/s41598-017-16313-5
https://doi.org/10.1103/PhysRevB.77.125209
https://doi.org/10.1103/PhysRevB.77.125209
https://doi.org/10.1103/PhysRevB.77.125209
https://doi.org/10.1103/PhysRevB.77.125209
https://doi.org/10.1103/PhysRevB.83.125314
https://doi.org/10.1103/PhysRevB.83.125314
https://doi.org/10.1103/PhysRevB.83.125314
https://doi.org/10.1103/PhysRevB.83.125314
https://doi.org/10.1103/PhysRevB.83.245322
https://doi.org/10.1103/PhysRevB.83.245322
https://doi.org/10.1103/PhysRevB.83.245322
https://doi.org/10.1103/PhysRevB.83.245322
https://doi.org/10.1103/PhysRevB.85.035441
https://doi.org/10.1103/PhysRevB.85.035441
https://doi.org/10.1103/PhysRevB.85.035441
https://doi.org/10.1103/PhysRevB.85.035441
https://doi.org/10.1103/PhysRevLett.108.086602
https://doi.org/10.1103/PhysRevLett.108.086602
https://doi.org/10.1103/PhysRevLett.108.086602
https://doi.org/10.1103/PhysRevLett.108.086602
https://doi.org/10.1103/PhysRevB.97.241406
https://doi.org/10.1103/PhysRevB.97.241406
https://doi.org/10.1103/PhysRevB.97.241406
https://doi.org/10.1103/PhysRevB.97.241406
https://doi.org/10.1103/PhysRevLett.110.046402
https://doi.org/10.1103/PhysRevLett.110.046402
https://doi.org/10.1103/PhysRevLett.110.046402
https://doi.org/10.1103/PhysRevLett.110.046402
https://doi.org/10.1103/PhysRevB.87.085319
https://doi.org/10.1103/PhysRevB.87.085319
https://doi.org/10.1103/PhysRevB.87.085319
https://doi.org/10.1103/PhysRevB.87.085319
https://doi.org/10.1103/PhysRevB.88.075432
https://doi.org/10.1103/PhysRevB.88.075432
https://doi.org/10.1103/PhysRevB.88.075432
https://doi.org/10.1103/PhysRevB.88.075432
https://doi.org/10.1103/PhysRevB.88.081404
https://doi.org/10.1103/PhysRevB.88.081404
https://doi.org/10.1103/PhysRevB.88.081404
https://doi.org/10.1103/PhysRevB.88.081404
https://doi.org/10.1103/PhysRevB.90.125306
https://doi.org/10.1103/PhysRevB.90.125306
https://doi.org/10.1103/PhysRevB.90.125306
https://doi.org/10.1103/PhysRevB.90.125306
https://doi.org/10.1038/s41598-017-01128-1
https://doi.org/10.1038/s41598-017-01128-1
https://doi.org/10.1038/s41598-017-01128-1
https://doi.org/10.1038/s41598-017-01128-1
https://doi.org/10.1103/PhysRevB.79.245331
https://doi.org/10.1103/PhysRevB.79.245331
https://doi.org/10.1103/PhysRevB.79.245331
https://doi.org/10.1103/PhysRevB.79.245331
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.105.136403
https://doi.org/10.1103/PhysRevLett.105.136403
https://doi.org/10.1103/PhysRevLett.105.136403
https://doi.org/10.1103/PhysRevLett.105.136403
https://doi.org/10.1103/PhysRevB.83.125429
https://doi.org/10.1103/PhysRevB.83.125429
https://doi.org/10.1103/PhysRevB.83.125429
https://doi.org/10.1103/PhysRevB.83.125429


DORN, DE MARTINO, AND EGGER PHYSICAL REVIEW B 101, 045402 (2020)

[42] J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 056501
(2013).

[43] L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Butterworth-Heinemann, Oxford, 1986).

[44] A. Svizhenko, A. Balandin, S. Bandyopadhyay, and M. A.
Stroscio, Phys. Rev. B 57, 4687 (1998).

[45] J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka,
S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O. G. Schmidt,
B. Büchner, and R. Giraud, Phys. Rev. Lett. 110, 186806
(2013).

[46] S. S. Hong, Y. Zhang, J. J. Cha, X. L. Qi, and Y. Cui, Nano Lett.
14, 2815 (2014).

[47] S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G. Gu,
M. J. Gilbert, and N. Mason, Nat. Commun. 6, 7634 (2015).

[48] J. Ziegler, R. Kozlovsky, C. Gorini, M.-H. Liu, S. Weishäupl,
H. Maier, R. Fischer, D. A. Kozlov, Z. D. Kvon, N. Mikhailov,
S. A. Dvoretsky, K. Richter, and D. Weiss, Phys. Rev. B 97,
035157 (2018).

