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Split-off states in tunnel-coupled semiconductor heterostructures for ultrafast modulation of spin
and optical polarization

I. V. Rozhansky ,1,2 V. N. Mantsevich ,3 N. S. Maslova,3 P. I. Arseyev,4 N. S. Averkiev,1,2 and E. Lähderanta2

1Ioffe Institute, St. Petersburg 194021, Russia
2LUT University, FI-53851 Lappeenranta, Finland

3Physics Department, Quantum Technology Center, Lomonosov Moscow State University, 119991 Moscow, Russia
4P.N. Lebedev Physical Institute, 119991 Moscow, Russia

(Received 15 November 2019; revised manuscript received 3 January 2020; published 29 January 2020)

We present a theoretical analysis of the split-off states emerging due to a tunnel coupling between a remote
bound state and a semiconductor quantum well (QW). The on-site Coulomb repulsion and the spin splitting of the
bound state have been considered. The split-off states emerge in the band gap of the QW and reveal themselves
as two solitary peaks in the photoluminescence (PL) from the QW. The peaks have opposite circular polarization
and their spectral position strongly depends on the tunnel coupling strength. We suggest a mechanism of ultrafast
PL polarization switching by means of electrical modulation of the tunnel coupling by an external gate. The
obtained results open a new possibility for the spin and optical polarization control in nanoscale systems.
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I. INTRODUCTION

Application of electron spin in spintronic devices and for
data storage requires formation and precise manipulation of
spin polarization [1–10]. A common and effective way to
probe spin polarization is to detect circular light polarization
of luminescence. However, it has been realized rather recently
that this spin to light coupling has another advantage useful
for practical applications. While the characteristic time of a
radiative recombination in a semiconductor usually lies in the
range of nanoseconds, the polarization of the light can be
modulated much faster and at a low energy cost. The idea
underlies the ongrowing interest in semiconductor spin lasers
[11,12], which are considered as a promising concept to boost
optical data transmission by ultrafast spin and optical polar-
ization dynamics [12,13]. Thus, efficient and fast mechanisms
of creation and control of the electron spin polarization in
semiconductor heterostructures are of a great importance not
only as an essential part of semiconductor spintronics [14,15],
but, in particular, for increasing the speed and efficiency of
optical information processing.

Significant progress has been made in studies of station-
ary spin-polarized carriers transport in tunnel junctions in
the presence of spin-orbit and exchange interaction [16,17].
Spin-polarized current sources that use nonmagnetic materials
are particulary attractive as they avoid the presence of stray
magnetic fields that may cause undesirable effects on the spin
transport. For example, spin-filter devices capable of generat-
ing spin-polarized current without using magnetic properties
of materials were proposed in Refs. [18,19].

A notably different mechanism of the spin injection is
possible in heterostructures with a QW and remote bound
states at magnetic ions separated by a thin spacer [20–23]. In
such hybrid heterostructures the magnetic properties and spin
polarization of the carriers in the QW can be controlled via
the spacer thickness and shape [24–26]. Such systems reveal

the mechanism of dynamic spin polarization of electrons in
the QW due to the spin-dependent tunneling between the
semiconductor QW and the spin-split bound state, which was
demonstrated experimentally [27,28] and analyzed theoreti-
cally [7,8,29]. A control of the polarization sign by pumping
the QW with a laser pulse matching the one of the bound state
spin sublevels has been suggested [8].

While the tunnel hybridization of a QW with spin-split
bound state gives rise to nonstationary spin and optical po-
larization, there is another stationary effect related to the
spin-dependent hybridization which is very different from
the nonstationary effects discussed in Refs. [7,8,29]. Along
with the modification of the 2D continuum spectra the hy-
bridization leads to formation of the split-off states in the
band gap of the QW. A role of the split-off states in the
photoluminescence from the QW and their potential impact
on the spin polarization in the hybrid structures has not been
considered so far.

