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Effect of cation-vacancy superstructure on the phonon dynamics in KNi2Se2
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Density functional theory investigations of effects arising from ordered structure of cation vacancies in
KNi2Se2 are reported. The simulated cation-deficient KxNi2−ySe2 phases with x = 0.8, y = 0.0, and y = 0.4
lie within the stoichiometry range of experimental samples produced by the self-flux method or oxidative dein-
tercalation of a vacancy-free system. Results of the present studies indicate pronounced impact of cation vacancy
superstructure on the structural, electronic, and vibrational properties of KNi2Se2. Revealed modifications of the
local structure, atomic bond lengths, electronic, and phonon bands, which are especially noticeable in the system
with both potassium and nickel deficiencies, are reflected in the simulated neutron pair-distribution functions,
the phonon and Raman spectra, which are provided to facilitate both experimental verification of the predicted
effects and analysis of the phase composition of a multiphase K-Ni-Se material.
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I. INTRODUCTION

The ternary transition-metal dichalcogenides with gen-
eral formula AT2X2 (A = alkali metal or Tl; T = Fe,
Co, Ni; X =S, Se) are members of a large family of
layered-structure compounds, adopting tetragonal quasi-two-
dimensional ThCr2Si2-type structure which is formed by
stacking covalently bonded transition metal-metalloid T2X2

layers comprised of edge-sharing TX4 tetrahedra, with ionic
A atoms. For the last few years, the layered quasi-2D AT2X2

systems have been the subject of numerous experimental
and theoretical investigations due to their fascinating physi-
cal properties, including superconductivity in Fe-based com-
pounds [1–3], a rich diversity of magnetic orderings in Co-
based systems [4–9], and a heavy-fermion behavior at low
temperatures in the Ni-based counterparts [10–13]. In most
cases the composition of AT2X2 compounds deviates from
the ideal 122 stoichiometry because of vacancies which ap-
pear in their crystal lattices. Vacancies usually occupy A- or
T-cation sites, leaving the anion sublattice unaffected. The
well-known example is the K-Fe-Se system, in which at least
four distinct types of phases could be recognized [14]: (i) K-
deficient metallic superconducting phase KxFe2Se2 (0.38 <

x < 0.58), (ii) Fe-deficient phase KFe2−ySe2 with y = 0.4
(KFe1.6Se2), and (iii) KxFe2−ySe2 phase with x = 0.8 and
y = 0.4. Iron vacancies in the K-Fe-Se system were observed
[15–19] to form ordered structure at certain y. A regular
distribution of Fe vacancies in K0.8Fe1.6Se2 phase, which is
equivalent to K2Fe4Se5 (the so-called 245 phase), gives rise
to a

√
5 × √

5 × 1 superstructure [16,20]. The presence of
cation vacancies in ThCr2Si2 structure results in symmetry
lowering from the space group I4/mmm (No. 139) to I4/m
(No. 87). The structurally related Ni-based compounds can
also exhibit cation deficiency in the K sublattice or both K and
Ni sublattices when experimental samples are prepared by the
self-flux method [12,21]. Besides, the K-Ni-Se phases with
variable and controllable amount of cation vacancies can be

produced by the oxidative deintercalation of pristine KNi2Se2.
It was shown [22] that KxNi2Se2 and KxNi2−ySe2 are formed
at low and high oxidation levels, respectively.

Theoretical description of electronic properties of cation-
deficient Ni-based 122 phases has been undertaken recently
[23] within the framework of the full-potential linearized
augmented plane-wave + local orbitals (FP − LAPW + lo)
method. These simulations took into account K and Ni va-
cancy order in K0.8Ni2Se2 and K0.8Ni1.6Se2 compositions.
They revealed significant influence of these defects on both
electronic structure and Fermi surface topology of KNi2Se2.
Following this research, we have performed density functional
theory studies for the off-stoichiometric KxNi2Se2 (x = 0.8)
and KxNi2−ySe2 (x = 0.8, y = 0.4) phases to explore the ef-
fect of vacancy superstructure on their electronic and dynami-
cal properties. Results obtained for the K-Ni-Se systems with
point defects are discussed with respect to those for pristine
material as well as available experimental data reported for
the nonstoichiometric K-Ni-Se compositions.

II. METHODOLOGY

A. Structural models

The simulated K0.8Ni2Se2 and K0.8Ni1.6Se2 compositions
were obtained by removing the K and Ni atoms from the
vacancy-free KNi2Se2 in a manner described in Refs. [14,23],
and hence they show similar ordering pattern of cation vacan-
cies to that encountered in the KxFe2−ySe2 analogues. Ordered
vacancies lower symmetry of the parent KNi2Se2 structure
from I4/mmm (No. 139) to I4/m (No. 87) space group.
The K4Ni10Se10 and K4Ni8Se10 model structures correspond,
respectively, to K0.8Ni2Se2 and K0.8Ni1.6Se2 compositions.
Created structures are shown in Fig. 1. Their unit cells are built
up of interspersed Ni-Se slabs and nets of K atoms, stacked
along the z axis. In the ideal KNi2Se2 structure of I4/mmm
space group, the K atoms occupy 2a(0, 0, 0) positions, Ni
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FIG. 1. The (001) projections of the 2 × 2 × 1 supercells of
vacancy-free KNi2Se2 and vacancy-containing K4Ni10Se10 and
K4Ni8Se10 model structures corresponding to KxNi2−ySe2 phases
with x = 0.8 and y = 0.4. Gray, red, and blue balls represent K, Ni,
and Se atoms, respectively.

atoms are located at 4d (0, 1
2 , 1

4 ) positions, and Se atoms reside
at 4e(0, 0, z) sites. The nonequivalent atomic positions for the
I4/m structure of K0.8Ni2Se2 phase are as follows: K(8h),
Ni1(4d ), Ni2(16i), Se1(4e), and Se2(16i). In the K0.8Ni1.6Se2

phase the K, Se1, and Se2 atoms are found at the same
Wyckoff positions as in the K0.8Ni2Se2 phase, but only one
nonequivalent Ni atom at (16i) site is present.

