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The strongly coupled electron liquid provides a unique opportunity to study the complex interplay of strong
coupling with quantum degeneracy effects and thermal excitations. To this end, we carry out extensive ab initio
path integral Monte Carlo (PIMC) simulations to compute the static structure factor, interaction energy, density
response function, and the corresponding static local field correction in the range of 20 � rs � 100 and 0.5 �
θ � 4. We subsequently compare these data to several dielectric approximations and find that different schemes
are capable to reproduce different features of the PIMC results at certain parameters. Moreover, we provide
a comprehensive data table of interaction energies and compare those to two recent parametrizations of the
exchange-correlation free energy, where they are available. Finally, we briefly touch upon the possibility of a
charge-density wave. The present study is complementary to previous investigations of the uniform electron gas
in the warm dense matter regime and, thus, further completes our current picture of this fundamental model
system at finite temperature. All PIMC data are available online.
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I. INTRODUCTION

The uniform electron gas (UEG), often denoted as jellium
or quantum one-component plasma, is one of the most impor-
tant and fundamental model systems in physics and beyond
[1,2]. For example, the UEG has facilitated key insights
such as Fermi liquid theory [3], the quasiparticle picture of
collective excitations [4], and the currently prevailing theory
of superconductivity [5]. In addition, it offers a plethora of
remarkably rich physical effects, such as the emergence of a
charge-density wave (CDW) [6–8] or spin-density wave [9],
Wigner crystallization at low density [10–14], and an incipient
excitonic mode [15–18].

Moreover, it was only the availability of accurate
parametrizations of the zero-temperature properties of the
UEG [19–24] based on quantum Monte Carlo (QMC) sim-
ulations [11,25–28], which allowed for the possibly unrivaled
success of density functional theory (DFT) regarding the
description of real materials [29,30].

While most of these studies have been limited to the ground
state, the recent interest in matter under extreme conditions
has led to a spark of activity towards the description of the
UEG at finite temperature [31–37]. Of particular importance
is the so-called warm dense matter (WDM) regime, which is
defined in terms of two characteristic parameters that are both
of the order of one [38–40]: (i) the density parameter (also
denoted as quantum coupling parameter or Wigner-Seitz ra-
dius) rs = r/aB, with r and aB being the average interparticle
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distance and first Bohr radius, and (ii) the degeneracy temper-
ature θ = kBT/EF, where EF denotes the usual Fermi energy
[3]. These conditions occur in astrophysical objects like giant
planets and brown dwarfs [41–44] and are relevant for inertial
confinement fusion [45] applications. Moreover, WDM is
nowadays routinely realized in experiments using different
techniques, see Ref. [46] for a topical review article.

Naturally, the extension of many-body simulation methods
like DFT to WDM conditions relies on an accurate description
of the UEG in this regime, which was achieved only recently
[34] on the basis of a combination of novel path integral
Monte Carlo (PIMC) methods [32,33,47–51]. While being
an important milestone towards a complete description of
the UEG, these studies focused on moderate coupling, i.e.,
0 � rs � 20.

On the other hand, it is well known that the UEG forms
an electron liquid with decreasing density. Despite being
unaccessible to current experiments, this regime allows for
a theoretical study of the intriguingly intricate interplay of
quantum effects such as delocalization with strong Coulomb
coupling and thermal excitations. This combination is pre-
dicted to give rise to complex phenomena such as an exci-
tonic low-frequency mode [15,16] and a CDW instability. In
addition, the availability of accurate data for these conditions
would provide a challenging benchmark for many-body ap-
proximations like dielectric theory.

To this end, we carry out extensive ab initio path inte-
gral Monte Carlo simulations of the strongly coupled elec-
tron liquid for 20 � rs � 100 and 0.5 � θ � 4. In particular,
we stress that the PIMC approach is capable to treat the
complex interplay of all aforementioned effects without any
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approximations, and therefore constitutes the method of
choice. This allows us to present the first unbiased data
for the interaction energy v for these parameters, which are
complementary to previous studies [34,52] and can be used
to further complete our current picture of the UEG at finite
temperature [2,53].

The second key objective of this paper is the study of
the response of the electron liquid to an external harmonic
perturbation. This question is typically investigated within
the purview of dielectric theories, which give an approximate
description of the local field correction and, thus, the density
response function. More specifically, we consider the finite-
temperature versions [54,55] of the methods by Singwi-Tosi-
Land-Sjölander (STLS) [56] and Vashista and Singwi (VS)
[57], and a recently introduced improved approach by Tanaka
[58]. These data are then compared to our new PIMC results,
which allows us to unambiguously characterize the strengths
and weaknesses of the different dielectric approximations for
different quantities.

Finally, we discuss the possibility of a CDW instability,
which, however, does not occur under the present conditions.

The paper is organized as follows: In Sec. II, we intro-
duce the relevant theoretical background, starting with the
PIMC method and its application to fermions (Sec. II A).
In Sec. II B, we give an overview of linear response theory
and introduce the relevant concepts and quantities, explain
the three dielectric approximations studied in this work, and
explain how the density response can be studied using PIMC.
Section III is devoted to our simulation results, beginning with
a discussion of PIMC data for different quantities (Sec. III A)
and the extrapolation to the thermodynamic limit (TDL). We
then compare our PIMC results to dielectric approximations
regarding the static structure factor (Sec. III B), the interaction
energy (Sec. III C), and the density response (Sec. III D).
Finally, we investigate the possibility of a charge-density wave
(Sec. III E) and the paper is concluded with a brief summary
and outlook (Sec. IV).

II. THEORY

A. Path integral Monte Carlo

Let us consider a system of N electrons in a cubic box with
volume V = L3 at an inverse temperature β = 1/T , i.e., in
thermodynamic equilibrium. Note that we restrict ourselves
to the unpolarized case (i.e., an equal number of spin-up and
-down electrons, N/2 = N↑ = N↓), and we assume Hartree
atomic units throughout this work. All thermodynamic ex-
pectation values of such a system are fully defined by the
canonical partition function [2]

Z = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgnf(σ↑, σ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (1)

where the double sum is carried out over all possible permu-
tations σk from the respective permutation group SNk , and π̂σk

being the corresponding permutation operators. Of particular
importance is the sign function sgnf(σ↑, σ↓), which is positive

FIG. 1. Schematic illustration of Path Integral Monte Carlo.
Shown is a configuration of N = 3 electrons with P = 6 imaginary-
time propagators in the x-τ plane. Due to the single pair exchange,
the corresponding configuration weight W (X) [cf. Eq. (5)] is nega-
tive. Taken from Ref. [59] with the permission of the authors.