In this paper we analyze theoretically the emergence of
circular polarized PL in the QW due to the formation of
split-off spin polarized localized states in the QW band gap.
These states are formed due to the interaction between the 2D
electrons in the QW and localized electrons in the spin-split
energy levels of the remote bound state. Our results show the
possibility to obtain fully circularly polarized PL signal with
the split-off states and to control the sign of electrons spin
polarization in the QW.

II. THEORETICAL MODEL

Let us consider a model system formed by a QW with
one size quantization subband coupled to a spin-split bound
state with an energy ε0 separated from the QW by a tunnel
barrier. QW is optically or electrically pumped with unpolar-
ized nonequilibrium 2D electrons with the energies εk , where
k is the in-plane wave vector. The model system shown in
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FIG. 1. Scheme of the hybrid system semiconductor QW with
remote spin-split bound state. The split-off states are shown in the
band gap of the QW. The energy scale is schematic, in semiconductor
heterostructures W � EF .

Fig. 1 corresponds to the experimentally studied (Ga,Mn)As
heterostructures [27], in which the bound state is formed by
Mn ions in interstitial positions providing donorlike states.
The remote Mn doping layer is located at a distance of
3–10 nm from the QW. The spin splitting of the donorlike
bound state occurs due to the effective exchange field in the
Mn layer. There is also a fast relaxation from the dopant donor
levels due to nonradiative recombination with the holes in the
low-temperature grown (Ga,Mn)As layer [6,29].

The Hamiltonian of the system can be written in the
following form:

Ĥ = ĤQW + Ĥimp + ĤT , (1)

where ĤQW describes nonequilibrium 2D electrons in the QW:

ĤQW =
∑
kσ

εk ĉ+
kσ ĉkσ , (2)

Ĥimp corresponds to the bound state with the on-site Coulomb
repulsion given by the Hubbard term:

Ĥimp =
∑

σ

ε0n̂σ + Un̂σ n̂−σ , (3)

and ĤT is the tunneling part describing coupling between the
QW and the bound state:

ĤT = τ
∑
kσ

(ĉ+
kσ ĉσ + ĉ+

σ ĉkσ ). (4)

Here index k labels continuous spectrum states in the QW,
and τ is the tunneling transfer amplitude between the QW
states and the bound state. We consider τ to be independent
on the momentum and spin. The bound state energy level
ε0 can be split due to an exchange interaction or an external
magnetic field into two spin sublevels with the energies εσ =
ε0 ∓ �0/2, where σ =↑,↓ denotes the electron spin projec-
tion and �0 is the spin splitting energy. Operator ĉ+

kσ
/ĉkσ

creates/annihilates electrons in the QW, n̂σ = ĉ+
σ ĉσ is the

occupation number operator for the bound state, operator
ĉσ destroys the electron at the bound state with the spin

projection σ . U is the on-site Coulomb repulsion energy for
the doubly occupied bound state.

Self-consistent description of the tunneling processes in the
considered system could be made using the nonequilibrium
Keldysh diagram technique. Let us introduce the operators:

ĜR
σ (t, t ′) = −i�(t − t ′)[ĉσ (t )ĉ+

σ (t ′) + ĉ+
σ (t ′)ĉσ (t )],

ĜA
σ (t, t ′) = ĜR+

σ (t ′, t ). (5)

Retarded GR
σ (t, t ′) and advanced GA

σ (t, t ′) Green’s functions
are obtained from (5) using the standard averaging procedure
[30,31]. Performing Fourier transformation over (5) and fol-
lowing the standard nonequilibrium Keldysh Green’s func-
tions formalism, one can derive the closed system of Dyson
equations, which determines the retarded bound state Green’s
function GR

dd (ω):

GR
kk′ = G0R

kk′ + G0R
kk τGR

dk′ ,

GR
dk′ = G0R

ddτ
∑

k

GR
kk′ ,

GR
kd = G0R

kk τGR
dd ,

GR
dd = G0R

dd + G0R
ddτ

∑
k

GR
kd . (6)

Unperturbed bound state Green’s function G0R
dd (ω) has the

following form:

G0R
dd (ω) = (ω − εσ + iγ )−1 (7)

with γ being the nonradiative recombination rate from the
bound state. The system of equations (6) can be solved ex-
actly, the solution is the bound state Green’s function GR

dd (ω)
accounting for the interaction with 2D electrons in the QW:

GR
dd (ω) = 1

ω − εσ + i[γ + 	(ω)] − τ 2 · N (ω)
, (8)

where

N (ω) = Re
∑

k

G0R
kk (ω). (9)

The tunneling rate 	(ω) = ν0(ω)τ 2 corresponds to the elec-
tron transitions between the QW and the bound state, ν0(ω)
is the unperturbed density of states in the QW. As we assume
the negligibly weak dependence of τ on k, for the 2D density
of states in the QW the tunneling rate is a constant 	, which
we take as a parameter. The Green’s functions G0R

kk (ω) for
electrons in the QW can be written as:

G0R
kk (ω) = (ω − εk + iγw )−1, (10)

where γw describes radiative recombination processes in the
QW. The modification of the continuum spectrum due to the
coupling with the bound state expressed by Eq. (8) is, of
course, the well known Fano-Anderson problem [32]. Along
with the modification of the continuum spectrum the coupling
results in appearance of split-off states below the edge of the
continuum. The energy of these states for both spin directions
are given by the equation:

ω − εσ − τ 2N (ω) = 0 (11)
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or

ω − εσ − τ 2
∫

dε
ν0(ε)

ω − ε
= 0. (12)

Equation (12) has a real solution in the bad gap ω = ε̃σ ∈
(Ev, Ec), where Ec and Ev are the conduction band and the
valence band edges in the QW, respectively (see Fig. 1). The
energy of the split-off states depends on the tunneling transfer
amplitude τ and the unperturbed density of states in the QW.
In the 2D case ν0(ω) = W −1, where W is the conduction band
width. For ω < Ec one obtains the energy of the split-off states

ε̃σ = Ec − W · e− εσ −Ec
	 ,

ε̃Uσ = Ec − W · e− εσ +U−Ec
	 . (13)

These expressions are valid for Ec − εσ > 	. In the case Ec −
εσ < 	 one should replace Ec by ε̃σ in the exponent and solve
the nonlinear equation on ε̃σ . In both cases the split-off states
ε̃σ reside in the band gap rather close to the band bottom Ec as

	 ∼ W −1. In the absence of Coulomb interaction in the case
of 2D band in the QW for ω close to the split-off state energy
ε̃σ the Green’s functions of the bound state can be written as:

GR
ddσ (ω) 	 Aσ

ω − ε̃σ + iγ
, (14)

where the coefficient Aσ in the nominator exponentially de-
pends on the value of the bound state energy εσ

Aσ = W/	 · e− εσ −Ec
	 . (15)

The density of states in the QW is given by
∑
kk′

GR
kk′ = Bσ

ω − ε̃σ + iγ
(16)

with the coefficient Bσ being

Bσ = (Ec − εσ )2

	2
· e− εσ −Ec

	 . (17)

In the presence of Coulomb correlations one can get an
expression for the retarded Green’s function GR

ddσ (ω):

GR
ddσ (ω) = (1 − ñ−σ ) ×

{
[1 − Aσ (ε̃σ )] · �(W − |ω|)

ω − εσ + i(	 + γ )
+ Aσ (ε̃σ ) · �(|ω| − W )

ω − ε̃σ + iγ

}

+ ñ−σ ×
{

[1 − AUσ (ε̃σ )] · �(W − |ω|)
ω − εσ − U + i(	 + γ )

+ AUσ (ε̃σ ) · �(|ω| − W )

ω − ε̃Uσ + iγ

}
, (18)

where ñσ is the occupation of the bound state renormalized by
the presence of the split-off states. One should substitute εσ

by εσ + U in expression (15) to get AUσ

AUσ = W/	 · e− εσ +U−Ec
	 . (19)

System of equations for time evolution of the split-off states
occupation numbers has the following form [33]:

∂nσ

∂t
= − 2	

[
nσ −

∫
dω

2π

(
GA

ddσ (ω)

− GR
ddσ (ω)