Despite the modeled stoichiometries of vacancy-
containing K-Ni-Se systems correlate well with stoichiome-
tries of the experimental KxNi2Se2 (0.8 � x � 0.95) and
KxNi2−ySe2 (x = 0.63, 0.75, y = 0.25, 0.5) polycrystalline
samples prepared by the oxidative deintercalation reaction
[22] as well as KxNi2−ySe2 (x = 0.95, y = 0.14) single
crystals produced by the self-flux method [12,21], the
simulated compositions with vacancy superstructures may
not represent exactly the synthesized nonstoichiometric
compounds, since the cation vacancies in realistic samples
may be disordered. Most likely it was the case for recently
synthesized KxNi2Se2 and KxNi2−ySe2 phases [12,22] as their
structural parameters could be determined from the Rietveld
analysis of the x-ray diffraction within the I4/mmm symmetry
of the KNi2Se2 parent phase. Otherwise, symmetries of the
K-Ni-Se systems with vacancy ordered states would be lower,
i.e., I4/m for composition with x = 0.8 and y = 1.6.

B. Computational details

Electronic structures and the Hellmann-Feynman (HF)
forces acting on atoms in the considered K-Ni-Se compo-
sitions were obtained from the density functional theory
using the Vienna ab initio simulation package (VASP) [24],
employing periodic boundary conditions, a plane wave basis
set, the Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation (GGA) exchange-correlation functional [25]
and the projector-augmented wave (PAW) method [26] for
description of the electron-ion interactions. The PAW pseu-
dopotentials with valence electron configurations K(3p64s1),
Ni(3d84s2), and Se(4s24p4) were taken from VASP database.
Calculations were performed with the energy cutoff for the
plane wave expansion of 351 eV and the Monkhorst-Pack
k-point mesh of 8 × 8 × 6. The K0.8Ni2Se2 and K0.8Ni1.6Se2

structures were fully optimized at the convergence criteria for
the total energy and the HF forces of 10−7 eV and 10−5 eV/Å,
respectively. Phonons were determined within the harmonic

approximation [27] for 2 × 2 × 1 supercells consisting of 192
(K0.8Ni2Se2) and 176 (K0.8Ni1.6Se2) atoms. The amplitude
of atomic displacement to generate nonvanishing HF forces
of ±0.02 Å was applied. Peak intensities of the nonreso-
nant Raman spectra (in the Stokes process) were calculated
according to the expression [28]: I ∝ |ei R es|2ω−1(n + 1),
where (n + 1) is the population factor for Stokes scattering
with n = [exp(h̄ω/kBT ) − 1]−1 denoting the Bose-Einstein
thermal factor, ei (es) is the polarization of incident (scat-
tered) radiation, R is the Raman susceptibility tensor. The
components of R tensor were determined [27,29] from deriva-
tives of the electric polarizability tensor over the atomic
displacements. Electric polarizabilities were calculated with
the linear-response method implemented [30] in the VASP
code. The pair-distribution functions were obtained using
the PDFGUI program [31]. To compare theoretical density of
phonon states to that determined from the experimental inelas-
tic neutron scattering (INS) spectrum, the neutron-weighted
phonon density of states has been evaluated as [32] G(ω) =∑

i ci
σi
Mi

fi(ω) with ci, σi, and fi(ω) denoting concentration,
total neutron scattering cross section, and the partial phonon
density of states for the ith atomic species, respectively. The
total neutron scattering cross sections for K, Ni, and Se
amount, respectively, to 1.96, 18.5, and 8.30 barn [33]. Thus,
the scattering efficiencies of K, Ni, and Se equal to 0.05,
0.315, and 0.105 barn/a.m.u., respectively.

III. RESULTS AND DISCUSSION

A. Structural properties

Results of our spin-polarized calculations performed
at magnetic configurations similar to those observed for
KxFe2−ySe2 analogues [34] show that neither Ni nor K va-
cancies alter the magnetic response of the considered K-Ni-Se
phases, i.e., their magnetic properties remain consistent with
the Pauli paramagnetic behavior [12,13,22]. The optimized
lattice constants and internal atomic coordinates of the equi-
librium KNi2Se2, K0.8Ni2Se2, and K0.8Ni1.6Se2 compositions
are summarized in Table I.

Although the K-Ni-Se phases with various stoichiometries
have been identified by the x-ray diffraction experiments
[12,22], their structures were refined by the Rietveld anal-
ysis under the symmetry constraints of the ideal I4/mmm
space group. Therefore, a direct comparison of our simulated
structures containing defects with the experimental ones could
not be done. Nevertheless, some general trends which follow
from experiments can be outlined. In the KxNi2Se2 phases
with x > 0.75 the separation between Ni-Se layers expands,
whereas the Ni-Ni distances contract. These observations are
reflected by the calculated K0.8Ni2Se2 structure. On the other
hand, the separation between Ni-Se layers contracts and Ni-Ni
distances slightly expand in the K0.8Ni1.6Se2 phase.

