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Tuning spatial entanglement in interacting two-electron quantum dots
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Confined geometries such as semiconductor quantum dots are promising candidates for fabricating quantum
computing devices. When several quantum dots are in proximity, spatial correlation between electrons in
the system becomes significant. In this paper, we employ a variational formulation for calculating accurate
two-electron wavefunctions in configuration space, irrespective of potential geometry. To evaluate the Coulomb
integrals with high accuracy, a numerical integration method using multiple Gauss quadratures is used. With
this approach, we investigate the confinement of two electrons in double quantum dots, and evaluate the spatial
entanglement. We investigate the dependence of spatial entanglement on various geometrical parameters. We
derive the two-particle wavefunctions in the asymptotic limit of the separation distance between quantum dots
and obtain universal saturation values for the spatial entanglement. Resonances in the entanglement values due
to avoided level crossings of states are observed. We also demonstrate the formation of electron clusters and
show that the entanglement value is a good indicator for the formation of such clusters. Further, we show that a
precise tuning of the entanglement values is feasible with applied external electric fields.
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I. INTRODUCTION

Similarities can be drawn between the electronic properties
of a single quantum dot (QD) and a hydrogenic atom, which
implies that we can also develop an analogous Hund’s multi-
plicity rule [1,2] for these artificial atoms [3–5]. When two or
more QDs are in the vicinity of one another, the system can
be thought of as a covalent molecule of QDs [6]. Tunability in
their interelectron interaction with the separation distance and
with external fields facilitates an enhanced level of control in
their electronic properties [7–10]. Advances in the precise fab-
rication of QDs [11–13] have led to substantial improvements
in the prospect of developing integrated devices for applica-
tions in quantum computing [14–20], quantum information
[21,22], and quantum memory circuits [23–25].

Evaluation and measurement of the entanglement in a
multiparticle system has attracted extensive theoretical and
experimental interest [26–31]. A complete description of a
quantum system is given by a wavefunction that has both spin
and spatial components. Hence the entanglement will also
have contributions from spin and spatial correlations of the
wavefunction. When QDs are in proximity, the spatial cor-
relation between electrons in the system becomes significant
and leads to the spatial entanglement. Such spatial entangle-
ment will alter considerably with changes in the geometrical
parameters of QDs and with external perturbations.

The spatial entanglement properties are of interest to re-
alize solid-state all-electronic quantum computing devices.
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To this end, there have been several proposals to define
deterministic teleportation protocols for quantum informa-
tion processing in semiconducting nanowires [32], double
QDs [33,34], QD arrays [35], and coupled quantum wires
[36]. Applications of spatial entanglement as an indicator
for bound and unbound states [37], as well as the effects
of a magnetic field on entanglement have been discussed
earlier [38]. The spatial entanglement properties in helium
and helium-like atoms have been studied in the literature
[39,40]. Entanglement calculations for the ground state in
simplistic models, such as the Hooke’s-atom model [41] and
symmetric one-dimensional quantum wells with simplifying
the Coulomb interactions as point contacts [42] have also
been considered. Recently, it has been shown that the spatial
overlapping of indistinguishable particles can be employed in
quantum information processes through local measurements
[43]. For all such applications, it is important to fabricate
the devices operating at the resonant entanglement values.
A detailed study to obtain the “spectroscopy” of quantum
entanglement in QDs has not been considered so far.

A thorough understanding of the spatial correlation of par-
ticles is also crucial to fabricate and further manipulate charge
qubits, which are usually coupled through the Coulomb inter-
action [44]. Although the literature on using charge qubits for
quantum information purposes has been prolific [45,46], there
are surprisingly sparse theoretical studies on the entanglement
that is intrinsic in the spatial wavefunctions describing the
qubits. More specifically, how the spatial coupling between
the particles depends on the system, and on external parame-
ters, are of great interest.

In this paper, we consider the confinement of two elec-
trons in QDs formed through nanowire heterostructures. Such
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structures have been considered as an ideal candidate for
quantum electronic devices [47] and quantum information
processes [48–50], since particles can be very effectively
localized, either through external fields [50,51] or by super-
lattice nanowires [52–56]. In either case, the lateral width has
negligible contributions to the entanglement properties. It is
crucial to note that, although in this paper we specifically
consider one-dimensional (1D) confinement for the particles,
the methodology and conclusions are generalizable to higher-
dimensional bipartite systems. In this paper, we consider
only the 1D potential confinements, and the generalization to
higher dimensions will be presented elsewhere.

One well-studied approach for few-electron problems is
the full configuration interaction (FCI) method, which uses
a basis set constructed from single-particle orbitals. Due to its
success in providing benchmark calculations for few-particle
atomic and molecular systems [57,58], the FCI has been used
in condensed-matter setups as well [59–62]. In this paper, we
employ an alternative variational formalism for calculating the
coordinate-space representation of the two-particle wavefunc-
tions in semiconductor confinements. Accurate energy values
and wavefunctions can be obtained through this geometry
discretization scheme based on the variational principle. We
note that full-scale FCI calculations with Schrödinger-Poisson
self-consistent single particle basis [63,64] or with atomistic
tight-binding basis [65,66] are desirable for systems with sev-
eral electrons in QDs. Our method provides a useful prestep
before such large scale FCIs for simulating devices. It may
also be used to benchmark FCI results [67].

Results presented in this paper are summarized below:
(1) We have studied the case of two electrons trapped

in different variations of double QDs. We obtain the eigen-
spectrum and measure the spatial entanglement by computing
the linear entropy of the system. We show that through geo-
metrical manipulations of the confining potential and/or using
external electric fields, one can tune the level of entanglement.

(2) We derive exact representations for the wavefunctions
in the asymptotic limit and obtain universal saturation values
for the entanglement.