(negative) for an even (odd) number of pair permutations of
both spin-up and -down electrons. It is well known that the
matrix elements of the density operator ρ̂ = e−βĤ are not
suitable for a straightforward evaluation as the operators for
the potential and kinetic energies, V̂ and K̂ , do not commute,

e−βĤ = e−βK̂ e−βV̂ + O(β2). (2)

To overcome this obstacle, one can exploit a semigroup prop-
erty of the density operator,

e−βĤ =
P−1∏
α=0

e−εĤ , (3)

with ε = β/P, which allows us to transform Eq. (1) into the
sum over P sets of particle coordinates, but with the density
operator being evaluated at P times the temperature,

Z = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgnf(σ↑, σ↓)

×
∫

dR0 . . . dRP−1

P−1∏
α=0

〈Rα| e−εĤ |π̂PRα+1〉 . (4)

Note that π̂P combines π̂σ↑ and π̂σ↓ , and only acts on the final
set of coordinates RP. The crucial advantage of Eq. (4) is that
the factorization error from Eq. (2) can be made arbitrarily
small by increasing P, and the partition function can finally
be written as

Z =
∫

dX W (X), (5)

with the metavariable X = (R0, . . . , RP−1)T denoting a so-
called configuration, and W (X) being the corresponding con-
figuration weight, which is a function that can be readily
evaluated.
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This is illustrated in Fig. 1, where we show a configu-
ration of N = 3 particles in the x-τ plane for P = 6. First
and foremost, we note that each particle is now represented
by an entire path of P particle coordinates in the imaginary
time τ ∈ [0, β], with ε being the time step. Moreover, the
paths are closed, i.e., R0 = RP, which reflects the definition
of Z as the sum over diagonal elements. Finally, we mention
the presence of a single pair permutation in this example,
which results in a path comprised of two particles, and the
sign function is negative, W (X) < 0.

The basic idea of the path integral Monte Carlo method
[2,60–63] is to randomly generate a Markov chain of configu-
rations X distributed according to P(X) = W (X)/Z by using
the celebrated Metropolis algorithm [64]. Unfortunately, this
is not directly possible in the case of fermions, as a probability
must not be negative. To circumvent this issue, we switch to
the modified configuration space

Z ′ =
∫

dX |W (X)|, (6)

where the paths are generated proportionally to the absolute
value of the weight function. The exact fermionic expectation
value of an arbitrary observable Â can then be obtained from

〈Â〉 = 〈ÂŜ〉′
〈Ŝ〉′

, (7)

with Ŝ = W (X)/|W (X)| being the corresponding sign
function.

The partial cancellation of positive and negative terms in
Eq. (7) is the origin of the notorious fermion sign problem
[65,66] (FSP), which results in an exponential scaling with
increasing system size N and inverse temperature β, see
Ref. [67] for an extensive topical discussion. More specifi-
cally, the denominator in Eq. (7), which is typically referred
to simply as the average sign S, constitutes a direct measure
for the degree of severity of the FSP, and simulations become
unfeasible when S ∼ 10−3.

Regarding physical parameters, fermionic PIMC simula-
tions break down when quantum degeneracy effects start to
dominate, i.e., towards high density and low temperature.
Consequently, there have recently appeared a number of new
approaches to mitigate this issue, see Refs. [32–34,36,47–
50,68] for details and Refs. [2,37] for topical overviews and
comparisons.

Since the present work is devoted to the study of the
strongly correlated electron liquid, the standard PIMC method
as introduced above is fully sufficient to obtain accurate
results down to half the Fermi temperature. Still, even here we
observe the exponential scaling of computation time, and we
find average signs between S = 0.01 (N = 34, rs = 20, and
θ = 0.5) and S ≈ 1 at rs = 100 and θ = 4. For completeness,
we mention that all PIMC results have been obtained using a
canonical adaption [69] of the worm algorithm introduced by
Boninsegni et al. [70,71].

B. Linear response theory

The basic idea of linear response theory is to apply a
harmonic perturbation to the UEG and subsequently measure
its response, i.e., the deviation to the unperturbed case. In

particular, the perturbation amplitude A must be sufficiently
small such that all terms beyond a linear treatment in A can be
neglected. Since detailed and accessible introductions to LRT
have been presented elsewhere [2,3,18], here will only repeat
the most important relations.

1. Density response and structure factors

The central quantity of LRT is the density response
function

χ̃ (q, t ) = −i 〈[ρ̂(q, t ), ρ̂(−q, t ′)]〉 , (8)

with t = t − t ′, which fully describes the effects of an, in
general, dynamic perturbation on the total density of the
system. Note that ρ̂(q, t ) denotes the Fourier component of
the density evaluated at a time t , and the expectation value
in Eq. (8) has to be computed with respect to the unperturbed
system. In addition, we mention that the density response only
depends on the modulus on the wave vector, q = |q| due to
the homogeneity of the UEG. It is typically more convenient
to work in frequency space, which leads to [3]

χ (q, ω) = lim
η→0

∫ ∞

−∞
dt e(iω−η)t χ̃ (q, t ). (9)

It is important to note that the static density response function
χ (q) is defined as the static limit of Eq. (9),

χ (q) = lim
ω→0

χ (q, ω), (10)

and, thus, describes the response to a time-independent pertur-
bation, which is in contrast to the static structure factor S(q),
see Eq. (14) below.

Remarkably, χ (q, ω) provides the complete information
about all thermodynamic properties of the unperturbed system
of interest. This can be seen from the well-known fluctuation–
dissipation theorem,

S(q, ω) = − Imχ (q, ω)

πn(1 − e−βω )
. (11)

which gives a straightforward relation to the dynamic struc-
ture factor S(q, ω). The latter is defined as the Fourier trans-
form of the intermediate scattering function F ,

F (q, t ) = 1

N
〈ρ(q, t )ρ(−q, 0)〉 (12)

⇒ S(q, ω) = 1

2π

∫ ∞

−∞
dt F (q, t ) eiωt , (13)

and is directly accessible in x-ray Thomson scattering ex-
periments [72]. The normalization of Eq. (13) is commonly
known as the static structure factor

S(q) =
∫ ∞

−∞
dω S(q, ω), (14)

and is directly connected to the pair correlation function g(r)
via a Fourier transform with respect to the wave vector q.
Hence, Eq. (14) can be used to compute the interaction energy
of the system via

v = 1

π

∫ ∞

0
dq (S(q) − 1), (15)
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which, in turn, can be used to compute the exchange-
correlation part of the free energy via the adiabatic connection
formula [2,34],

fxc(rs) = 1

r2
s

∫ rs

0
drs v(rs)rs. (16)

Since the free energy is equivalent to the partition function Z ,
Eq. (9) entails the full thermodynamic information about the
system of interest.

2. Dielectric theory

A particularly important concept of LRT is the dynamic
local field correction G, which is defined by [73]

χ (q, ω) = χ0(q, ω)

1 − 4π/q2[1 − G(q, ω)]χ0(q, ω)
, (17)

with χ0 being the density response function of the ideal Fermi
gas. Note that setting G = 0 in Eq. (17) gives the widely
used random phase approximation, which entails a mean-field
description of the density response. Hence, G(q, ω) provides
a wave-number and frequency resolved description of all
exchange-correlation effects, and plays a similar role as the
self energy in Green function methods [74]. Therefore the
exact local field correction is a-priori unknown, but can be
reasonably approximated within the framework of dielectric
theory as we shall see in the following section.