In order to study the effect of K and Ni vacancies
on the local atomic structure, we have simulated the neu-
tron pair-distribution functions, Gn(r), for the vacancy-free
and vacancy-containing systems using unit cell dimensions,
atomic coordinates, and temperature factors Ui j given in
Table I. Resulting total Gn(r) from both defected and defect-
free systems are presented in Fig. 2 along with the atomic pair
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TABLE I. Structural parameters and mean-squared atomic dis-
placements (Ui j in 10−2 × Å2) calculated in harmonic approximation
at 20 K for KNi2Se2 [13], K0.8Ni2Se2, and K0.8Ni1.6Se2 phases.

KNi2Se2 a = 3.9714 Å c = 13.1168 Å

Atom Site x y z U11 U22 U33

K 2a 0.0 0.0 0.0 0.426 0.426 0.515
Ni 4d 0.0 0.5 0.25 0.317 0.317 0.446
Se 4e 0.0 0.0 0.3507 0.228 0.228 0.383

K0.8Ni2Se2 a = 8.7773 Å c = 13.3446 Å

Atom Site x y z U11 U22 U33

K 8h 0.3059 0.8860 0.0 0.438 0.480 0.484
Ni1 4d 0.0 0.5 0.25 0.309 0.209 0.401
Ni2 16i 0.3008 0.4000 0.2512 0.292 0.296 0.391
Se1 4e 0.0 0.0 0.1462 0.239 0.239 0.288
Se2 16i 0.0993 0.2994 0.3496 0.235 0.252 0.316

K0.8Ni1.6Se2 a = 8.9492 Å c = 12.7602 Å

Atom Site x y z U11 U22 U33

K 8h 0.3120 0.8853 0.0 0.462 0.491 0.492
Ni 16i 0.3006 0.4039 0.2470 0.275 0.285 0.356
Se1 4e 0.0 0.0 0.1493 0.244 0.244 0.267
Se2 16i 0.1049 0.3021 0.3448 0.237 0.281 0.366

correlations (partials) for ideal KNi2Se2. The partial Gn(r)
spectra are especially useful while identifying contributions
from particular atomic pairs at the given distance. Figure 2(a)
indicates that in the stoichiometric KNi2Se2 of I4/mmm
symmetry, which hosts only one site for each atomic specie,
the nearest neighbors of Ni atoms are Se atoms located at
∼2.4 Å. The second neighbors of Ni atoms are Ni atoms
residing at ∼2.8 Å, but the second neighbors of Se atoms are
K atoms at the distance of about 3.4 Å. Therefore, the two
peaks between 2–3 Å correspond to the Ni-Se and Ni-Ni bond
lengths, whereas the third peak is due to the K-Se bond length.
In the K0.8Ni2Se2 and K0.8Ni1.6Se2 compositions, positions
of the two first peaks are only slightly shifted with respect
to those found for the stoichiometric system. This is mainly
because below 3 Å the change in Ni-Se and Ni-Ni bond
lengths due to incorporated cation vacancies is indeed very
small (∼0.01–0.02 Å). Also, there is no visible splitting of
peaks originating from two nonequivalent Ni or Se atomic
sites, in contrast to the findings made for KxFe2−ySe2 counter-
part [35]. The K-Se bond lengths at r ∼ 3.4 Å remain some-
what modified in the K-deficient system, but more significant
changes are encountered at distances in the range 3.4–4 Å
for the composition with vacancies residing in both K and
Ni sublattices. Here, a distribution of K-K, Ni-Ni, Se-Se, and
K-Ni bond lengths give rise to a broad two-peak structure of
the pair-distribution function. Again, pronounced differences
in the Gn(r) spectra of nonstoichiometric K-Ni-Se phases can
be observed at distances greater than 6 Å.

B. Electronic properties

Apart from the changes in structural features of KNi2Se2

induced by superstructure of cation vacancies, one expects
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FIG. 2. (a) Partial pairwise contributions to the neutron pair-
distribution function Gn(r) for vacancy-free KNi2Se2. (b) Total
Gn(r) of KNi2Se2, K0.8Ni2Se2, and K0.8Ni1.6Se2. Simulations were
performed with Qmax = 35 Å−1.

some modifications of its electronic bands. To clarify such
changes we first examine the band structure of stoichiometric
KNi2Se2, which is depicted in Fig. 3(a). The valence band of
KNi2Se2, which extends to about 6 eV below the Fermi energy
(EF ), is composed of two subbands separated by a small gap.
The subband ranging from EF to −2.5 eV is dominated by the
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FIG. 3. Total and atomic projected electronic densities of states
for (a) KNi2Se2, (b) K0.8Ni2Se2, and (c) K0.8Ni1.6Se2. The Fermi
level EF , indicated by dashed line, is taken as the reference energy.

045125-3



WDOWIK, JAGŁO, AND LEGUT PHYSICAL REVIEW B 101, 045125 (2020)

Ni-3d states that are responsible for the metallic-like Ni-Ni
bonds. The subband spanning between −3 eV and −6 eV
below EF is due to hybridized Ni-3d and Se-4p states. This
hybridization gives rise to covalent bonding inside the Ni2Se2

layers. The mixed Ni-3d and Se-4p states constitute also the
bottom of the conduction band. We note that the contribution
from the K valence states to the density of electron states in
KNi2Se2 is practically negligible. This is a common feature
of the AT2X2 system, where the alkali atoms exist in the form
of cations with valencies close to 1+. Because of negligible
contribution of the K states to the valence bands of KNi2Se2,
defecting the K sublattice by vacancies does not change
qualitatively the valence bands, as indicated by the calculated
density of electron states for K0.8Ni2Se2 which is presented
in Fig. 3(b). More pronounced modifications of the KNi2Se2

valence bands occur when vacancies are introduced into the Ni
sublattice. Figure 3(c) clearly shows that Ni vacancies induce
additional electronic states in the vicinity of −3 eV below
EF as well as cause some shift of the subband containing
hybridized Ni-3d and Se-4p orbitals toward the Fermi level.
Both effects lead to a closure of small gap, which separated
the valence subbands in the systems with fully occupied Ni
sublattice.