)
fk (ω)

]
− γ nσ . (20)

Considering Eqs. (18) and solving the system of equations
(20) in the stationary case ( ∂nσ

∂t = ∂n−σ

∂t = 0) one can get
stationary occupation numbers for the bound state:

nst
σ = 
(εσ ) − �
−σ · 
(εσ )

1 − �
σ · �
−σ
, (21)

where


(εσ ) = (1 − Aσ )N (εσ ) + Aσ Ñ (ε̃σ ),


U (εσ ) = (1 − AUσ )N (εσ + U ) + AUσ Ñ (ε̃Uσ ) (22)

and

�
σ = 
(εσ ) − 
U (εσ ). (23)

QW occupation functions N (ε) and Ñ (ε) have the form:

N (ε) =
∫

dεk
fk (εk ) · (	 + γ )

(εk − ε)2 + (	 + γ )2
,

Ñ (ε) =
∫

dεk
fk (εk ) · γ

(εk − ε)2 + γ 2
. (24)

III. RESULTS AND DISCUSSION

Let us first clarify the effect of the tunnel coupling between
the spin degenerate bound state and the QW on the occupation
number of the bound state. Figure 2 shows the occupation

FIG. 2. Stationary occupation of the spin degenerate bound state
energy level as a function of energy level position ε relative to the
Fermi level EF /	 = 45. Dashed lines correspond to the absence of
the tunnel coupling; solid lines correspond to the presence of the
tunnel coupling and formation of the split-off state. Black curves
correspond to the absence of Coulomb correlations U/	 = 0; red
curves are for the case when Coulomb correlations are present at
the bound state U/	 = 200. Parameters W/	 = 1000, γ = 0.5, and
	 = 1 are the same for all the figures. The green vertical line is the
Fermi level position.
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number of the bound state calculated using Eq. (21) as a func-
tion of the bound state energy. Black curves correspond to the
case when on-site Coulomb interaction at the bound state is
neglected. In the absence of the tunnel coupling (dashed black
curve in Fig. 2) the bound state is not hybridized with the QW
continuum. It still has a finite width being broadened by the
nonradiative relaxation rate γ as clearly seen from Eq. (7).
Therefore, its occupation is simply the Fermi distribution
function integrated with the Lorentz-like density of states of
the broadened bound state level. Assuming zero temperature
the occupation number is equal to one when the bound state
energy lies far below the Fermi level EF and decreases when
the bound state energy approaches EF due to the broadening
of the state, then it rapidly goes to zero when the bound state
is well above the Fermi level EF . When the tunnel coupling
is enabled, the broadening of the bound state increases by
	 and also the split-off state emerges below the continuum.
The effect of the latter appears to be significant as it slightly
increases the bound state occupation despite the enhanced
broadening as can be seen in Fig. 2, solid black curve. Its
role becomes even more pronounced in the case of the on-site
Coulomb interactions as discussed below. The results of the
calculations with the on-site Coulomb interaction taken U =
200	 are shown by the red curves in Fig. 2. The presence of
Coulomb correlations lead to the strong decrease of the energy
level occupation when it is localized below the Fermi level. It
occurs due to the Coulomb blockade effect as tunneling of
the electron from the QW requires an additional energy cost
if the bound state is occupied. The presence of the split-off
state leads to the additional contribution to the bound state
occupation and results in a substantial increase of the bound
state occupation when it is localized below the Fermi level.
Note that the effect is stronger than in the U = 0 case. That is
because the double-occupied energy level located well above
EF also produces a split-off replica below the band bottom,
hence, occupied.

Let us now discuss the case when the bound state is split in
the electron spin projection. Consequently, the tunneling from
the QW is possible into two different bound state energy levels
corresponding to the opposite spin projections. Naturally, for
the most efficient spin dependent tunneling the Fermi level
should fall between the spin-split bound state levels. It could
be done by doping of the QW or external gating. Panels (a)
and (b) in Fig. 3 demonstrate stationary occupation of the
bound state energy levels with given spin projection in the
presence of Coulomb correlations as a function of a difference
between the bound state spin sublevels �0 = (ε↓ − ε↑). The
sign of �0 could be controlled by the external magnetic
field applied to the system. We do not account for the spin
splitting of the electron states in the QW. This is the typical
case as usually there is a strong difference of g factors for
magnetic ions and electrons in the QW in heterostructures of
the considered type [34].