In this work, we follow Tanaka and Ichimaru [54] and
introduce the density-response function for complex frequen-
cies as

χ̃ (q, z) =
∫ ∞

−∞

dν

π

Imχ (q, ν)

ν − z
. (18)

This allows to express the static structure factor as

S(q) = −T

n

∞∑
l=−∞

χ̃ (q, zl ), (19)

with zl = 2π ilT being the so-called Matsubara frequencies,
see Ref. [2] for a derivation.

The basic idea of the dielectric approximations is to ex-
press the unknown LFC as a functional of the static structure
factor S(q), i.e., G(q) = G[S(q)]. This results in a closed set
of equation, which can be solved iteratively in the following
way: (1) compute the ideal response function χ̃0(q, zl ) for
sufficiently large l; (2) compute χ̃ (q, zl ) via Eq. (17), use
G(q) = 0 for the first iteration; (3) compute S(q) via Eq. (19);
and (4) Use the new S(q) to compute the next iteration of
G[S(q)]. These steps are then repeated until convergence is
reached.

A particularly successful scheme was introduced by
Singwi, Tosi, Land, and Sjölander (STLS) [56] by approxi-
mating the classical dynamic two-particle distribution func-
tion by a product ansatz of the form

f2(r1, p1, r2, p2) ≈ f1(r1, p1, t ) f1(r2, p2, t )geq(r1 − r2),
(20)

with geq(r) being the pair distribution function in thermody-
namic equilibrium, and rk (pk) denoting particle coordinates
(momenta). This idea has subsequently been extended to finite

temperature by Tanaka and co-workers [54,75], and one finds
the following expression for the LFC:

GSTLS(q) = −1

n

∫ ∞

0

dk

(2π )2
k2[S(k) − 1]

×
[

q2 − k2

4kq
ln

(
(q + k)2

(q − k)2

)
+ 1

]
. (21)

Note that Eq. (21) [like Eqs. (23) and (24) below] does not
depend on ω and, thus, constitutes a static approximation,
which is a direct consequence of the classical ansatz for f2 in
Eq. (20). A somewhat more sophisticated quantum mechan-
ical derivation gives the quantum version of STLS (qSTLS)
explored in Refs. [6,7,76–78].

The STLS approximation has been successfully applied
both in the ground state and at finite temperature and is known
to give remarkably accurate results for the interaction energy v

[2]. On the other hand, it strongly violates the compressibility
sum rule [55], which gives an exact relation between the
long-wavelength limit of G(q, 0) and the partial derivative of
fxc with respect to the density n,

lim
q→0

G(q, 0) = − q2

4π

∂2

∂n2
(n fxc). (22)

More specifically, the left-hand side of Eq. (22) as obtained
from Eq. (21) does not agree with the rhs. computed via the
adiabatic connection formula Eq. (16).

To overcome this shortcoming, Vashista and Singwi (VS)
[57] proposed a modified expression for G(q, 0),

GVS(q, 0) =
(

1 + an
∂

∂n

)
GSTLS(q, 0), (23)

where the free parameter a is chosen such that Eq. (22)
is exactly satisfied. This idea was later extended to finite
temperature by Stolzmann and Rösler [79] and, more rigor-
ously, by Sjostrom and Dufty [55], who found that the free
parameter must depend both on density and temperature, i.e.,
a = a(rs, θ ). Interestingly, it was found that the incorporation
of the exact physical relation Eq. (22) leads to an overall de-
creased accuracy in other thermodynamic properties like the
static structure factor, pair distribution function, or interaction
energy in the warm dense matter regime [2].

The last dielectric approximation to be considered in this
work is the recent scheme by Tanaka [58], which was derived
from the hypernetted-chain (HNC) equations. More specifi-
cally, the HNC method is well known to accurately reproduce
exact molecular dynamics results even for strongly coupled
classical systems [80]. Therefore this new relation for the
LFC,

GHNC(q, 0) = GSTLS(q, 0) + 1

n

∫
dk

(2π )3

k · q
k2

× [S(q − k) − 1][G(k, 0) − 1][S(k) − 1],
(24)

is expected to constitute a significant improvement over STLS
in particular in the electron liquid regime that is considered in
the present work.
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3. PIMC approach to the static density response

The first quantum Monte Carlo results for the static density
response function and local field correction in the ground state
have been obtained by simulating a harmonically perturbed,
inhomogeneous electron gas and subsequently measuring the
effect of the perturbation on an observable like the total energy
[25,81–83]. This idea was recently extended by Dornheim,
Groth, and co-workers to the finite-temperature permutation
blocking PIMC [84] and configuration PIMC [85] methods,
which has allowed for the first reliable benchmarks of the
static LFC in the warm dense matter regime. While being
in principle exact, this approach is computationally very
involved as one has to carry out multiple simulations with
different perturbation amplitudes A for each single wave
number q.

In contrast, the standard PIMC method introduced above
allows to obtain the entire q dependence of both χ (q) and
G(q) from a single simulation of the unperturbed electron
gas when the sign problem is not too severe. In this context,
the key quantity is given by imaginary-time density-density
correlation function

F (q, τ ) = 1

N
〈ρ(q, τ )ρ(−q, 0)〉 , (25)

which corresponds to the intermediate scattering function
Eq. (12) evaluated at an argument τ ∈ [0, β]. Eq. (25) can
be straightforwardly evaluated within a PIMC simulation
[86,87] and is of high importance for different applications.
For example, it is directly connected to the dynamic structure
factor S(q, ω) via a Laplace transform,

F (q, τ ) =
∫ ∞

−∞
dω S(q, ω)e−τω, (26)

which can be used as the starting point for a so-called analytic
continuation. While being notoriously difficult [88], such a
reconstruction of a dynamic property based on PIMC data
obtained in the thermodynamic equilibrium constitutes a valu-
able alternative to a direct propagation in real time, which
typically rely on an uncontrolled, perturbative treatment of
exchange-correlation effects. In particular, the numerical in-
version of Eq. (26) has recently allowed to obtain the first
accurate data for S(q, ω) for the UEG in the warm dense
matter regime [17,18].

For the present purposes, we use Eq. (25) as input for the
imaginary-time version of the fluctuation-dissipation theorem
[81],

χ (q) = −n
∫ β

0
dτ F (q, τ ), (27)

which states that the density response of the perturbed system
can be obtained as a simple one-dimensional integral over
the correlation function computed for the unperturbed case.
The corresponding PIMC results for the static LFC are subse-
quently computed by solving Eq. (17) for G, i.e.,

G(q) = 1 − q2

4π

(
1

χ0(q)
− 1

χ (q)

)
. (28)

III. RESULTS

A. PIMC data and finite-size effects

In the following section, we give some practical remarks
regarding our PIMC simulations of the electron liquid, with
a particular focus on the finite system size. A more de-
tailed discussion of the physical properties is postponed until
Secs. III B–III E.