(3) Resonances in the entanglement are observed as a con-
sequence of avoided level crossings (also called anticrossings)
in the energy spectrum in an applied electric field or with
variations of the width in asymmetric double QDs. Electron
cluster formations are also detected at the excited states,
which lead to additional local maxima.

This paper is organized as follows: In Sec. II, we describe
the variational scheme used for solving the two-electron
wavefunctions. In Sec. III, the energy spectrum for two elec-
trons in GaAs/GaxAl1−xAs symmetric double QDs are dis-
cussed, and we also derive the asymptotic representations to
explain the degeneracy spectrum. Spatial entanglement prop-
erties for the symmetric double QDs are discussed in Sec. IV.
Entanglement resonances and the two electron-cluster forma-
tion in a system of asymmetric QDs are studied in Sec. V. We
analyze the effect of an applied electric field on the entangle-
ment in Sec. VI. We obtain the entanglement values in the
asymptotic separation distance in Appendix A. Calculation
of the entanglement properties with parabolic dot confine-
ment is given in Appendix B. Concluding remarks are given
in Sec. VII.

II. VARIATIONAL FORMULATION FOR TWO-PARTICLE
WAVEFUNCTIONS

Let us consider a two-electron wavefunction in configura-
tion space written as

�(x1, σ1, x2, σ2) = ψ (x1, x2)S(σ1, σ2), (1)

where ψ (x1, x2) and S(σ1, σ2) are the spatial and the spin
components of the wavefunction, respectively. Here, x1(σ1)
and x2(σ2) represent the position (spin) coordinates of elec-
trons 1 and 2, respectively. Within the envelope-function
approximation [68], the spatial part of the charge carrier’s
envelope function ψ (x1, x2) satisfies the time-independent
Schrödinger’s equation of the form{
− h̄2
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where m∗
1 ≡ m∗

1 (x1), m∗
2 ≡ m∗

2(x2) are the effective masses
of the two electrons, and V (x1, x2) is the effective potential.
V (x1, x2) contains terms arising from the geometrical confine-
ment of the system, V0, and the Coulomb interaction between
the electrons. It is given by

V (x1, x2) = V0(x1) + V0(x2) + e2

4πεo|x1 − x2| . (3)

We use the Raleigh-Ritz variational minimization scheme
within the framework of finite element analysis to solve
Eq. (2). To obtain the integral equation to be used for mini-
mization, we multiply Eq. (2) with δψ∗, a small variation in
the function ψ∗, and integrate over all space � to obtain∫
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Using the integration by parts on the first two terms in the
above integral, we obtain
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Hence, the integral equation corresponding to Eq. (2) is given
by

I =
∫
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dx1dx2
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(
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)
ψ

]
. (6)

We are interested in finding bound states of the system and,
hence, Dirichlet boundary conditions are imposed along the
periphery of a truncated finite domain.

The domain � is discretized into a refined finite element
mesh. A schematic for the discretization of a one-dimensional
physical domain is shown in Fig. 1(a). In a bipartite problem,
this discretization is applied to each particle’s space, x1 and
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FIG. 1. (a) A schematic representation of the discretization in
one dimension is shown. For Hermite interpolations, each node has
coefficients corresponding to the wavefunction and its first derivative
values. (b) A mapping of the 1D discretization into a 2D-parameter
space (x1, x2) for a two-particle problem is shown. Elements iel and
iel ′ are related through the mirror reflection across the mutual axis
(represented by the dashed line). (c) A sample 2D element within
which the wavefunction is represented using Eq. (7) is displayed.

x2. This results in a 2N-dimensional finite element mesh,
with N being the dimension of the particle confinement of
the problem. For example, two electrons confined in a 1D
physical space results in a 2D parameter space as shown in
Fig. 1(b). Here x1 and x2 represent the coordinates of the first
and second particles, respectively. Although, in this paper, we
specifically consider electrons trapped in 1D geometry, the
method is generalizable to higher dimensions.

Within each two-dimensional parameter space element, the
two-particle spatial wavefunction is represented as a linear
combination of the interpolation polynomials Ni(xk ) with as-
yet undetermined coefficients ψi j , given by

ψ iel (x1, x2) =
∑

i j

ψi jNi(x1)Nj (x2), (7)

where iel is the element index, and ψi j are undetermined
wavefunction values at nodes (vertices) of the element. In
contrast to employing global basis functions, using a local ele-
ment representation offers exceptional flexibility in obtaining
accurate wavefunctions, since discretization can be done to
systems of arbitrary shapes. In our calculation, we employ
Hermite interpolation polynomials [69] in which the varia-
tional parameters are the wavefunction and its first deriva-
tive values at each node. Using the Hermite interpolation
polynomials guarantees the function and the first derivative
continuity throughout the domain �.

To impose the antisymmetric property of fermions, the
following scheme is used. Let iel be an element in the dis-
cretized parameter space. Since both particles share the same
physical space, for a given element iel there exists a distinct
element iel ′ related to it through the mirror reflection across
the mutual axis of the parameter space [see Fig. 1(b)]. For a
spatial wavefunction to be symmetric (or antisymmetric), we
demand that within iel ′, the local representation satisfies the
relation

ψ iel ′ (x1, x2) = ±ψ iel (x1, x2) = ±
∑

ji

ψ jiNj (x1)Ni(x2), (8)

where the ± sign corresponds to a symmetric or antisymmet-
ric spatial wavefunction, respectively. Note that this procedure
also reduces the number of variational parameters by half,
since the nodal values associated with iel ′ are now related to
those of iel .

The integral equation in Eq. (6) is then evaluated within
each element using Eq. (7), and the total integral is found
by summing over all elements. In Fig. 1(c), we show an
example of an element in the 2D parameter space. Here the
variational parameters are the wavefunction and their first
derivative values that are corresponding to the vertices of
the square element. A more detailed discussion of the finite
element analysis and the Hermite interpolation polynomials
can be found in Refs. [69–73].