The K-Ni-Se systems with cation vacancies exhibit re-
duced spectral density at the Fermi level, n(EF ), as compared
to the vacancy-free KNi2 Se2. The values of n(EF ) amount to
5.99, 5.90, and 5.32 states/eV per formula unit for KNi2Se2,
K0.8Ni2Se2, and K0.8Ni1.6Se2, respectively. On one hand, the
contribution from Ni-3d states at EF decreases with increasing
vacancy concentration, but on the other hand, one observes
increased contribution from the Se-4p states at EF . which
is related with the charge transfer taking place from the
nickel to selenium band. This process is also reflected by
the effective charges determined from the electron topological
analysis [36] which gives the following effective valence
charges in particular K-Ni-Se phases: K0.78+Ni0.28+

2 Se0.67−
2 ,

K0.79+
0.8 Ni0.28+

2 Se0.61−
2 , and K0.79+

0.8 Ni0.30+
1.6 Se0.58−

2 . Furthermore,
one can notice evident departure of Ni and Se valencies from
their formal values (Ni2+, Se2−) due to the covalent bonding
within the Ni2Se2 layers.

C. Dynamical properties

To analyze modifications of the vibrational dynamics in-
duced by the superstructure of cation vacancies in KNi2Se2,
we first briefly describe the main features of the phonon
density of states in the vacancy-free system. The present
considerations are based on our previous work [13] which
addressed phonon dynamics in the defect-free KNi2Se2. In
this work we have established that phonons in KNi2Se2

cover the frequency range extending up to about 216 cm−1,
as shown by the phonon density of states F (ω) depicted
in Fig. 4. Basically, such a spectrum consists of three fre-
quency bands, i.e., lower (LF), middle (MF), and upper (HF)
ones.

The LF (ω � 85 cm−1) and HF (ω � 155 cm−1) bands
are dominated by phonons arising from the shared Ni and
Se atomic vibrations within the NiSe4 tetrahedra which form
the Ni2Se2 layers perpendicular to the crystallographic c
axis. Within these bands the contribution from vibrations
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FIG. 4. Bare (shaded areas) and neutron-weighted (small points)
densities of phonon states in KNi2Se2, K0.8Ni2Se2, and K0.8Ni1.6Se2

compositions.

of the K sublattice is negligible, but it becomes significant
in the MF band, i.e., between 85 and 150 cm−1. We also
note that phonons originating from Ni and Se vibrations are
not restricted to the LF and HF bands, but they contribute
quite substantially to the MF band, and hence they span
the entire frequency range. The LF band corresponds to the
transverse and longitudinal acoustic (TA and LA) phonon
modes, the MF band gathers transverse optic (TO) phonons,
while the HF band, which remains separated by a small gap
(∼10 cm−1) from the lower lying MF band is constituted
by both transverse (TO) and longitudinal optic (LO) modes.
No gap is, however, visible between the LF and MF bands
mainly because some low-lying TO modes mix with the LA
modes. It is worth noting that these characteristic features of
the KNi2Se2 phonon spectrum are common to the ANi2X2

(A=K, Tl; X=Se, S) compounds and they result from their
quasi-2D layered structures.

Alike spectrum of the defect-free system, the phonon spec-
trum of K0.8Ni2Se2 also consists of three bands. Its LF and
MF bands show similar spectral patterns to those observed
in KNi2Se2. This indicates rather weak sensitivity of phonon
modes with frequencies below 150 cm−1 to the low concen-
tration of K vacancies (1 − x � 0.2). The most pronounced
changes are revealed, however, in the HF phonon band. First
of all, the high-frequency modes experience upward shift. One
can also notice an appearance of additional phonon modes at
highest frequencies. Both effects lead to effective expansion
of the HF band by about 10 cm−1.

Vacancies incorporated into K and Ni sublattices affect
both MF and HF phonon bands, leaving the LF band almost
unchanged. The MF phonon band of K0.8Ni1.6Se2 becomes
narrower by about 20 cm−1 than the respective bands in
KNi2Se2 and K0.8Ni2Se2, whereas its HF band significantly
expands both downward and upward which is a consequence
of new modes emerging in the vicinity of 150 cm−1 and above
220 cm−1. Again, these additional modes give rise to effec-
tive broadening of the HF band. Moreover, the K0.8Ni1.6Se2
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FIG. 5. The on-site force constants of K (black symbols), Ni
(red symbols), and Se (blue symbols) atoms in nonstoichiometric
K0.8Ni2Se2 and K0.8Ni1.6Se2 phases. The solid and dashed horizontal
lines correspond, respectively, to �xx = �yy and �zz components in
KNi2Se2 system with black, red, and blue colors denoting K, Ni, and
Se atoms. The �xx , �yy, and �zz components in nonstoichiometric
systems are marked by circles, squares, and triangles, respectively.

spectrum exhibits diminished intensities of peaks as compared
to those in vacancy-free KNi2Se2.

The observed effects originate mainly from structural
changes caused by cation vacancies. These defects are re-
sponsible for lowering the crystal symmetry from I4/mmm
to I4/m, modifications of the atomic bonding, and atomic
force constants, the latter governing dynamics of phonons. We
remind that crystal lattices of K-Ni-Se phases with cation va-
cancies contain additional crystallographically nonequivalent
Ni and Se atoms (see Table I) which leads to an emergence
of additional force constants, being different from those in the
defect-free phase of I4/mmm symmetry. Diagonal elements
of the on-site force constant matrix (�xx, �yy, �zz) for each
symmetry nonequivalent atom in KNi2Se2, K0.8Ni2Se2, and
K0.8Ni1.6Se2 structures are shown in Fig. 5. They are related
to the restoring force generated after the displacement of an
atom in a given direction.