The PIMC method as introduced in Sec. II A is formulated
in the canonical ensemble and, consequently, allows for sim-
ulations with a finite system size N . For realistic applications,
however, we are interested in the properties of the electron
gas in the thermodynamic limit, i.e., for the limit of an infinite
number of electrons, but at a constant density n. For example,
the corresponding TDL of the interaction energy is defined as

v = lim
N→∞

VN

N

∣∣∣∣
rs

, (29)

with VN being the total interaction energy obtained from a
PIMC simulation, and the deviation between v and VN/N is
commonly known as the finite-size error [33,89–92]. This
issue is investigated in Fig. 2 at the Fermi temperature for
rs = 20 (top), 50 (center), and 100 (bottom). At rs = 20, the
raw PIMC data (blue squares) exhibit finite-size errors of the
order of �V/V ∼ 10−3, and VN/N is exactly reproduced by
a linear fit (solid black line). The reason for this behavior
was first reported by Chiesa et al. [90] in the context of
ground-state QMC simulations, and recently studied for the
finite temperature case as well [31,33]: for a finite number
of particles N , the continuous integral in Eq. (15) has to be
replaced by a discrete sum over reciprocal lattice vectors.
Since the static structure factor SN (q) is known to only weakly
depend on N (cf. Fig. 3), the finite-size error can be viewed as
a simple discretization error, and the dominant contribution
comes from the q = 0 term, which is completely omitted for
finite N . Since the exact q → 0 limit is known exactly from
the perfect screening sum rule [93],

S0(q) = q2

2ωp
coth

(
βωp

2

)
, (30)

one can derive a corresponding finite-size correction as [31]

�V (N ) = ωp

4N
coth

(
βωp

2

)
. (31)

Indeed, Eq. (31) does predict a linear dependence of VN/N
on 1/N , and adding the correction to our PIMC data (red
crosses) completely removes the finite-size errors, and the
resulting data points are perfectly reproduced by a constant fit
(dashed grey line). To further verify the validity of the theory
behind Eq. (31), we investigate the system-size dependence
of SN (q) in Fig. 3. The top panel again shows results for
rs = 20 for N = 14 (blue squares), 34 (green diamonds),
and 66 (red crosses) unpolarized electrons. While the PIMC
data are available on different q points, which is due to the
momentum quantization in a finite simulation cell, SN (q) itself
is already converged within the given statistical uncertainty
even for the smallest considered system size. In addition, the
solid black line shows the exact parabolic long-wave length
expansion of S from Eq. (30), which smoothly connects to the
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-0.038

-0.03785

-0.0377

-0.03755

   

rs=20

V/
N

1/N

PIMC
fit

PIMC+FSC
fit FSC

-0.01603

-0.016

-0.01597

-0.01594

   

rs=50

V/
N

1/N

-0.00828

-0.00826

-0.00824

-0.00822

66-1 34-1 20-1 14-1

rs=100

V/
N

1/N

FIG. 2. System-size dependence of the interaction energy per
particle v of the UEG at θ = 1 for rs = 20 (top), 50 (center), and
100 (bottom). The blue squares and solid black lines depict the raw
PIMC data and a corresponding linear fit. The red crosses have been
obtained by adding to the PIMC data the finite-size correction from
Eq. (31), and the dashed grey lines depict the corresponding average
values. Finally, the green diamonds show our extrapolated result for
v in the thermodynamic limit, which is computed as the mean of the
dashed grey and solid black line at N−1 = 0, and the error bar takes
into account all remaining uncertainties. All extrapolated results for
v(rs, θ ) are given in Table I.

smallest wave number qmin = 2π/L where our PIMC data are
available. In summary, these findings do indeed confirm the
validity of Eq. (31), which then holds both in theory and in
practice for rs = 20 and θ = 1.

Let us next consider the center (bottom) panel of Fig. 2,
where we analyze the system size dependence for rs = 50
(rs = 100). In both cases, we again find finite-size errors of
the order of �V/V ∼ 10−3, which are, overall, somewhat
smaller than for rs = 20, but less regular. More specifically,
our VN/N data cannot be exactly reproduced by a linear fit, and
the N = 14 result at rs = 100 seems to constitute an outlier.
Consequently, Eq. (31) does not cover the entire finite-size
error, and the corrected points fluctuate around the constant
fit (excluding the aforementioned outlier at rs = 100). To
understand this nontrivial behavior, we might again consider
our PIMC data for S(q), which are shown in the bottom panel
of Fig. 3 for rs = 100. First and foremost, we note that the
long-wave length expansion from Eq. (30) again perfectly
connects to our PIMC data, which means that the finite-
size correction from Eq. (31) should indeed fully correct the
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FIG. 3. System-size dependence of the static structure factor of
the UEG at θ = 1 for rs = 20 (top) and rs = 100 (bottom). The
symbols depict the raw PIMC data for different particle numbers
and the solid black line the long-wave length expansion of RPA, cf.
Eq. (30). The insets show magnified segments of the curves.

previously discussed contribution for q = 0. The reason for
the remaining N-dependence in the red crosses in Fig. 2 is the
functional form of SN (q) itself, which exhibits some unsmooth
fluctuations (cf. the inset) that are particularly pronounced for
small particle number. More specifically, this somewhat pe-
culiar behavior is a commensurability effect: with increasing
coupling strength, the electron liquid starts to exhibit a long-
range order in coordinate space, and adding or subtracting
a few particles can significantly shape the dominant packing
structure.

To remove the residual system-size dependence in VN/N ,
we average over the constant fits to the corrected data and
the linear fits to the raw PIMC results. Our thus determined
final results for v are shown as the green diamonds in all
three panels. In addition, we obtain a reliable measure for the
remaining uncertainty taking into account both the statistical
(Monte Carlo) errors of all data points [95] and the respective
fitting errors from the linear and constant fits. All extrapolated
PIMC results listed in Table I have been obtained in this way.

Another important goal of the present paper is the
comparison of the static density response of the electron
liquid computed within different dielectric methods to the
exact results from PIMC. For this purpose, we compute the
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TABLE I. Interaction energy of the unpolarized electron liquid. Shown are finite-size corrected PIMC data and the corresponding
extrapolation error (�PIMC) as discussed in Sec. III A, as well as dielectric results within STLS [54,55], VS [55], and HNC [58] computed
from the static structure factor S(q) via Eq. (15). All data points are shown in Fig. 8.

rs θ PIMC �PIMC STLS VS HNC

20 0.5 −0.037812 3.6 × 10−5 −0.0368208 −0.0377668 −0.0379232
0.75 −0.037723 1.8 × 10−5 −0.0368128 −0.0378456 −0.0379253

1 −0.0375304 1.9 × 10−6 −0.0366796 −0.0378388 −0.0377905
2 −0.0363461 6.1 × 10−6 −0.0356344 −0.0374242 −0.0366536
4 −0.0338924 4.2 × 10−6 −0.0333573 −0.035110 −0.034162

30 0.5 −0.0259156 6.3 × 10−6 −0.025017 −0.025534 −0.025868
0.75 −0.0258671 4.7 × 10−6 −0.0250256 −0.025567 −0.0258855

1 −0.0257792 2.0 × 10−6 −0.024979 −0.025605 −0.0258388
2 −0.0252204 2.3 × 10−6 −0.0245047 −0.0255615 −0.0253119
4 −0.0239098 2.5 × 10−6 −0.0233338 −0.0250387 −0.0239991

50 0.5 −0.016007 1.4 × 10−5 −0.0152889 −0.0154739 −0.0158967
0.75 −0.0159838 7.4 × 10−6 −0.0152991 −0.0154985 −0.0159106