Minimization of the functional integral in Eq. (6) with re-
spect to 	† (a row vector containing all variational parameters
corresponding to the function ψ∗) results in a generalized
eigenvalue problem of the form

(K − EU)	 = 0, (9)

where K is the coefficient matrix corresponding to the kinetic
and potential energy terms (first three terms) in Eq. (6), U
is the coefficient matrix associated with overlap integrals
corresponding to the coefficient E in Eq. (6), and 	 is the
column vector containing all the nodal values to be deter-
mined. Once the nodal values are obtained by solving the
generalized eigenvalue problem in Eq. (9), the wavefunction
at any location can be calculated through reinterpolation using
Eq. (7).

Being a variational method based on geometry discretiza-
tion, the accuracy of this scheme in computing wavefunctions
is geometry independent and can be applied to QDs of any
arbitrary shape, with any desired level of accuracy achievable
by suitable mesh refinement.

Within the scope of this paper, we consider strictly one-
dimensional confinement, since the lateral effects are negli-
gible for QDs formed through the nanowire heterostructures.
Justification for the reduction of Coulomb integrals to one
dimension is given in the Supplemental Material [74] (see,
also, Refs. [75,76] therein). We note that special attention is
needed to evaluate the Coulomb contribution to the integral
since it has singularities at x1 = x2. We propose an efficient
way to numerically evaluate such integrals using multiple
orders for Gauss quadratures, and this is discussed in the
Supplemental Material [74] (see, also, Refs. [75–77]).

FIG. 2. Schematic of a one-dimensional double quantum dot
system.
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TABLE I. Eigenvalues (measured in eV) of the first eight states of a symmetric double QD are tabulated for several separation distances
d between the QDs. The width of each quantum dot is w1 = w2 = 15 nm. States are labeled with a pair of quantum numbers (α, β ). The
Coulomb energy increases with decreasing distance, as seen in the table.

(α, β ) d → ∞ d = 30 nm d = 10 nm d = 6 nm d = 4 nm d = 0 nm

(1,1) 0.03381551453605 0.06597445297395 0.09117827187267 0.10132363931689 0.10766511883166 0.12308265436399
0.03381551453605 0.06597445297393 0.09117827187810 0.10132363932279 0.10766511891643 0.12306768828638

(1,2) 0.08413370110643 0.11633416555783 0.14217840394755 0.15312310251314 0.16020213212699 0.17196886060204
0.08413370110643 0.11633416555779 0.14217840403115 0.15312310253815 0.16020213239190 0.17190045732112
0.08413370110643 0.11704336845825 0.14608683015824 0.15918731650000 0.16777544459370 0.18441352939932
0.08413370110643 0.11704336845822 0.14608683024372 0.15918731661314 0.16777544608388 0.18438741290837

(2,2) 0.13445188767681 0.16741965485019 0.19756820520027 0.21209234809771 0.22187638627095 0.22786101607874
0.13445188767681 0.16741965485014 0.19756820550444 0.21209234852245 0.22187639053093 0.22790743753463

III. ENERGY CALCULATIONS FOR
TWO-PARTICLE SYSTEMS

Consider a system of two electrons in the conduction band
of symmetric GaAs/GaxAl1−xAs double QDs. A realistic
implementation of such a system can be a heterostructure
nanowire composed of alternative layers of GaAs and GaAlAs
stacked onto each other, as shown in Fig. 2. For a stoichio-
metric ratio x = 0.37, the potential depth is V = 0.276 eV,
the effective mass of the electron m∗

in = 0.0665 me inside, and
m∗

out = 0.0858 me outside the dots [78], where me is the rest
mass of an electron. These material properties are considered
for all calculations presented in this paper.

In Table I, eigenvalues of the first eight states in a symmet-
ric double QD are presented for different separation distances
d . We observe that as d → ∞, we obtain two- and fourfold
degeneracies. This can be explained as follows.

For two-electron systems, the simplest approximation of
the spatial wavefunction is the traditional Slater determinant
representation with single-particle wavefunctions, given by

|ψspatial〉 =
⎧⎨
⎩

1√
2

[
|a〉1 |b〉2 ± |b〉1 |a〉2

]
, a 	= b

|a〉1 |a〉2 , a = b,
(10)

where |a〉, |b〉 are the single-particle wavefunctions for the
symmetric double QD potential, and the subscript is the
particle index. The total wavefunction is given by |	〉 =
|ψspatial〉 ⊗ |Sspin〉. Spatial wavefunctions in Eq. (10) are asso-
ciated with the symmetric or antisymmetric spin parts |Sspin〉
so the total wavefunction |	〉 is antisymmetric under the
exchange operator P̂ . Note that the above representation leads
to only singlets (for a = b) and twofold degenerate states (for
a 	= b).