[49] F. Münning, O. Breunig, H. F. Legg, S. Roitsch, D. Fan, M.
Rößler, A. Rosch, and Y. Ando, arXiv:1910.07863.

[50] P. Capper, J. Garland, S. Kasap, and A. Willoughby, Mer-
cury Cadmium Telluride: Growth, Properties and Applications,
Wiley Series in Materials for Electronic and Optoelectronic
Applications (Wiley, Chichester, UK, 2011).

[51] A. Jain, S. P. Ong, G.-R. Hautier, W. Chen, W. D. Richards, S.
Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A.
Persson, APL Mater. 1, 011002 (2013).

[52] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-
tion and Strongly Correlated Systems (Cambridge University
Press, Cambridge, UK, 1998).

[53] H. K. Pal, V. I. Yudson, and D. L. Maslov, Phys. Rev. B 85,
085439 (2012).

[54] D. Loss and T. Martin, Phys. Rev. B 50, 12160 (1994).
[55] A. De Martino and R. Egger, Phys. Rev. B 67, 235418 (2003).
[56] A. Schulz, A. De Martino, and R. Egger, Phys. Rev. B 82,

033407 (2010).
[57] A. Cook and M. Franz, Phys. Rev. B 84, 201105(R) (2011).
[58] A. M. Cook, M. M. Vazifeh, and M. Franz, Phys. Rev. B 86,

155431 (2012).

[59] L. Fidkowski, R. M. Lutchyn, C. Nayak, and M. P. A. Fisher,
Phys. Rev. B 84, 195436 (2011).

[60] J. Manousakis, A. Altland, D. Bagrets, R. Egger, and Y. Ando,
Phys. Rev. B 95, 165424 (2017).

[61] J. Voit and H. J. Schulz, Phys. Rev. B 34, R7429 (1986).
[62] U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947

(1990).
[63] A. Y. Shik and L. J. Challis, Phys. Rev. B 47, 2082 (1993).
[64] R. Mickevicius and V. Mitin, Phys. Rev. B 48, 17194 (1993).
[65] V. L. Gurevich, V. B. Pevzner, and K. Hess, Phys. Rev. B 51,

5219 (1995).
[66] V. L. Gurevich, V. B. Pevzner, and E. W. Fenton, Phys. Rev. B

51, 9465 (1995).
[67] G. Seelig, K. A. Matveev, and A. V. Andreev, Phys. Rev. Lett.

94, 066802 (2005).
[68] I. V. Yurkevich, A. Galda, O. M. Yevtushenko, and I. V. Lerner,

Phys. Rev. Lett. 110, 136405 (2013).
[69] L. Pochhammer, J. Reine Angew. Math. (Crelle) 81, 324 (1876).
[70] C. Chree, Trans. Cambridge Philos. Soc. 14, 250 (1889).
[71] A. E. H. Love, A Treatise on The Mathematical Theory of

Elasticity (Dover, New York, 1944).
[72] K. F. Graff, Wave Motion in Elastic Solids (Dover, New York,

2012).
[73] J. O. Jenkins, J. A. Rayne, and R. W. Ure, Jr., Phys. Rev. B 5,

3171 (1972).
[74] NIST Digital Library of Mathematical Functions, edited by

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V.
Saunders, available at http://dlmf.nist.gov/, Release 1.0.16 of
2017-09-18.

[75] Y. M. Sirenko, K. W. Kim, and M. A. Stroscio, Phys. Rev. B 56,
15770 (1997).

[76] The angular dependence of the superconducting order parame-
ter may include a phase winding factor ∝einφ (with some integer
n) due to the magnetic flux; see Ref. [77] for a related case.

[77] R. M. Lutchyn, G. W. Winkler, B. van Heck, T. Karzig, K.
Flensberg, L. I. Glazman, and C. Nayak, arXiv:1809.05512.

[78] I. V. Kurilo, V. P. Alekhin, I. O. Rudyi, S. I. Bulychev, and L. I.
Osypyshin, Phys. Status Solidi A 163, 4758 (1997).