For the calculation results presented in Fig. 3 the spin-up
energy level position ε↑ is fixed either slightly below the
Fermi level EF (a) or well below EF (b). All the curves in
Fig. 3 are with account for the on-site Coulomb correlations;
the color is related to the sign of the spin projection. Dashed
curves correspond to the absence of the tunnel coupling; solid
curves account for the tunnel coupling and the split-off states.

FIG. 3. Stationary occupation of the spin-split bound state en-
ergy levels ε↑ and ε↓ (a), (b) and the split-off states PL intensity
(c), (d). In panels (a), (b) solid curves correspond to the situation
when the split-off states are present in the system and dashed curves
demonstrate results in the case when the split-off states are neglected.
In panels (c), (d) black curves correspond to the ε̃↓/	 state and
red curves describe ε̃↑/	 state. For panels (a), (c) ε↑/	 = 40, for
panels (b), (d) ε↑/	 = 15. Parameters W/	 = 1000, U/	 = 200,
εF /	 = 45, γ = 0.5, and 	 = 1 are the same for all the figures.

For both situations the behavior of stationary occupation is
quite similar: The lower energy level is more occupied than
the higher one. The most interesting fact, however, is that
the presence of the split-off states substantially modifies the
occupation of the bound state.

The split-off states are located below the bottom of the
band (Ec). Being occupied, they partially contribute to the
bound state occupation aσ and the QW occupation bσ . As
follows from Eqs. (14)–(17), these partial contributions of the
split-off states obey

aσ

bσ

= Aσ

Bσ

= W 	

(Ec − εσ )2 . (25)

Let us now, for simplicity, assume single occupation of the
split-off state aσ + bσ = 1, we then get

aσ = W 	

(Ec − εσ )2 + W 	
. (26)

If n = 1 is the occupation number of the bound state then the
average energy of an electron located at the bound state reads

ε = [(1 − aσ )εσ + aσ ε̃σ ], (27)

where the energy of the split-off state ε̃σ is close to the band
bottom and can be estimated as ε̃σ ≈ Ec. Substituting (26) into
(27) we get:

ε − εσ = −(εσ − Ec)

[
1 + (εσ − Ec)2

W 	

]−1

. (28)

As (28) suggests, the strong enough tunnel coupling renor-
malizes the energy of the electron localized at the bound
state, the effect is more pronounced when εσ is further away
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from the band bottom Ec provided that εσ − Ec <
√

W 	. That
qualitatively explains the behavior observed in Figs. 3(a) and
3(b). When the spin up energy level ε↑ is localized slightly
below the Fermi level [see panel (a) in Fig. 3], the split-off
state significantly increases the bound state occupation for
the spin down energy level as the renormalization of the
bound state level is substantial. Simultaneously, occupation
of the spin-up bound state energy level becomes smaller.
When the sign of the detuning �0 is changed, the situation is
reversed, the split-off states result in the increase of the spin up
energy level occupation and decrease of the spin down level
occupation.

For the energy levels εσ located well below the Fermi level,
thus closer to the band bottom, the effect of the split-off states
becomes weaker as the energy renormalization is smaller.
Indeed, if a bound state coincides with the band bottom,
there is no renormalization at all. This is the case for the
most left point in Fig. 3(b); when the level ε↓ reaches Ec the
tunnel coupling does not affect the occupation at all except
for the small difference due to enhanced broadening of the
bound state level due to 	. Also as the Coulomb interaction
is accounted for, the occupation number would never exceed
unity in Fig. 3.