Here, we derive a representation which is accurate at the
asymptotic limit of separation distance d between the QDs,
and explain the degeneracy pattern observed in Table I. Let
S(n, i) = {|n, α〉i | α ∈ N} be the basis set for an electron
in a single QD, where n = 1, 2 is the QD index, α is the
single-particle quantum number, and i = 1, 2 is the particle
index. In the asymptotic limit, the Hamiltonian commutes (i)
with the exchange operator P̂ , which permutes the particle
indices, and (ii) with Ŵ , which permutes the indices of QDs.
As d → ∞, the Coulomb interaction will vanish and the
electrons are bound to one of the QDs with zero tunneling
probability to the other dot. Hence, we express the spatial part
of the wavefunction as linear combinations of the eigenstates
of S(n, i) given by

|ψ+
s 〉 = 1

2
√

1 + δαβ

[(|1, α〉1 |2, β〉2 + |1, β〉1 |2, α〉2) + (|2, α〉1 |1, β〉2 + |2, β〉1 |1, α〉2)], (11)

|ψ−
s 〉 = 1

2
[(|1, α〉1 |2, β〉2 − |1, β〉1 |2, α〉2) − (|2, α〉1 |1, β〉2 − |2, β〉1 |1, α〉2)], (12)

|ψ+
a 〉 =1

2
[(|1, α〉1 |2, β〉2 − |1, β〉1 |2, α〉2) + (|2, α〉1 |1, β〉2 − |2, β〉1 |1, α〉2)], (13)

|ψ−
a 〉 = 1

2
√

1 + δαβ

[(|1, α〉1 |2, β〉2 + |1, β〉1 |2, α〉2) − (|2, α〉1 |1, β〉2 + |2, β〉1 |1, α〉2)], (14)

where P̂ |ψ±
s 〉 = |ψ±

s 〉, P̂ |ψ±
a 〉 = − |ψ±

a 〉, Ŵ |ψ±
s 〉 =

± |ψ±
s 〉, and Ŵ |ψ±

a 〉 = ± |ψ±
a 〉. As before, spatial

wavefunctions in Eqs. (11)–(14) are associated with the
symmetric or antisymmetric spin parts |Sspin〉 so |	〉 is
antisymmetric under the exchange operator P̂ . If α 	= β,
then the four wavefunctions in Eqs. (11)–(14) form a set of
fourfold degenerate states. If, on the other hand, α = β, then
Eqs. (12) and (13) vanish, resulting in a doublet.

For a finite distance d between the QDs, the Coulomb
interaction splits these degeneracies and the representations in
Eqs. (11)–(14) are no longer exact. In Table I, we have classi-
fied the eigenvalues in terms of the quantum numbers (α, β ).
In Figs. 3(a)–3(f), we have plotted the wavefunctions obtained
through the variational method, coordinate representations of
the asymptotic wavefunction |ψ+

s 〉, and their difference for the
quantum numbers (1,1) and (1,2). From Figs. 3(c) and 3(f), we
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FIG. 3. Wavefunctions obtained through our method for states (a) (1,1) and (d) (1,2) are shown for the separation distance d = 4 nm
between the QDs. Wavefunctions obtained through the asymptotic representation in Eq. (11) for states (1,1) and (1,2) are shown in (b) and (e),
respectively. The difference between the two representations are plotted in (c) and (f). The width of each quantum dot is w1 = w2 = 15 nm.

see that the disagreements are significant as a consequence
of the Coulomb interaction, which impact the amount of
spatial entanglements. In the following section, we calculate
the entanglement in double QDs and discuss the resonances
observed in the spectrum.

IV. SPATIAL ENTANGLEMENT IN QUANTUM DOTS

Any state that describes a system of identical fermions
has to obey the antisymmetry under the exchange operator.
This makes the state necessarily nonseparable, and hence
entangled. The lowest level of entanglement is provided by
the use of single-particle states in a Slater determinant form
of the wavefunction [79–85]. This level of entanglement may
be thought of as a baseline with which a more complete calcu-
lation of the entanglement can be compared. In the following,
we quantify entanglement by measuring the linear entropy of
the system. It is known in the literature that the linear entropy
is a good indicator of entanglement [29,40,41,83,84] and can
be computed efficiently even for a very large Hilbert space.
The linear entropy is defined as

E� = 1 − Tr
(
ρ2

1

)
, (15)

where ρ1 is the reduced density matrix. Here ρ1 is obtained by
taking the trace over the second particle,

ρ1 = Tr2(ρ), (16)

where ρ is the density matrix of the whole system. The spatial
and spin components are separable, and the density matrix can

be written as a tensor product of each contribution,

ρ = ρspatial ⊗ ρspin, (17)

and

Tr(ρ2
1 ) = Tr

(
ρ2

spatial 1

)
Tr

(
ρ2

spin 1

)
. (18)

Since the trace of the spin and spatial parts are entirely
separable, we can consider them separately. For a two-electron
system, the spin contributions are readily evaluated as

Tr(ρ2
spin1) =

{
1, |↑↑〉 or |↓↓〉
0.5, 1√

2

[ |↑↓〉 ± |↓↑〉 ]
.

(19)

Thus the contribution of the spin part to the total trace of ρ2
1

is a constant. Hence, we lay it aside from our consideration
of the spatial entanglement. In the following, we consider the
measure of spatial entanglement to be

E� = 1 − Tr
(
ρ2

spatial 1

)
= 1 −

∫ +∞

−∞

∫ +∞

−∞
| 〈r′

1| ρspatial 1 |r1〉 |2dr′
1dr1. (20)

Electron distributions and the evolution of the spatial en-
tanglement with varying parameters are found to be very
analogous for symmetric and antisymmetric partners, and a
detailed comparison of the entanglement properties of sym-
metric and antisymmetric states are given in the Supplemental
Material [74]. Therefore, for further analysis in this paper, we
only discuss the results for the symmetric states; a similar
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FIG. 4. Spatial entanglement for the first five eigenstates of two electrons in a symmetric double QD system is plotted as a function of
separation distance d , for four different widths of the QDs: 10 nm, 15 nm, 20 nm, and 25 nm. The entanglement values saturate to either 0.5 or
0.75 in the limit d → ∞.

conclusion can be drawn about the entanglement properties
of the antisymmetric partner states as well.

A. Symmetric double quantum dot

In Figs. 4(a)–4(f), spatial entanglement of a double dot is
plotted as a function of d . We observe that as d → ∞, spatial
entanglement E� saturates to either 0.5 or 0.75. In fact, in the
asymptotic limit we see that

E� =
{

0.5, α = β

0.75, α 	= β,
(21)

as shown in Figs. 4(a)–4(f). This observation can be confirmed
by computing analytically E� with the asymptotic forms of the
wavefunctions presented in Eqs. (11)–(14) (see Appendix A).