1 −0.0159485 7.6 × 10−6 −0.0152884 −0.0155096 −0.015902
2 −0.0157336 5.6 × 10−6 −0.0151287 −0.0154601 −0.0157178
4 −0.0151703 1.3 × 10−6 −0.0146535 −0.0151513 −0.0151599

100 0.5 −0.008255 1.2 × 10−5 −0.00778221 −0.00782947 −0.00815748
0.75 −0.0082457 7.5 × 10−6 −0.00778623 −0.00783455 −0.0081637

1 −0.0082349 2.6 × 10−6 −0.00778611 −0.00783633 −0.00816496
2 −0.0081765 2.9 × 10−6 −0.0077569 −0.0078318 −0.00812802
4 −0.00800623 8.4 × 10−7 −0.00763381 −0.00777045 −0.00796771

imaginary-time density-density correlation function F (q, τ )
[cf. Eq. (25)], which is shown in the relevant τ -q plane at the
Fermi temperature in Fig. 4 for two different values of the
density parameter. Firstly, we note that the wave-number grid
is nonequidistant and directly follows from the momentum
quantization as explained in the discussion of S(q), cf. Fig. 3.
In contrast, the τ grid is determined by the number of high-
temperature factors P as introduced in Sec. II A and can, in
principle, be made arbitrarily fine. Although a vivid physical
interpretation of F (q, τ ) is rather difficult, we mention that
its τ → 0 limit is given by the static structure factor (see
the red crosses), and that it is symmetric in τ with respect
to τ = β/2. Moreover, we find a single distinct maximum in
F around twice the Fermi wave number qF, which somewhat
decreases in magnitude with increasing τ and is significantly
more pronounced for rs = 100. In fact, there appears a second
maximum around q/qF ≈ 5 in the latter case, which is of the
order of 10−3.

The main utility of F (q, τ ) in the context of the present
work is Eq. (27), which implies that the static density response
function χ (q) can be obtained from a simple one-dimensional
integration along the τ axis. The results from this procedure
are shown in the top panel of Fig. 5 for rs = 20 and θ = 1.
Let us first consider our PIMC data for the interacting UEG,
which are depicted by the blue squares (red crosses) for
N = 14 (N = 66). Similarly as for the static structure factor,
no system-size dependence in χN can be resolved within the
given statistical uncertainty. Further, the bottom panel shows
the same information for strong coupling, rs = 100, and we
find similar commensurability effects as in SN (q).

Finally, Fig. 6 shows the corresponding PIMC results
for the static local field correction GN (q) as obtained from
Eq. (28) for the same conditions. Unsurprisingly, here, too,
no finite-size effects can clearly be resolved for rs = 20 (top),

whereas the N = 14 data at rs = 100 (bottom) exhibit pro-
nounced fluctuations and systematically lower values than
the N = 66 points for large q. It is well known that the
system-size dependence in GN (q) can often be effectively
removed by replacing in Eq. (28) the ideal response function
χ0(q) by its finite-size pendant χN

0 (q), which can be obtained
using the configuration PIMC (CPIMC) method [85,94]. The
thus corrected data are shown as the black dots in Fig. 6 for
both N and rs values. Interestingly, they do not remove the
N-dependence in our data and can hardly be distinguished
from the raw PIMC values. To understand this behavior, we
must return to the static density response function χ (q) shown
in Fig. 5. In particular, the solid black line shows χ0(q) in
the TDL, and the green dots (black crosses) correspond to
the CPIMC data for N = 14 (N = 66). Evidently, the ideal
response function exhibits almost no system-size dependence
for both densities, which is in stark contrast to the warm
dense matter regime studied in Refs. [85,94]. Therefore the
finite-size effects in the interacting response function and
local field correction are not due to finite-size effects in χN

0 (q),
but are intrinsic to the local field correction GN (q) itself. Still,
it should be noted that these effects do hardly diminish the
value of the PIMC data as a benchmark for dielectric theory,
as the system-size dependence is much smaller compared to
the systematic errors of these approximations, cf. Sec. III D.

B. Static structure factor

Let us start our discussion of the physics of the unpolarized
electron liquid by examining the static structure factor S(q),
which is shown in Fig. 7 for nine different rs-θ combinations.
The red crosses correspond to our new PIMC results and have
been obtained for N = 66 electrons, except for rs = 20 and
θ = 0.5, where we are restricted to N = 20 due to the fermion
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FIG. 4. PIMC results for the imaginary-time density-density cor-
relation function F (q, τ ) [cf. Eq. (25)] of the UEG at θ = 1 for
N = 66 and rs = 20 (a) and N = 100 and rs = 100 (b). F (q, τ ) is
symmetric in τ with respect to τ = β/2 and approaches the static
structure factor S(q) [cf. Eq. (14)] for τ → 0 (red crosses).

sign problem. In particular, S(q) provides the complete wave-
number resolved information about coupling effects in the
system, and is equivalent to the pair-correlation function g(r).

The top row shows results for the highest considered den-
sity in this work, rs = 20, and three values of the temperature
parameter, namely, θ = 0.5 (left), θ = 1 (center), and θ = 4
(right). At the lowest two temperatures, we observe a sig-
nificant maximum in S(q) around qmax ≈ 2.3qF, which is an
indication of an incipient short-range order. Consequently, this
feature decreases with increasing θ and vanishes for θ = 4.

The middle row shows results for S(q) for stronger cou-
pling, rs = 50, and the same three values of the tempera-
ture parameter. Naturally, the system becomes more ordered,
which manifests in a larger amplitude of the main peak, which
even persists at θ = 4. Moreover, this feature is followed by
a significant minimum around q ≈ 3qF both for θ = 0.5 and
θ = 1, see also the insets showing a magnified segment.

In the bottom row, we show results for rs = 100, which is
the largest value of the coupling parameter considered in this
work. Under these extreme conditions, the electrons exhibit
a more pronounced liquid behavior, with the first peak ex-
ceeding (almost reaching) S(qmax) = 1.5 at θ = 0.5 (θ = 1).
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FIG. 5. System-size dependence of the static density response
function of the UEG at θ = 1 for rs = 20 (top) and rs = 100 (bot-
tom). The green circles and black stars show CPIMC data for the
ideal response function χ0(q) for N = 14 and 66, and the solid black
line the corresponding thermodynamic limit. The blue squares and
red crosses show PIMC data for the interacting UEG, again for
N = 14 and 66, respectively. The insets show magnified segments
of the curves.

In addition, we can clearly resolve a small second peak around
q = 4qF in both cases.

Let us next consider the results for S(q) from dielectric
theory (cf. Sec. II B 2), which are depicted as the dashed blue
(STLS), solid green (VS), and dash-dotted black (HNC) lines.
First and foremost, we note that all dielectric results exactly
reproduce the exact parabolic long wave-length limit of S(q)
given by Eq. (30) for all density-temperature combinations by
design, approach unity for large q, and deviate in between.