045402-12

https://doi.org/10.1088/0034-4885/76/5/056501
https://doi.org/10.1088/0034-4885/76/5/056501
https://doi.org/10.1088/0034-4885/76/5/056501
https://doi.org/10.1088/0034-4885/76/5/056501
https://doi.org/10.1103/PhysRevB.57.4687
https://doi.org/10.1103/PhysRevB.57.4687
https://doi.org/10.1103/PhysRevB.57.4687
https://doi.org/10.1103/PhysRevB.57.4687
https://doi.org/10.1103/PhysRevLett.110.186806
https://doi.org/10.1103/PhysRevLett.110.186806
https://doi.org/10.1103/PhysRevLett.110.186806
https://doi.org/10.1103/PhysRevLett.110.186806
https://doi.org/10.1021/nl500822g
https://doi.org/10.1021/nl500822g
https://doi.org/10.1021/nl500822g
https://doi.org/10.1021/nl500822g
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1103/PhysRevB.97.035157
https://doi.org/10.1103/PhysRevB.97.035157
https://doi.org/10.1103/PhysRevB.97.035157
https://doi.org/10.1103/PhysRevB.97.035157
http://arxiv.org/abs/arXiv:1910.07863
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1103/PhysRevB.85.085439
https://doi.org/10.1103/PhysRevB.85.085439
https://doi.org/10.1103/PhysRevB.85.085439
https://doi.org/10.1103/PhysRevB.85.085439
https://doi.org/10.1103/PhysRevB.50.12160
https://doi.org/10.1103/PhysRevB.50.12160
https://doi.org/10.1103/PhysRevB.50.12160
https://doi.org/10.1103/PhysRevB.50.12160
https://doi.org/10.1103/PhysRevB.67.235418
https://doi.org/10.1103/PhysRevB.67.235418
https://doi.org/10.1103/PhysRevB.67.235418
https://doi.org/10.1103/PhysRevB.67.235418
https://doi.org/10.1103/PhysRevB.82.033407
https://doi.org/10.1103/PhysRevB.82.033407
https://doi.org/10.1103/PhysRevB.82.033407
https://doi.org/10.1103/PhysRevB.82.033407
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.86.155431
https://doi.org/10.1103/PhysRevB.86.155431
https://doi.org/10.1103/PhysRevB.86.155431
https://doi.org/10.1103/PhysRevB.86.155431
https://doi.org/10.1103/PhysRevB.84.195436
https://doi.org/10.1103/PhysRevB.84.195436
https://doi.org/10.1103/PhysRevB.84.195436
https://doi.org/10.1103/PhysRevB.84.195436
https://doi.org/10.1103/PhysRevB.95.165424
https://doi.org/10.1103/PhysRevB.95.165424
https://doi.org/10.1103/PhysRevB.95.165424
https://doi.org/10.1103/PhysRevB.95.165424
https://doi.org/10.1103/PhysRevB.34.7429
https://doi.org/10.1103/PhysRevB.34.7429
https://doi.org/10.1103/PhysRevB.34.7429
https://doi.org/10.1103/PhysRevB.34.7429
https://doi.org/10.1103/PhysRevB.42.8947
https://doi.org/10.1103/PhysRevB.42.8947
https://doi.org/10.1103/PhysRevB.42.8947
https://doi.org/10.1103/PhysRevB.42.8947
https://doi.org/10.1103/PhysRevB.47.2082
https://doi.org/10.1103/PhysRevB.47.2082
https://doi.org/10.1103/PhysRevB.47.2082
https://doi.org/10.1103/PhysRevB.47.2082
https://doi.org/10.1103/PhysRevB.48.17194
https://doi.org/10.1103/PhysRevB.48.17194
https://doi.org/10.1103/PhysRevB.48.17194
https://doi.org/10.1103/PhysRevB.48.17194
https://doi.org/10.1103/PhysRevB.51.5219
https://doi.org/10.1103/PhysRevB.51.5219
https://doi.org/10.1103/PhysRevB.51.5219
https://doi.org/10.1103/PhysRevB.51.5219
https://doi.org/10.1103/PhysRevB.51.9465
https://doi.org/10.1103/PhysRevB.51.9465
https://doi.org/10.1103/PhysRevB.51.9465
https://doi.org/10.1103/PhysRevB.51.9465
https://doi.org/10.1103/PhysRevLett.94.066802
https://doi.org/10.1103/PhysRevLett.94.066802
https://doi.org/10.1103/PhysRevLett.94.066802
https://doi.org/10.1103/PhysRevLett.94.066802
https://doi.org/10.1103/PhysRevLett.110.136405
https://doi.org/10.1103/PhysRevLett.110.136405
https://doi.org/10.1103/PhysRevLett.110.136405
https://doi.org/10.1103/PhysRevLett.110.136405
https://doi.org/10.1103/PhysRevB.5.3171
https://doi.org/10.1103/PhysRevB.5.3171
https://doi.org/10.1103/PhysRevB.5.3171
https://doi.org/10.1103/PhysRevB.5.3171
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevB.56.15770
https://doi.org/10.1103/PhysRevB.56.15770
https://doi.org/10.1103/PhysRevB.56.15770
https://doi.org/10.1103/PhysRevB.56.15770
http://arxiv.org/abs/arXiv:1809.05512
https://doi.org/10.1002/1521-396X(199709)163:1<47::AID-PSSA47>3.0.CO;2-S
https://doi.org/10.1002/1521-396X(199709)163:1<47::AID-PSSA47>3.0.CO;2-S
https://doi.org/10.1002/1521-396X(199709)163:1<47::AID-PSSA47>3.0.CO;2-S
https://doi.org/10.1002/1521-396X(199709)163:1<47::AID-PSSA47>3.0.CO;2-S