One can also interpret this result from a probabilistic point
of view by considering the behavior of the bound states in
a symmetric system of two indistinguishable particles. In the
asymptotic limit, each particle is located in a different QD,
unaffected by the presence of the other particle. For α = β,
there is no ambiguity as to which single-particle state the
particles are occupying. However, due to indistinguishability
of the electrons and the QDs being symmetrical, there is
only 0.5 probability of where each particle is located—each
electron can either be in QD 1 or 2, while the second electron
is then located in the other QD. This 0.5 certainty is reflected
in the measurement of the entanglement. On the other hand,
if α 	= β, then there is an additional uncertainty; we not only
have 50% uncertainty on where a particle is located, but also
50% on the particle state within each dot (state α or β). There-
fore, the amount of certainty is 0.5 × 0.5 = 0.25; the amount
of entanglement is therefore 1 − 0.25 = 0.75. Note that the
interpretation and the asymptotic values of entanglement are

valid for any type of QD irrespective of dimensionality and
geometry, as long as the two QDs are identical to each other.
The lower bound for the spatial entanglement is to be 0.5.
This is due to electrons being indistinguishable, and hence the
wavefunction is an eigenfunction of the operator P̂ . However,
if the electrons are distinguished through their spin directions,
then the total entanglement value vanishes.

In Figs. 4(a)–4(c), we see that as d → ∞, the entanglement
values of the first three bound states monotonically reach
the saturation values. The situation for higher states is more
complex, as can be seen in Figs. 4(d)–4(f). For states 3 and
5, the entanglement reaches a maximum, while for state 4 it
drops to a minimum, before approaching the corresponding
asymptotic values. Such extrema in the behavior of the entan-
glement are a result of two major competing effects in the
system: (i) wavefunction overlapping and (ii) the Coulomb
repulsion. As the QDs are brought into proximity, single-
particle wavefunctions of the two electrons localized in these
dots can overlap each other. At the same time, the repulsive
Coulomb interaction between the electrons becomes stronger
at closer distances and opposes such overlap of the wavefunc-
tions. The influence of these effects is visible for entanglement
values of excited states (states 3, 4, and 5), where a larger
probability of finding the electron is distributed outside the
QDs. Then the wavefunction of one electron is susceptible
to interactions with the wavefunction of the electron in the
neighboring QD. Due to these competing effects, the entan-
glement of the system develops extremal points, indicating
a switch in the roles of the two effects. When the QDs are
placed far apart, both the Coulomb interaction and the overlap
of single-electron wavefunctions become insignificant, and
the entanglement reaches a saturation value at the asymptotic
limit.
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FIG. 5. Spatial entanglement values for the first eight eigenstates of two electrons in a nonsymmetric double QD are plotted as a function
of width of the second QD w2 [see inset in (a)]. Width of the first QD is w1 = 15 nm and kept constant for all calculations. The distance
between the QDs is d = 10 nm. Here, the resonance peaks (i) Mi are due to the mirror symmetry of the system, (ii) Ri j are due to avoided level
crossings (anti crossings) between states i and j, and (iii) Ei j are due to the formation/dissolution of electron clusters.

V. ASYMMETRIC SYSTEMS

In this section, we discuss how asymmetry in the configur-
ing potential affects the entanglement. Consider a system of
asymmetric double QDs, in which the width of the first QD
is fixed at 15 nm and the width of the second QD is varied.
The distance between the QDs is held constant at 10 nm. The
entanglement of the ground state and the next eight excited
states as a function of the second QD’s width w2 are plotted in
Figs. 5(a)–5(i). In Fig. 5(a), we see that there is only a small
variation in the amount of entanglement of the ground state
with w2. This is because both electrons are in the ground state,
and the change in w2 will not lead to any interaction with the
higher energy levels. In other words, the electron distribution
and the entanglement values are not perturbed significantly
with changing w2 due to the strong electron confinement
within each QD.

Effects of asymmetry are substantially more significant for
the excited states. When the potential has a mirror symmetry,
we observe resonances in the entanglement values for some

excited states labeled by M1, M2, M4, M5, and M6 in Fig. 5.
For example, as soon as the symmetry is broken either by
increasing or decreasing w2, the entanglement for the first
excited state drops rapidly from 0.75 to 0.5 [see Fig. 5(b)].
This is due to QDs no longer being identical, hence the
ambiguity in assigning single-particle states is removed. This
effect can be seen clearly in the evolution of the wavefunction
of the first excited state as the dot width w2 is varied. As
shown in Fig. 6(a), when the potential is symmetric (w1 =
w2 = 15 nm), the wavefunction is an eigenstate of both the
exchange operators P̂ and Ŵ as discussed in Sec. III. When
the symmetry is broken, the wavefunction is only an eigen-
state of P̂ [see Fig. 6(b)], and the asymptotic representation is
now given by

|φ±〉 = 1√
2

( |1, α〉1 |2, β〉2 ± |2, β〉1 |1, α〉2

)
. (22)

Note that in the above equation, the indexes α and β are now
specifically assigned to QD 1 and 2, respectively.
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FIG. 6. Wavefunctions of the first excited state are plotted for
(a) a symmetric system (w1 = w2) and (b) when the symmetry is
broken (w1 	= w2). Axes x1 and x2 are the coordinates of the first
and second electrons.

Since the states that an electron can have is fixed depend-
ing on which QD it is confined, the ambiguity in choosing
between α and β is removed, thereby dropping the entan-
glement value from 0.75 toward 0.5. A similar behavior
[see Figs. 5(c), 5(e)–5(i)] can be seen in any state whose
asymptotic value for the entanglement saturation is 0.75 in
the case of symmetric QDs.