In both stoichiometric and nonstoichiometric K-Ni-Se
phases, the force constants along the c axis (�zz) are smaller
than those perpendicular to this axis (�xx and �yy) which
conforms to the structural features of these systems. The
vacancy-containing phases exhibit increased values of the
force constants at the Ni sites and slightly decreased force
constants at the K sites as compared to the vacancy-free phase.
On the other hand, the Se atoms in nonstoichiometric systems
have both enhanced and reduced values of the force constants
in comparison to those in the stoichiometric phase. These
changes are, of course, more pronounced for the phase with
higher vacancy concentration, which shows greater spread of
the force constants than the phase with lower concentration
of vacancies. The stiffening and softening of the atomic force
constants with incorporation of such defects as cation vacan-
cies give rise to modifications of the phonon frequencies that
are reflected by downward and upward shift of the spectral
peaks. Interestingly, the most sensitive to cation vacancies are
the high-frequency optical modes.

The phonon densities of states extracted from the scattering
function measured by the INS experiments will, however,
be somewhat different than the calculated bare densities of
phonon states. The main source of these differences origi-
nates from different scattering efficiencies of particular atomic
species constituting sublattices of a given system. Indeed,
the Ni and Se sublattices contribute in larger extent (∼70%
and ∼25%) to the neutron-weighted phonon densities of
states compared to the K sublattice (∼5%). Thus, the spec-
tra in the MF range, where vibrations of the K sublattice
dominate, show the most essential deviations from the bare
F (ω), whereas in the LF and HF regimes the spectra display
little change and generally follow the bare phonon densities
of states. Hence, the INS spectra will reflect primarily the
dynamics of ions within the Ni-Se layers.

The computed densities of phonon states allowed us to
determine the Debye temperatures �D of particular K-Ni-Se
compositions. Here we relate this quantity to a second-order
moment of a phonon spectrum 〈μ2〉 through the following
equation [37,38]:

�D = h̄

kB

√
5

3
〈μ2〉, (1)

where h̄ and kB have their standard meanings. The general
expression for the nth moment takes on the following form
[37,38]:

〈μn〉 =
∫

ωnF (ω)dω∫
F (ω)dω

, (2)

while �D is derived from Debye moments given by

�D(n) = h̄

kB

[
1

3
(n + 3)〈μn〉

] 1
n

for n > −3 and n �= 0. (3)

Resulting Debye temperatures amount to 210 K for KNi2Se2,
209 K for K0.8Ni2Se2, and 204 K for K0.8Ni1.6Se2. They
closely correspond to those extracted from the heat ca-
pacity measurements (�D ∼ 210 K) performed on stoi-
chiometric polycrystalline KNi2Se2 and off-stoichiometric
K0.95Ni1.86Se2 single crystals [10,12]. Only a slight decrease
in �D is observed upon vacancy incorporation, and hence we
may conclude that this quantity is rather weakly dependent
on crystal stoichiometry as far as the K-Ni-Se system is
considered.

D. Zone-center phonon modes and the Raman spectra

A detailed discussion of the phonon modes at the � point
of the vacancy-free KNi2Se2 has been given in our previous
work [13]. Here we pay our attention to the most important
results which are relevant for understanding the influence of
cation vacancies on the resulting Raman spectra.

The number of Raman, infrared (IR)-active, and inactive
phonons as well as their distribution among the irreducible
representations of a crystal point group can be determined by
a factor group analysis. The primitive unit cell of KNi2Se2

contains five atoms which leads to 15 vibrational modes and
the site symmetries of the K, Ni, and Se atoms in I4/mmm
(D17

4h) space group are D4h, D2d , and C4v , respectively. The �-
point phonon modes are classified by the factor group analysis
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as follows:

K(D4h) � = A2u ⊕ Eu,

Ni(D2d ) � = Eg ⊕ A2u ⊕ Eu,

Se(C4v ) � = A1g ⊕ B1g ⊕ Eg ⊕ A2u ⊕ Eu,

where A1g, B1g, and Eg phonons are Raman active, while A2u

and Eu phonons are IR active. The modes with symmetries
Eg and Eu remain doubly degenerate. There are no optically
inactive (silent) modes in the defect-free KNi2Se2. Summariz-
ing these representations and subtracting the acoustic modes
(A2u and Eu) one obtains the irreducible representations of the
KNi2Se2 optical modes,

�opt = A1g(xx + yy, zz) ⊕ B1g(xx − yy) ⊕ 2Eg(xz, yz)

⊕ 2A2u(E ‖ z) ⊕ 2Eu(E ‖ x, E ‖ y), (4)

where the IR-active A2u and Eu modes are related to the
dipole moment oscillations parallel and perpendicular to
the c axis, and hence the A2u (Eu) phonon can be observed in
the IR spectra when the electric vector of the incident infrared
radiation E is perpendicular (parallel) to the tetragonal ab
plane. According to (4) one expects four Raman as well as
four infrared modes. Note that the vibrations of K atoms do
not contribute in the Raman scattering process as they are
located at inversion centers.