At rs = 20 and θ = 0.5, 1, both STLS and the HNC-based
scheme do not qualitatively reproduce the peak in our PIMC
data, although HNC does constitute an improvement over
STLS over the entire q range. In contrast, the VS approach
is in spectacular agreement to the red crosses and reproduces
the maximum in S(q) regarding position, width, and height.
Interestingly, this behavior changes significantly for θ = 4,
where STLS (VS) is significantly too high (low) for q � 2,
whereas the HNC approach is in good agreement to the PIMC
data everywhere.
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FIG. 6. System-size dependence of the static local field correc-
tion of the UEG at θ = 1 for rs = 20 (top) and 100 (bottom). The red
crosses and green diamonds show the raw PIMC data for N = 66 and
14, and the black dots the corresponding finite-size corrected values.

Upon increasing the coupling strength to rs = 50, no di-
electric approach is capable to reproduce all qualitative as-
pects of the PIMC results for θ = 0.5 and 1. The HNC scheme
constitutes the most accurate approximation for q � qmax and
correctly predicts the position of the first peak, but consider-
ably underestimates the height. In contrast, the VS curve is
superior regarding peak height, but gives the wrong position.
Lastly, the STLS approach combines the shortcomings of both
and gives a too low peak at the wrong position. In addition, we
note that no dielectric method is capable to resolve the shallow
minimum in S(q) around q ≈ 3qF, cf. the insets showing a
magnified segment around this feature. At θ = 4, the respec-
tive accuracy of the dielectric methods somewhat changes and
HNC and VS provide a similarly accurate description of S(q).

Let us conclude this section with an assessment of dielec-
tric theory at strong coupling, rs = 100. While there appear
significant deviations between the former and the PIMC data
for the entire relevant q range, the HNC scheme still consti-
tutes a remarkable improvement over STLS everywhere. More
specifically, HNC gives the correct peak position, though
again with an underestimated height, and even predicts a
subsequent minimum in S(q), see the inset. Furthermore, VS

provides the most accurate description of the peak height, but
at a too small q.

C. Interaction energy

In Fig. 8, we show extensive comparisons of the interaction
energy per particle v in the thermodynamic limit between
different methods and data sets. More specifically, we show
the θ dependence of v for four different values of the den-
sity parameter rs covering the entire relevant electron liquid
regime.

Let us start this investigation by considering the top left
panel corresponding to rs = 20. The red crosses depict our
new PIMC data, which have been extrapolated to the TDL as
discussed in Sec. III A, cf. Fig. 2. Further, the blue squares,
green diamonds, and black circles show dielectric results
within STLS, VS, and HNC, which have been obtained by
numerically integrating over S(q) via Eq. (14). First and fore-
most, we note that the interaction energy increases towards
high temperature, as it is expected. Somewhat surprisingly, we
find that STLS overall constitutes the least accurate dielectric
theory, which is in contrast to previous findings in the warm
dense matter regime [2]. Furthermore, we find that VS and
HNC are almost indistinguishable for the three lowest con-
sidered temperatures. In this context, it is important to note
that VS does give an accurate description of S(q) at these
parameters, whereas the high accuracy of HNC is due to a
fortunate cancellation of errors under the integral in Eq. (14).
Interestingly, VS provides the least accurate results for θ = 2
and θ = 4, with a systematic deviation of �v/v ∼ 3%, and
only the HNC scheme gives reliable results over the entire θ

range. In addition to dielectric theory, we also show the inter-
action energy computed from two recent parametrizations of
the exchange-correlation free energy fxc via

v(rs, θ ) = 2 fxc(rs, θ ) + rs
∂ fxc(rs, θ )

∂rs

∣∣∣∣
θ

. (32)

The dash-dotted yellow line depicts the results from Eq. (32)
using the parametrization by Groth et al. [34] (GDSMFB)
that is valid for 0 � rs � 20 and based on a combination of
different new PIMC methods. More specifically, it uses as
input finite-size corrected [33] interaction energies from the
permutation blocking PIMC approach, which relies on a small
number of fourth-order factorizations of the thermal density
matrix, see Refs. [47,48,97] for extensive discussions. Yet,
we find perfect agreement to our new, independent PIMC data
over the entire θ range. Finally, the dashed dark grey curve has
been computed by evaluating Eq. (32) using the parametriza-
tion of fxc by Karasiev et al. [52] (KSDT), which is based on
the restricted PIMC data from Ref. [31]. Although the input
data have been shown to be somewhat unreliable due to (i)
the uncontrolled fixed node approximation (see Ref. [32] for
the first systematic quantification of the corresponding nodal
errors, and Ref. [2] for an overview) and (ii) an insufficient
treatment of finite-size effects [33], the KSDT curve is in
good qualitative agreement to our PIMC data and is, overall,
more accurate than VS and STLS. For completeness, we
mention that such discrepancies in the parametrization of fxc

in the low-density regime are not expected to impact a density
functional theory calculation in the warm dense matter regime
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FIG. 7. Comparison of the static structure factor of the unpolarized electron liquid. Shown are PIMC data (red crosses, N = 66 electrons,
except for rs = 20 and θ = 0.5 where we show N = 20) and the results from various dielectric approximations, in particular STLS (dashed
blue), VS (solid green), and HNC (dash-dotted black).

and, thus, are primarily of academic interest, see Ref. [53] for
a recent discusion of this point.

Upon increasing the coupling parameter rs, we observe
the following major trends: (i) VS becomes significantly less
accurate, even though it correctly captures the increase in the
peak height of S(q), cf. Fig. 7; (ii) STLS does constitute
the least reliable dielectric method for almost all depicted
rs-θ combinations with a systematic deviation of �v/v ≈
6% at rs = 100 and θ = 0.5; and (iii) HNC provides the
most accurate interaction energies for nearly all parameter
combinations, although the accuracy somewhat decreases for
large rs and small θ . Still, even at rs = 100 and θ = 0.5, we
find �v/v ≈ 1%.

Note that the parametrization by KSDT is available at
rs = 30 (it was constructed for 0 � rs � 40), which is beyond
the range of validity of GDSMFB. Again, we find that the
dashed grey curve is in good qualitative agreement with the

new PIMC data and is more accurate than STLS and VS,
though not HNC. Finally, we mention that all extrapolated
PIMC data and dielectric results are listed in Table I.

D. Density response and local field correction

In the following section, we turn our attention to the
original raison d’être of the dielectric formalism as introduced
in Sec. II B, which is the description of the response of the
electron liquid to an external (static) perturbation. To this
end, we show an extensive comparison of the static density
response function χ (q) between our PIMC data and the
dielectric methods in Fig. 9. Firstly, we mention that both the
curves and the crosses exhibit the exact parabolic behavior at
small q,

lim
q→0

χ (q) = − q2

4π
, (33)
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FIG. 8. Comparison of interaction energies of the unpolarized electron liquid for rs = 20 (top left), rs = 30 (top right), 50 (bottom left),
and 100 (bottom right). Shown are finite-size corrected PIMC data (red crosses), dielectric results within STLS (blue squares), VS (green
diamonds), and HNC (black circles). In addition, we show interaction energies computed from two recent parametrizations of the exchange–
correlation free energy fxc via Eq. (32), namly by Groth et al. [34] (GDSMFB, dash-dotted yellow) for rs = 20 and Karasiev et al. [52] (KSDT,
black dashed) for rs � 30.

which is an immediate consequence of screening effects in
the electron gas [93]. Furthermore, we observe a qualita-
tively similar behavior of χ (q) for all depicted cases, i.e.,
a monotonic increase, followed by a pronounced maximum
around qmax ≈ 2qF, and a subsequent monotonic decay with
increasing q, where it converges towards the ideal function
χ0(q) and eventually decays to zero. Interestingly, the position
of the peak does not coincide with the peak in S(q) [or in
G(q), see Fig. 10 below], but occurs for somewhat smaller
wave numbers. A further pronounced trend that is manifest in
our results for χ (q) concerns the peak width, which becomes
increasingly sharp both towards low temperature and large
rs. This trend is connected to the possible emergence of a
change-density wave instability [6–8], which is discussed in
more detail in Sec. III E.