A. Entanglement resonances due to avoided level crossings

In Fig. 5, we observe several entanglement resonances even
when w1 	= w2. These resonances are due to avoided level

crossings of the eigenstates. For example, in Figs. 5(c) and
5(d), we observe an entanglement resonance labeled as R23

at w2 = 28.43 nm for the second and third excited states,
respectively. This is due to the interaction between adjacent
states 2 and 3 which undergo an avoided level crossing at
R23. After the resonance, wavefunctions for these two adjacent
states evolve into one another. In Fig. 7, we have plotted
the wavefunction for states 2 and 3 before, at, and after the
resonance R23. We observe that the wavefunction of state 2
[Fig. 7(a)] transforms into that of state 3 [Fig. 7(c)] after the
resonance, and vice versa. Around R23, wavefunctions of both
these states are heavily deformed due to maximal interaction
between these adjacent states, as seen in Figs. 7(b) and 7(e).
Such intermixing results in a high level of entanglement.
Similar mechanisms will explain the rest of the resonances
labeled as Ri j , which indicate the interaction between the
excited states i and j. For instance, the resonance R34 shown
in Figs. 5(d) and 5(e) is due to avoided level crossing between
the excited states 3 and 4. Also, since asymmetry in the system
can be created both by increasing or decreasing w2, similar
resonances are observed on either side of the symmetric width
w2 = 15 nm.

Eigenvalues for the first nine bound states are plotted as a
function of w2 in Fig. 8. Avoided level crossings are seen at
the entanglement resonance positions Ri j that are observed in
Fig. 5. We note that around w1=w2, the spectrum is almost
doubly degenerate due to the mirror symmetry of the system.
This is distinct from the avoided crossings observed in the
asymmetric systems.

FIG. 7. Wavefunctions of the second and third excited states are plotted before, at, and after the resonance R23, observed in Fig. 5(c).
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FIG. 8. Eigenvalues of the first nine bound states are plotted as
function of w2. Resonances corresponding to avoided level crossings
are marked by circles, while splittings due to symmetry breaking are
marked by squares. An instance of avoided level crossing is shown
in the inset. Ri j and Ei j are the labels corresponding to the resonance
peaks observed in Fig. 5.

B. Electron cluster formation

A special case of avoided level crossing occurs when
accompanied with the formation/dissolution of electron clus-
ters, and are observed as additional maxima in the entangle-
ment values. We can tune the width, separation distance, and
the potential depth of the QDs so the two electrons are in
the same QD, forming a “cluster.” Such two-electron clusters
can also be formed at higher excited states of double QDs.
In Fig. 9(a), we have shown an occurrence of a two-electron
cluster in the seventh excited state for a system of symmetric
double QDs. We see that the cluster has an equal probability
distribution across both QDs due to mirror symmetry of the
potential. However, in case of asymmetric QDs, this mirror
symmetry is lost. As seen in Fig. 9(b), the cluster will occupy
only QD 2 out of the two QDs.

To elaborate further, we note that the x1 (x2) axis repre-
sents the position of the first (second) electron. Following
the potential pattern of the QDs in Fig. 9(a), we see that
both electrons have probability distribution in either of QDs.
This is in contrast with, for example Fig. 6, where we see
that if the first electron is in the first QD, then the second

FIG. 9. Wavefunctions of the seventh excited state when (a) the
QDs are identical, w1 = w2 = 150 nm, and (b) when symmetry is
broken with w1 = 150 nm, w2 = 150.03nm are plotted. We clearly
observe the occurrence of a two-electron cluster.

electron will be in the second QD, and vice versa. Formation
of such two-electron clusters leads to additional resonances in
the spatial entanglement. These resonances are classified into
two categories: (1) resonance due to mirror symmetry of the
potential and (2) local maxima due to the evolution of two
separate electrons into a two-electron cluster and vice versa.

1. Resonance due to mirror symmetry of the potential

We have observed that the seventh and eighth excited states
have an electron cluster occupancy. For example, this is seen
for the seventh state in Fig. 9. In Figs. 5(h) and 5(i), we have
plotted the entanglement values for these states as a function
of the second dot width w2. We see that breaking the mirror
symmetry of the system while going away from the symmetric
dot width w2 = 15 nm, the entanglement value drops from
0.75 to 0.5. These resonances are labeled as M7, and M8 in
Figs. 5(h) and 5(i), respectively. This can be explained as
follows: When the electron cluster is in a single QD for the
case of w1 	= w2, the entanglement value E� is close to 0.5.

For w1 = w2, the probability of finding the electron cluster
is distributed equally in each QD, and this will contribute an
additional 50% uncertainty in the particle occupation within
either dot. Hence, we observe an increase in the entanglement
value to 0.75.

2. Transition between two separate electrons
to a two-electron cluster

In the case of asymmetric double QDs, the electron cluster
can be formed at lower energies. Transition between a state
with two separate electrons to a two-electron cluster can be
deduced through the occurrence of local resonance maxima
in the entanglement. In Figs. 5(e)–5(g), such resonances are
labeled as E45 and E56, which indicates the avoided level
crossings between the neighboring states 4 and 5, and 5 and 6,
respectively. In Fig. 8, we have shown these crossings between
the eigenvalues.

Wavefunctions for the excited states 4 and 5 around the
resonance E45 are plotted in Figs. 10(a)–10(f). After the
resonance E45, the two-electron cluster occupancy is favored
over the single-electron localization within each QD. Hence
it occurs at a lower energy. Therefore, the sharp peak at
E45 occurs along with the formation/dissolution of electron
clusters as displayed in Fig. 10. For example, in Fig. 5(e), state
4 has two separate electrons in each QDs before the resonance
E45. Whereas, after the resonance, state 4 will have a two-
electron cluster occupancy. Analogous mechanisms explain
the resonance E56 in Fig. 5(f), where we see that after the
resonance, state 5 has a two-electron cluster occupancy.