The ordered structure of cation vacancies lowers the sym-
metry of K0.8Ni2Se2 and K0.8Ni1.6Se2 crystals to I4/m (C5

4h),
and hence the number of phonon modes in these phases
becomes increased. For these orthorhombic structures the
factor group analysis predicts

K(Cs) � = 2Ag ⊕ 2Bg ⊕ 2Eg

⊕ Au ⊕ Bu ⊕ 4Eu,

Ni1(S4) � = Bg ⊕ 2Eg ⊕ Au ⊕ 2Eu,

Se1(C4) � = Ag ⊕ 2Eg ⊕ Au ⊕ 2Eu,

Ni, Ni2, Se2(C1) � = 3Ag ⊕ 3Bg ⊕ 6Eg

⊕ 3Au ⊕ 3Bu ⊕ 6Eu,

where Ag, Bg, and doubly degenerate Eg modes are Raman
active, Au and doubly degenerate Eu modes are IR active,
while Bu modes are silent. We note that the K atom vibrations
participate in the light scattering process. Summarizing these
representations and subtracting the acoustic (Au, Eu) and
silent modes one obtains the irreducible representations of the
optically active vibrational modes in K0.8Ni2Se2

�opt = 9Ag(xx, yy, zz) ⊕ 9Bg(xx, yy, zz)

⊕ 9Eg(xx, yy, zz) ⊕ 8Au(E ‖ z)

⊕ 9Eu(E ‖ x, E ‖ y) (5)

and K0.8Ni1.6Se2

�opt = 9Ag(xx, yy, zz) ⊕ 8Bg(xx, yy, zz)

⊕ 8Eg(xx, yy, zz) ⊕ 7Au(E ‖ z)

⊕ 8Eu(E ‖ x, E ‖ y). (6)

TABLE II. Frequencies of the Raman and IR-active modes for
KNi2Se2, K0.8Ni2Se2, and K0.8Ni1.6Se2. The numbers in brack-
ets denote experimental [21] Raman frequencies determined for
K0.95Ni1.86Se2. For the nonstoichiometric phases, the frequencies of
Ag, Bg, and Eg modes with values corresponding to the experimental
A1g, B1g, and Eg modes are marked by (*). Units: cm−1.

Raman active IR active

KNi2Se2 A1g B1g Eg A2u Eu

182 (179) 130 (134) 47 (63) 113 102
201 217 207

K0.8Ni2Se2 Ag Bg Eg Au Eu

52 43 44 48 47
73 76 55 66 72
94 88 63* 114 100
113 110 102 134 108
128 129 133 173 116
183* 132* 175 195 192
192 198 193 209 197
199 200 208 228 212
217 219 211 220

K0.8Ni1.6Se2 Ag Bg Eg Au Eu

52 29 46 57 45
61 64 62* 70 76
69 90 66 99 100
105 119 94 166 113
123 127* 154 200 144
164* 159 183 218 197
200 216 210 230 221
205 239 232 238
236

According to (5) and (6), the K0.8Ni2Se2 (K0.8Ni1.6Se2) crys-
tal is expected to show 27 (25) Raman-active and 17 (15)
IR-active phonons. The calculated frequencies of the Raman
and infrared phonon modes in KNi2Se2, K0.8Ni2Se2, and
K0.8Ni1.6Se2 along with frequencies of the Raman modes
measured [21] for the nonstoichiometric K0.95Ni1.86Se2 are
collected in Table II.

From a comparison of the experimental and theoreti-
cal results we find that the calculated frequencies of A1g

(182 cm−1) and B1g (130 cm−1) phonons as well as
those of Ag (183 cm−1) and Bg (132 cm−1) symmetries
in K0.8Ni2Se2 closely correspond to the experimental A1g

(179 cm−1) and B1g (134 cm−1) phonons measured for
the K0.95Ni1.86Se2 crystal. The calculated frequencies of the
Ag (164 cm−1) and Bg (127 cm−1) modes in K0.8Ni1.6Se2

remain underestimated as compared to the experimental
ones, even though the stoichiometry of this phase seems
closer to the sample stoichiometry used in the Raman
experiments [21].

On one hand, quite significant discrepancy between the
measured (63 cm−1) and calculated (47 cm−1) frequency
of the low-lying Eg mode is observed, but on the other
hand, the nonstoichiometric phases exhibit some other low-
lying Eg phonons with frequencies of 63 cm−1 (K0.8Ni2Se2)
and 62 cm−1 (K0.8Ni1.6Se2) which are consistent with the
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experimental observations. Among the high-frequency modes
of Eg symmetry which are predicted for the off-stoichiometric
K-Ni-Se phases, those at 193 or 208 cm−1 in K0.8Ni2Se2 and
210 cm−1 in K0.8Ni1.6Se2 seem corresponding to the high-
frequency Eg mode predicted for the strictly stoichiometric
system at 201 cm−1. Unfortunately, the latter phonon could
not be unambiguously determined by the Raman experiments
[21] due to its very low intensity. Therefore, we may conclude
that experimental frequencies of the zone-center phonons for
the K0.95Ni1.86Se2 structure, which was refined under symme-
try constraints of I4/mmm space group, can be approximated
by frequencies of the K-Ni-Se phases with cation vacancies,
even though the simulated structures with ordered vacancies
may not fully reflect the defect structure of a real nonsto-
ichiometric sample, in which vacancies are likely randomly
distributed.

Apart from the changes in frequencies of the Raman
phonons, it is interesting to analyze the effect of vacancy
superstructure on the Raman modes intensities. Generally,
intensities of the Raman phonons depend on the Raman
tensors which take on the following form for the A1g, B1g, and
Eg modes in KNi2Se2:

RA1g =
⎛
⎝

a 0 0

0 a 0

0 0 b

⎞
⎠ RB1g =

⎛
⎝

c 0 0

0 −c 0

0 0 0

⎞
⎠

REg =
⎛
⎝

0 0 0

0 0 e

0 e 0

⎞
⎠ ,

⎛
⎝

0 0 −e

0 0 0

−e 0 0

⎞
⎠.