The effect of the tunnel coupling on the system spectrum
and occupation is also reflected in the intensity of the PL
from the QW, which is presented in Fig. 3 panels (c) and
(d). The emergence of the split-off states below the edge of
the conductance band leads to the appearance of additional
peaks in the frequency range corresponding to the QW band
gap. The calculated structure and occupation of these states
allowed us to obtain the PL intensity, which is proportional
to Aσ [see Eq. (15)]. An important feature of the band gap
peaks is that the PL corresponding to each of the two split-off
states is fully circularly polarized. Depending on the tunable
parameters of the system both peaks can have similar am-
plitudes when the split-off states are close to each other and
there also exists a possibility for the amplitude of one peak
to exceed the amplitude of the other one. Parameters for the
panels (c) and (d) are the same as for the panels (a) and (b),
respectively.

In the considered model the PL spectra from the QW is
constant right above the band gap frequency. While in this
work we focus on the split-off states, it is worth noting that the
continuous part of the spectra has features at the frequencies
corresponding to the bound state levels εσ which would be
also polarized as the resonance position is different for the
spin-split sublevels. For the detailed study see Refs. [35,36].

The circular polarization of the band gap PL peaks corre-
sponds to the electron spin projection at the bound state. In
the QW we assume a radiative recombination of the electrons
with 2D heavy holes with the projections of total angular
momentum j = ±3/2 recombining with electrons j = ∓1/2
and emitting right- (σ+) and left- (σ−) circularly polarized
light, respectively. The position of the peaks relative to the
continuous PL spectra is given by ε̃σ [see Eq. (13)]. An exam-
ple of the calculated PL peaks indicating their polarization is
presented in Fig. 4.

To estimate the peaks amplitudes and positions we consider
parameters relevant for GaAs heterostructures doped with
Mn [29]. We take 	 = 13 meV, εσ − Ec ≈ 50 meV, �0 =

FIG. 4. Photoluminescence as a function of frequency demon-
strating two narrow well resolved peaks with right and left circular
polarization. (a) ε↓/	 = 30 and ε↑/	 = 20; (b) ε↓/	 = 10 and
ε↑/	 = 20. Parameters Ec = 0, W/	 = 1000, U/	 = 200, γ = 0.5
and 	 = 1 are the same for all the figures.

2.5 meV, W = 2 eV. The amplitude of both peaks reach ≈30
percent of the continuous QW PL spectra intensity and their
position appear to be 39 meV and 47 meV below Ec for σ+
and σ− polarizations, respectively.

We would like to emphasize two important features of the
solitary PL peaks corresponding to the split-off states. They
have opposite circular polarization and their spectral position
strongly depends on the tunnel coupling parameter τ . These
properties enable us to come up with an idea of an ultrafast
modulation of the PL polarization by electrical means. For
the taken parameters a change of the tunneling rate 	 by
a factor of 1.5 results in the shift of the peak positions by
≈30 meV, quite enough for the experimental realization. Such
modulation of the tunnel barrier transparency can be achieved
by application of an electric field by means of an external gate
[37]. With fixing the output frequency such modulation would
allow for switching of the PL polarization as the spin-up
and spin-down split-off states position is alternated with the
change of the tunnel coupling. As the characteristic tunneling
time is of a picosecond order, this mechanism allows for
ultrafast modulation of the PL polarization and could be
promising for applications in spintronics, in particular, for
ultrafast polarization modulation in spin lasers.

IV. SUMMARY

We present a theoretical analysis of the split-off states and
their influence on the spin polarization in the semiconductor
QW coupled to a remote bound state with account for on-site
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Coulomb correlations and spin splitting. The split-off states
are formed in the band gap of the QW due to the tunnel
coupling between the QW and the bound state. It has been
shown that the split-off states strongly affect the occupation
of the bound state and modify the PL signal from the QW.
We have shown that the split-off states reveal themselves
as solitary peaks, which are fully circularly polarized with
their spectral position being very sensitive to the tunnel
coupling. The obtained results open a new possibility to
control spin polarization in nanoscale systems. In particular,
a gate assisted modulation of the tunnel barrier transparency
allows for ultrafast switching of the PL circular polariza-

tion from the QW. Therefore, the suggested mechanism is
promising for polarization modulation devices such as spin
lasers.
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