VI. RESONANCES IN ENTANGLEMENT WITH APPLIED
EXTERNAL ELECTRIC FIELDS

In this section, we study the entanglement properties in
symmetric double QDs with an applied constant electric field
E. The additional term in the Hamiltonian is given by

H ′(x) = |e|Ex. (23)

The “ramp” potential breaks the mirror symmetry of the
system. The entanglement of the two electrons as a function
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FIG. 10. Wavefunctions of the fourth and fifth excited states are plotted before, at, and after the resonance E45, observed in Fig. 5.

of �V = |e|Ed is shown for the third, fourth, and fifth states
in Figs. 11(a)–11(c).

Although the mechanism for creating asymmetry is differ-
ent, phenomena similar to the case of the asymmetric QDs,
discussed in Sec. V, are observed. Spatial entanglement in
states with α 	= β decreases rapidly with the applied elec-
tric field [see Figs. 11(b) and 11(c)], and resonant behavior
associated with avoided level crossings are also present [see
Figs. 11(a)–11(c)]. Electron cluster formation occurs with the
applied field as the QD potential profile is tilted. In Figs. 11(a)
and 11(b), the sharp resonance peak F34 is formed due to the
avoided level crossing between the state with two separate
electrons (state 3), and the state that corresponds to an electron
cluster (state 4). A similar mechanism explains the formation

of the entanglement resonance F45 in Figs. 11(b) and 11(c),
which is formed due to multiple avoided level crossings
between states 4 and 5.

Since one can vary the magnitude of the field with rea-
sonable ease in experiments, the occupancy of electrons in
each QD can be controlled and varied effectively by external
electric fields without having to refabricate the width of QDs.
Moreover, since resonances associated with transitions from
a double to a single occupancy (and vice versa) are extremely
sharp, entanglement measurement is an excellent indicator for
the electron cluster formation/dissolution.

Sensitivity of the system to small changes in symmetry
facilitates the use of very small electric fields to initiate the
formation of electron clusters, given that the system is already

FIG. 11. Spatial entanglement of excited states 3, 4, and 5 for two electrons in a symmetric double QDs is plotted as a function of applied
potential �V . The distance between QDs are kept constant at 10 nm, and the width w1 = w2 = 15 nm. Here, the peak Fi j corresponds to an
avoided level crossing between the excited states i and j.
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FIG. 12. Spatial entanglement of state 5 for two electrons in
an asymmetric double QDs is plotted as a function of applied
potential �V . The dot widths are w1 = 15 nm, w2 = 18.6 nm, and
the separation distance is d = 10 nm.

near the resonance due to the inherent asymmetry in the
potential profile. This can be done by designing two QDs
having different widths in such a way that the system is close
to a resonance, and a weak electric field can then initiate this
transition. The process can be reversed efficiently by reversing
the direction of the electric field. To illustrate this, consider
the resonance E56 in Fig. 5(f). The width w1 of the first QD
is 15 nm and w2 = 18.6 nm. Now instead of achieving the
resonance by slowly increasing w2, we have introduced a
small E-field. The change in entanglement of the system by
varying the magnitude of E is shown in Fig. 12. As can be
noted from the range of the x-axis label in Fig. 12, due to the
built-in asymmetry of the system, the required electric field
to reach resonance, and hence to create an electron cluster is
substantially reduced.

VII. CONCLUDING REMARKS

We have employed a variational formalism for calculat-
ing the coordinate-space representation for the two-particle
wavefunctions. Finite-element discretization based on the
variational principle provides an accurate eigenspectrum for
any complex geometry. Singularities arising while evaluating
the Coulomb integral are circumvented using multiple Gauss
quadrature of different orders. This scheme can be extended
to study two-electron quantum confinements in higher dimen-
sions for geometrically complicated potential distribution.

We obtained the solutions for two electrons in double
QDs, and studied the spatial entanglement properties of their
wavefunctions. We investigated the dependence of the energy
spectrum and the spatial entanglement on various geometrical
parameters. We derived exact asymptotic wavefunctions to ex-
plain the degeneracy spectrum and universal saturation values
for the spatial entanglement as separation distance d → ∞.
These saturation values were found to be 0.5 for quantum
numbers α = β and 0.75 for α 	= β.

We observed resonances in the entanglement values for
the first time in both symmetric and asymmetric QDs. These

entanglement resonances are found as a consequence of (a)
breaking the mirror symmetry of the potential, (b) avoided
level crossings between the excited states, or (c) due to the
interaction between states supporting single-electron and the
two-electron clusters. We note that the spatial entanglement
value is a good indicator for the formation and dissolution of
such electron clusters.

Further, we showed that a precise tuning of the entangle-
ment values is feasible with an applied electric field. Since
the magnitude of applied field can be tuned readily in ex-
periments, the occupancy of electrons in each QD can be
controlled and varied effectively. Our results dictate that when
several QDs are in proximity, spatial correlation between
electrons in the system becomes significant. The ability to
tune the entanglement values with external parameters unveils
avenues for forming and manipulating quantum bits.