According to the polarization selection rules [39], the mode of
A1g symmetry can be observed in the polarized backscattering
Raman spectra (wave vectors of incident and scattered radia-
tions are antiparallel) when ei ‖ es, while it disappears at ei ⊥
es (crossed) polarization configuration. Hence, the Raman
spectra measured at x(zz)x̄ or z(x′x′)z̄ scattering geometries,
where x′ = 1√

2
[110], may reveal a single peak arising from

the A1g phonon. At the crossed polarization configuration,
such as z(x′y′)z̄, where y′ = 1√

2
[11̄0], the measured spectrum

can contain a single peak associated with the B1g mode. Both
A1g and B1g should be seen in the Raman spectrum taken at
z(xx)z̄ or y(xx)ȳ scattering geometries. Also, the unpolarized
Raman spectra measured from the crystal ab plane enable
us to observe the mixture of A1g and B1g signals. Finally,
determination of the Eg mode requires measurements from the
crystal ac plane and a crossed polarization configuration, such
as y(zx)ȳ.

Intensities of the Raman-active phonons in KNi2Se2 re-
ported in our previous theoretical studies [13] correctly re-
produced the experimental [21] intensity ratio between A1g

and B1g phonons at the z(xx)z̄ scattering geometry. Fur-
thermore, they yielded almost negligible intensity for the
Eg phonon at high-frequency, which supported experimental
observation.

Due to a lower symmetry of the vacancy-containing
phases, their Raman spectra are expected to show a rich
spectral pattern. To calculate intensities of particular Raman
modes in KxNi2−ySe2 systems with I4/m symmetry, the

FIG. 6. Backscattering Raman spectra of nonstoichiometric
K0.8Ni2Se2 and K0.8Ni1.6Se2 crystals calculated at different scattering
configurations. Spectra are simulated at room temperature and with
a laser excitation wavelength of 514.5 nm. Peaks are represented by
Lorentzians with an artificial FHWM of 4 cm−1.

following Raman polarizability tensors were considered:

RAg =
⎛
⎝

a 0 0

0 a 0

0 0 b

⎞
⎠ RBg =

⎛
⎝

c d 0

d −c 0

0 0 0

⎞
⎠

REg =
⎛
⎝

0 0 e

0 0 f

e f 0

⎞
⎠ ,

⎛
⎝

0 0 − f

0 0 e

− f e 0

⎞
⎠.

For identification of Ag, Bg, Eg or a sum of Ag and Bg phonons
from the Raman spectra of the KxNi2−ySe2 phases the same
scattering geometries as those used to detect, respectively, A1g,
B1g, Eg or a sum of A1g and B1g modes in strictly stoichiometric
system are applicable. This is mainly because of the close
correlation between I4/mmm and I4/m space groups. In
Fig. 6, the Raman spectra of KxNi2−ySe2 under parallel and
crossed polarization configurations are shown.

At x(zz)x̄ scattering geometry the Ag phonons at 73, 113,
192, and 217 cm−1 yield the lines strong enough to be detected
in the Raman spectrum of K0.8Ni2Se2, while the most intense
Ag peaks in the Raman spectrum of K0.8Ni1.6Se2 appear at 52,
69, 169, and 205 cm−1. At the crossed polarization config-
uration z(xy)z̄, the Bg modes in K0.8Ni2Se2 produce intense
peaks at 76, 198, and 219 cm−1, whereas the intense Bg

peaks in the K0.8Ni1.6Se2 spectrum are found at 64, 127, and
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FIG. 7. Unpolarized backscattering Raman spectra of nonstoi-
chiometric K0.8Ni2Se2 and K0.8Ni1.6Se2 crystals calculated from the
crystal ab plane. Spectra are simulated at room temperature and with
a laser excitation wavelength of 514.5 nm. Peaks are represented by
Lorentzians with an artificial FHWM of 4 cm−1. The numbers in
brackets denote frequencies of modes.

239 cm−1. Some other Ag and Bg phonons, which are hardly
detected at x(zz)x̄ and z(xy)z̄ geometries may be determined
at z(xx)z̄ configuration. For example, the peaks at 132 cm−1

in K0.8Ni2Se2 and 159 cm−1 in K0.8Ni1.6Se2 are assigned to
Bg modes. Additionally, the peak at 181 cm−1 in K0.8Ni2Se2

corresponds to the mode of Ag symmetry. Finally, the Ra-
man spectra at x(yz)x̄ scattering geometries are dominated
by two peaks originating from the low-frequency Eg modes.
These peaks are found at 55 and 63 cm−1 in the spectrum
of K0.8Ni2Se2 phase. At this scattering configuration, the
Eg modes with detectable intensities can be observed in the
spectrum of K0.8Ni1.6Se2 at 62 and 94 cm−1.

Some Raman-active modes which cannot be recorded in
the polarized spectra due to their extremely low intensities
are likely to be measured in experiments carried out using
unpolarized light. Such spectra can be taken, for example,
from the crystal ab plane. In this case the unpolarized Raman
spectra of K0.8Ni2Se2 or K0.8Ni1.6Se2 monocrystals are ex-
pected to show both Ag and Bg modes, as illustrated in Fig. 7.
One notes that the major contribution to the Raman spectra
measured from the ac plane, Fig. 8, comes from the Ag and Eg

modes. In these spectra, the Bg phonons can be present as well,
but with intensities over an order of magnitude smaller than
the Ag and Bg modes. Indeed, very weak features noticeable
between Ag(164) and Ag(200) peaks or between Ag(205) and

FIG. 8. Unpolarized backscattering Raman spectra of nonstoi-
chiometric K0.8Ni2Se2 and K0.8Ni1.6Se2 crystals calculated from the
crystal ac plane. Spectra are simulated at room temperature and with
a laser excitation wavelength of 514.5 nm. Peaks are represented by
Lorentzians with an artificial FHWM of 4 cm−1. Numbers in brackets
denote frequencies of modes.