Let us next examine in detail the accuracy of the different
dielectric methods regarding the description of the density
response. At rs = 20 (top row), VS gives an almost exact
description of the peak position, and constitutes also the
most accurate approximation for the peak height. This is in
contrast to the previously discussed static structure factor
S(q), where the peak position was more accurately estimated
by HNC, whereas VS was systematically too small. Moreover,
we note that HNC provides the best description for small to
intermediate wave numbers, 0 � q � 1.5qF, and that STLS
is the least accurate method for all temperatures. Finally, we
note that all dielectric methods become more accurate in the

description of χ (q) with increasing θ , as the impact of the
approximate local field correction vanishes.

Upon increasing the coupling strength to rs = 50 (center
row) and 100 (bottom row), all dielectric methods become
significantly less accurate, as it is expected. At rs = 50, the VS
method gives the best qualitative description of the static den-
sity response, as the peak height is predicted with remarkable
accuracy even for θ = 0.5 and 1, whereas it is significantly
underestimated both by STLS, and even more so by HNC.
Interestingly, the latter approach almost exactly predicts the
right peak position at rs = 100, although here, too, the peak
height is captured better by VS. A further detail of interest
concerns the large-q behavior of χ (q) at θ = 0.5, 1, where
the PIMC data exhibit significant deviations to all dielectric
theories. This has some interesting consequences for the local
field correction, which are discussed below.

In a nutshell, we again find a trade-off regarding the
description of peak height and position between VS and HNC,
whereas STLS consistently provides the worst description of
χ (q) both qualitatively and quantitatively.

The second key quantity regarding the description of the
density response of the electron liquid is the (static) local
field correction G(q), which is shown in Fig. 10 for the
same conditions as in Fig. 9. For completeness, we note that
the PIMC data for G(q) have been finite-size corrected by
using CPIMC data [85] for χN

0 (q) as described in Sec. III A,
although the effect can hardly be seen with the naked eye. In
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FIG. 9. Comparison of the static density response function of the unpolarized electron liquid. Shown are PIMC data (red crosses, N = 66
electrons, except for rs = 20 and θ = 0.5 where we show N = 20) and the results from various dielectric approximations, in particular STLS
(dashed blue), VS (solid green), and HNC (dash-dotted black).

contrast to the previously shown comparisons for the static
structure factor S(q) (Fig. 7) and density response function
χ (q) (Fig. 9), the dielectric theories give a distinctly different
qualitative behavior of G than the exact PIMC results, as we
will discuss in detail below.

Let us first focus on the PIMC data, which are, as usual,
given by the red crosses. Firstly, we note that G(q) exhibits
a quadratic behavior for small q, which is given by the exact
compressibility sum-rule Eq. (22). Moreover, G exceeds unity
for some wave numbers for all shown cases, which indicates
an attractive electron-hole interaction in the description of
screening effects [8]. Moreover, this feature is a necessary,
though not sufficient condition for a CDW, which is discussed
in detail in Sec. III E. At the Fermi temperature (middle

column), G(q) exhibits a pronounced maximum around q ≈
2.5qF for all rs values, which is followed by a minimum
at q ≈ 3.2qF, and a subsequent increase in G for large q.
Interestingly, this structure becomes less pronounced both
with increasing and decreasing θ , and is absent in our PIMC
data at rs = 20 for both θ = 0.5 and 4. To understand the
increase of G(q) towards large wave numbers, we might recall
the corresponding expansion by Holas [98],

lim
q→∞ G(q) = B(rs) + C(rs)q2 , (34)

which states that, in the ground state, the static local field
correction does not become constant, but instead approaches
a parabola in this limit. More specifically, both constants
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FIG. 10. Comparison of the static local field correction of the unpolarized electron liquid. Shown are PIMC data (red crosses, N = 66
electrons, except for rs = 20 and θ = 0.5 where we show N = 20) and the results from various dielectric approximations, in particular STLS
(dashed blue), VS (solid green), and HNC (dash-dotted black). Further, the light blue triangles in the bottom left panel depict ground-state
QMC data for the spin-polarized UEG from Ref. [105].

are known from theory, and the prefactor C(rs) is directly
proportional to the change in the kinetic energy K due to
interaction effects, Kxc. While we again stress that Eq. (34)
does not hold at finite temperature [94], it still qualitatively
explains the observed increase in G(q) as Kxc is strictly
positive under the present conditions [99]. A similar behavior
was reported recently in Ref. [94] in the warm dense matter
regime. Moreover, we note that Kxc vanishes in the classical
limit, and it is well known that G(q) approaches unity for large
q in this regime [102].

For completeness, we also include the ground-state QMC
data for the spin-polarized UEG at rs = 100 from Ref. [105]
in the bottom left panel as the light blue triangles. While

we do not expect significant effects of the spin polarization
at such strong coupling, the x axis has been rescaled by a
factor of 21/3 to take into account the difference in the Fermi
vector qF. Overall, the ground-state data exhibit the same
qualitative behavior as the PIMC results at θ = 0.5, although
the maximum and subsequent positive tail appear to be shifted
to somewhat lower values.

Let us next discuss the quality of the dielectric methods.
In general, we find that VS constitutes the most accurate
approximation for small q (the only exception is rs = 20 and
θ = 4, where HNC is superior). This is consistent with pre-
vious findings [2,18] and is most likely a direct consequence
of the incorporation of the compressibility sum rule (22) into
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the formalism. Still, it is important to note that fulfilling
Eq. (22) does not guarantee the correct small-q behavior, as
the exchange-correlation free energy f VS

xc as computed via VS
is not equal to the exact quantity. Furthermore, we find that VS
provides a surprisingly good description of G(q) in particular
for rs = 20 and θ = 0.5, 1, and, in the latter case, agrees with
our PIMC data nearly up to q = 3.5qF. In contrast, the HNC
scheme constitutes the most accurate dielectric approximation
at strong coupling, where it again correctly predicts the posi-
tion of the peak around qmax ≈ 2.3qF. Finally, we mention that
STLS provides the least accurate description of G(q), which
is consistent with our previous findings for S(q) and χ (q).