In this paper, we have focused on the theory of spatial
entanglement in QDs. Preliminary work on quantum wires
and the two electron spatial entanglement in them shows very
similar trends. These studies of spatial entanglement will be
reported separately in the near future.
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APPENDIX A: ENTANGLEMENT IN DOUBLE QDS
IN THE ASYMPTOTIC LIMIT

In this Appendix, we show the spatial entanglement, E�,
for a symmetric double QD as d → ∞. In the asymptotic
limit, the two-particle states are represented by one of the
four wavefunctions in Eqs. (11)–(14). Here we calculate E�

for Eq. (11), but similar results can be derived for the other
three representations. The reduced density matrix for |ψ+

s 〉 in
Eq. (11) is given by

ρ1 = 1

4(1 + δαβ )

∫
〈r2|ψ+

s 〉 〈ψ+
s |r2〉 dr2

= 1

4(1 + δαβ )

∫
(〈r2|2, β〉2 |1, α〉1 + 〈r2|2, α〉2 |1, β〉1

+ 〈r2|1, β〉2 |2, α〉1 + 〈r2|1, α〉2 |2, β〉1)

× (〈2, β|r2〉2 〈1, α|1 + 〈2, α|r2〉2 〈1, β|1
+ 〈1, β|r2〉2 〈2, α|1 + 〈1, α|r2〉2 〈2, β|1)dr2. (A1)

Then

ρ1 = 1

4(1 + δαβ )
[|1, α〉 〈1, α| + |1, β〉 〈1, β| + |2, α〉 〈2, β|

+ |2, β〉 〈2, β| + δαβ (|1, α〉 〈1, β| + |1, β〉 〈1, α|
+ |2, α〉 〈2, β| + |2, β〉 〈2, α|)]. (A2)

In the above expression, the indices are dropped on the bras
and kets, since all of them correspond to the first electron. The
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FIG. 13. Spatial entanglement for the excited states 6, 7, and 8
are plotted for asymmetric double parabolic QDs as a function of w2.
The width w1 is kept constant at 25 nm. Here, the resonance peaks
(i) Mi are due to the mirror symmetry of the system, (ii) Ri j are due
to avoided level crossings between states i and j, and (iii) Ai are due
transition between different mode numbers.

trace Tr(ρ2
1 ) will provide the values

Tr(ρ2
1 ) =

∫
| 〈r′

1|ρ1|r1〉 |2dr′
1dr1

= 1

16(1 + δαβ )2

∫
| 〈r′

1|1, α〉 〈1, α|r1〉
+ 〈r′

1|1, β〉 〈1, β|r1〉 + 〈r′
1|2, α〉 〈2, α|r1〉

+ 〈r′
1|2, β〉 〈2, β|r1〉 + δαβ (〈r′

1|1, α〉 〈1, β|r1〉

+ 〈r′
1|1, β〉 〈1, α|r1〉 + 〈r′

1|2, α〉 〈2, β|r1〉
+ 〈r′

1|2, β〉 〈2, α|r1〉)|2dr′
1dr1. (A3)

Note that we have the relation

〈i, α| j, β〉 = δi jδαβ, (A4)

since single-particle states α and β are orthonormal, and
bound-state wavefunctions of one QD do not overlap with the
other in the asymptotic limit. Therefore, with some rearrange-
ments, the expression in Eq. (A3) is given by

Tr(ρ2
1 ) =

{
0.5, α = β

0.25, α 	= β.
(A5)

Hence, the amount of entanglement is given by

E� = 1 − Tr(ρ2
1 ) =

{
0.5, α = β

0.75, α 	= β,
(A6)

which is consistent with the qualitative probabilistic argu-
ments presented in Sec. IV A.

APPENDIX B: PARABOLIC FINITE QUANTUM DOTS

In this Appendix, we investigate the spatial entanglement
in double parabolic QDs. The depth of each QD is chosen to
be 276 meV, the width w1 is fixed at 25 nm, and the width w2

of the second QD is varied. The spatial entanglements for a
selected number of excited states are shown in Figs. 13(a)–
13(c). Avoided level crossings are observed at the resonance
positions R78 and R89, as shown in Figs. 13 and 14. Reso-
nances due to breaking of the mirror symmetry of the potential
are observed at M6, M7, and M8, located at w2 = 25 nm as
shown in Fig. 13.

However, unlike in rectangular finite dots, here in parabolic
dots there are many additional entanglement maxima that are
not associated with any crossing of states. These maxima
are labeled by Ai with i being the state index, such as A7

and A8, as can be seen in Fig. 13. In double parabolic QDs,

FIG. 14. Eigenenergies for two electrons in double parabolic
QDs are plotted as a function of width of the second dot, w2. The
first dot width is given by w1 = 25 nm, and dot depths are 276 meV.
Avoided level crossings are observed at R78 and R89, and their
resonance peaks can be seen in Fig. 13.
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if the Coulomb interaction is absent, the eigenenergy E ∼
(n ω1 + m ω2), where (n, m) are mode numbers, and ω1, ω2

are angular frequencies. We can achieve the same eigenenergy
through different choices of mode numbers (n, m). Around
these resonances, we observe transitions between different
choices of mode numbers (n, m), and their intermixing leads
to maxima in the entanglement. For example, at resonance A7,
the transition occurs between modes (0,3) and (1,2).

In Fig. 15, we plot the entanglement values for selected
states in a symmetric double parabolic dot as a function
of applied potential �V . We observe several avoided level
crossings (see inset in Fig. 15) that are manifested through a
stepwise behavior in the entanglement values. These stepwise
transitions are labeled as Ti j . The labeling Ti j represents
the interactions between states i and j. For example, before
resonance T45, state 4 has an entanglement value that is
close to 0.5, and state 5 has a value close to 0.75. Whereas,
after the avoided level crossing between states 4 and 5, their
entanglement values are interchanged to have a stepwise
behavior in the case of parabolic QDs. These characteris-
tics may find applications in designing quantum bits, where
the entanglements can be tuned through an external electric
field.

FIG. 15. Spatial entanglement of excited states in symmetric
double parabolic QDs in an external electric field is plotted as a
function of the applied potential �V . The stepwise transitions in
the entanglement are due to the avoided level crossing between the
adjacent states.
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