Let us conclude this section with a discussion of the large-q
limit of the dielectric methods, which are all approaching a
constant value in this limit. First and foremost, we note that all
three schemes constitute static approximations, i.e., they treat
the dynamic local field correction as frequency independent
for all ω, Gstatic(q, ω) = G(q). Therefore the static local field
correction from those theories should be interpreted as some
kind of “frequency average,” but cannot reproduce the exact
behavior in the static limit by design [103]. While the PIMC
data, too, are only available for ω → 0, they nevertheless have
been obtained from a full “dynamic theory.” More specifi-
cally, the full frequency-dependence is incorporated into the
PIMC formalism via a propagation in the imaginary time τ

corresponding to the exact description of the thermodynamic
equilibrium.

In fact, it is well known from the electronic cusp condition
[104] that neglecting the frequency dependence in G(q, ω)
leads to a constant value for large q,

lim
q→∞ G(q) = 1 − g(0), (35)

with g(0) being the pair-correlation function at zero distance.
Indeed, Eq. (35) is fulfilled by all dielectric theories, which
explains the observation in Fig. 10, see also Ref. [54] for a
more extensive discussion.

E. Charge-density wave instability

Is has long been speculated [6–8] that the electron liquid
might become unstable to an infinitesimal density perturba-
tion for some specific wave number at strong coupling. Such
a charge-density wave is defined by a divergence of the static
density response function,

lim
q→qCDW

χ (q) → ∞, (36)

which can be reformulated in terms of the local field correc-
tion as

GCDW(q) = 1 − q2

4πχ0(q)
. (37)

For the corresponding condition G(q) = GCDW(q) to hold,
the local field correction must be larger than one, since the
denominator in Eq. (37) is strictly negative.

In Fig. 11, we investigate this condition for the unpolarized
electron liquid by comparing the above condition to our PIMC
data. The top panel corresponds to rs = 20, and we plot G(q)
for three different temperatures. Firstly, we note that G(q)
only weakly depends on temperature for small to intermediate
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FIG. 11. Excluding the possibility of a charge-density wave.
Shown are our PIMC data for N = 66 unpolarized electron for the
static local field correction at rs = 100 and θ = 4, 1, and 0.5 (top),
as well as for θ = 0.75 and rs = 20, 50, and 100 (bottom). The
corresponding lines depict the condition for a CDW [cf. Eq. (37)]
at the respective parameters.

wave numbers, whereas they substantially deviate for large
q. At θ = 4, Eq. (37) is rapidly increasing with q and does
not come close to our PIMC data for any q. With decreasing
temperature, the maximum in G(q) slightly increases, and
GCDW(q) approaches the data points around twice the Fermi
wave number. Still, the two curves do not intersect at the
present conditions, which means that a CDW is not present
in this regime. This is consistent with previous findings
from Schweng and Böhm [7], who predicted the formation
of a CDW at rs = 142 and θ = 0.5 based on the dynamic
version of the STLS approximation. Moreover, we mention
that the trend observed in the top panel of Fig. 11 does not
conclusively point to the formation of a CDW at rs = 100
with decreasing temperature, as both the exact static LFC and
Eq. (37) are not expected to drastically change for θ < 0.5 in
the relevant q range.

In the bottom panel, we show the same investigation
for θ = 0.75 and three different values of the density
parameter rs. The most noticeable trend in our PIMC data
is the increase in the maximum of G(q) with increasing the
density, and the simultaneous decrease in the slope for large q.
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TABLE II. Overview of dielectric theories in the electron liquid regime. The first and second rows show the basis for the approximation (cf.
Sec. II B 2) and maximum error in the interaction energy (which appears at rs = 100 and θ = 0.5, see Fig. 8 and Table I). The last three rows
summarize trends regarding the comparison to our new ab intio PMIC data for the static structure factor S(q) (see Fig. 7), density response
function χ (q) (see Fig. 9) and local field correction G(q) (see Fig. 10). The different colours indicate good (maximum deviation <10%), ok
(max. two points with a deviation of ∼10%), and bad (deviations >10%) qualitative agreement to the PIMC results regarding a particular
feature.

STLS VS HNC

approximation f2(r1, r2) ≈ f1(r1) f1(r2)geq(r1, r2) STLS + CSR STLS + HNC
maximum �v/v 5.7% 5.4% 1.2%
S(q): peak height/position height/position height/position
χ (q): peak height/position height/position height/position
G(q): peak height/position height/position height/position
large-q tail flat flat flat

Regarding the possibility of a CDW, we find that Eq. (37) ap-
proaches the exact LFC for large rs, as it is expected. Still, we
cannot conclude that a CDW will actually occur upon further
increasing rs based on this trend: while GCDW(q) will indeed
get further shifted to the right for increasing rs, the magnitude
of G(q) in the relevant q-range decreases, and the two might
potentially not intersect even then. On the other hand, it is
imaginable that the CDW might occur at large rs for wave
numbers not around the maximum, but the increasing large-q
tail. This, too, however, cannot be inferred from our PIMC
data, as the electron liquid will eventually crystallize, which
might significantly change the density response, and renders
an extrapolation of the observed trends highly dubious.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the uniform electron gas in
the strongly coupled electron liquid regime. First and fore-
most, we have carried out extensive PIMC simulations for 20
different density–temperature combinations and, to mitigate
finite-size effects, different particle numbers N . We expect
these data to be very valuable in themselves, as they substan-
tially extend our current picture of the UEG beyond the WDM
regime. In addition, we have applied dielectric theory within
the STLS, VS, and HNC approximations, and have found that
different schemes reproduce different features of the exact
results, see Table II for a juxtaposition. For example at rs = 50
and 100, where the static structure factor S(q) exhibits a
pronounced peak, the HNC results give a maximum relative
deviation of 2.7% (20%) in the position (height) compared
to our PIMC data, whereas VS and STLS give 17% (11%)
and 18% (25%), respectively. Similarly, we find maximum
deviations in the position (height) of 9% (44%), 17% (14%),
and 18% (38%) for HNC, VS, and STLS in χ (q).

Overall, our key findings are that (i) VS is remarkably
accurate for rs = 20 and almost exactly reproduces the exact
data for S(q). This is in contrast to previous findings in the

WDM regime [2]; (ii) the recent HNC scheme provides the
most accurate interaction energies, which is the result of a
fortunate error cancellation in the integration of S(q); (iii) our
new PIMC data for v are in good agreement with parametriza-
tions of fxc, where they are available; and (iv) no dielectric
method provides an accurate description of G(q) [and, to a
lesser extent, χ (q)], in particular towards large q. Moreover,
we have investigated the possibility of a charge-density wave,
which, however, does not manifest at the present conditions.

We expect our new results to be useful to extend
parametrizations of the UEG [2,34,52,53] towards the low-
density regime, and to provide a challenging benchmark for
new approximations [106]. In addition, the comparison to
dielectric theory has revealed partly substantial shortcomings
of the latter, which can be used as the starting point for the
further development of dielectric approximations. Possible fu-
ture projects include the investigation of the dynamic structure
factor (see Refs. [17,18]) and the corresponding incipient ex-
citonic mode [15,16], and PIMC simulations at even stronger
coupling to study the onset of Wigner crystallization at finite
temperature [107].

All PIMC data are available online [96].
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