Ag(236) peaks of the K0.8Ni1.6Se2 spectrum arise from the
Bg modes. Certainly, such small peaks are difficult to detect
experimentally and most likely they will be hidden in the
spectrum background.

A rich spectral pattern of the Raman spectra from the
nonstochiometric K-Ni-Se systems may not appear when the
measured compositions lack the vacancy order. The Raman
spectra of K-Ni-Se phases with randomly distributed vacan-
cies are supposed to be similar to the unpolarized Raman
spectrum of the parent KNi2Se2 phase, albeit they would
show suppressed peaks’ intensities and broader FWHMs.
Some shift of peaks’ positions might be encountered as well.
Randomly distributed defects are expected to give a similar
picture to that of a disordered system which usually displays
broad bands because defects lead to selection rule breakdown.
In fact, the experimental Raman phonons from KxNi2−ySe2

(x = 0.95, y = 0.14) [21] feature such effects. Moreover, the
Raman spectra measured on KxCo2−ySe2 (x = 0.3, y = 0.1),
i.e., on Co-based counterpart in which no vacancy superstruc-
ture is expected, confirm such a behavior [40].

E. Heat capacity

The calculated electronic densities of states at the Fermi
level could be used to determine the electronic specific heat
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FIG. 9. Heat capacity at the constant volume of the KNi2Se2,
K0.8Ni2Se2, and K0.8Ni1.6Se2 phases versus temperature. (Inset) Re-
duced heat capacity C/T of the respective K-Ni-Se phases in the
low-temperature range. Experimental data denoted by open symbols
are adopted from Ref. [10] (squares) and Ref. [12] (circles).

coefficient γ0 in the approximation of free-electron gas model,
where γ0 = 1

3π2kBn(EF ). The Sommerfeld coefficients of
KNi2Se2, K0.8Ni2Se2, and K0.8Ni1.6Se2 amount to 14.14,
13.91, and 12.54 mJ/(K2 mol), respectively. To check the
effect of vacancy superstructure on the heat capacity, we
took into account the electronic (C(0)

el = γ0T ) and lattice (Cph)
contributions to the overall heat capacity and neglected term
associated with the lattice dilation because it is small below
room temperature. The calculated temperature dependencies
of the heat capacities for the K-Ni-Se phases along with
the experimental data for the KNi2Se2 polycrystal [10] and
K0.95Ni1.86Se2 single crystal [12] are depicted in Fig. 9. The
inset displays reduced heat capacities (C/T ) of the respective
systems in the low-temperature range (T < 10 K).

We should note that the experimental studies [10] on the
polycrystalline KNi2Se2 revealed the λ-type behavior of the
specific heat in the vicinity of 1 K, indicative of the emerg-
ing superconducting state. The critical temperature TC was
estimated to be of 0.8 K. On the other hand, no evidence
of a superconducting transition down to 0.3 K has been
found in resistivity measurements on K0.95Ni1.86Se2 single
crystals [12]. Nevertheless, both experimental investigations
report existence of a large electronic contribution the specific
heat below 20–30 K, γexp = 44–48 mJ/(K2 mol). Signifi-
cantly increased linear term is a characteristic feature of a
heavy-fermion state with the effective electronic band mass
enhancement m∗/m ∼ 6–18. Therefore, at low temperatures
the calculated heat capacities of KNi2Se2 and KxNi2−ySe2 sig-
nificantly differs from those provided by experiments, mainly
because a renormalization of the Sommerfeld coefficient aris-
ing from the many-body effects is not captured in the present
calculations. Departure of our theoretical data is especially
visible below 6 K, whereas at higher temperatures it remains
negligible.

Assuming that the electron-phonon interaction is the dom-
inant many-body effect, one can estimate an enhancement
factor (1 + λexp) which renormalizes electronic contribution
to the specific heat according to the relation: Cel = γexpT ,
where γexp = γ0(1 + λexp). Using the calculated γ0 and γexp

extracted from the heat capacity measurements [10,12], an
estimate for λexp of 2.1–2.5 can be obtained.

Generally, the K-Ni-Se systems with K and Ni deficiencies
show lower values of the heat capacity in comparison with the
defect-free system and the higher concentration of vacancies
the lower heat capacity. Above 30 K the lattice term Cph

governs the temperature dependence of the heat capacity,
and hence the phonon contribution approaches classical limit
given by the equipartition law which equals 124.7 J/K mol for
KNi2Se2, 119.7 J/K mol for K0.8Ni2Se2, and 109.7 J/K mol
for K0.8Ni1.6Se2.

IV. SUMMARY AND CONCLUSIONS

The structural, electronic, and phonon properties of the
K0.8Ni2Se2 and K0.8Ni1.6Se2 phases, in which cation va-
cancies form ordered structures, have been the subject of
theoretical studies based on the density functional theory.
The crystallographic and electronic structures of these non-
stoichiometric phases have been shown to be distinct from
those of the parent KNi2Se2 phase. In principle, the vacancy
superstructure could be directly observed by means of the
high-resolution transmission electron microscopy (HR-TEM)
imaging technique.

In the daughter phases, the superstructures of cation va-
cancies lead to modifications of the interatomic bond lengths
and force constants, and hence to changes in their vibrational
dynamics which manifest via shifts and effective broaden-
ing of the phonon bands. These effects can, in principle,
be detected by the inelastic neutron scattering and Raman
experiments. Therefore, the present theoretical work pro-
vides simulated INS and Raman spectra of the K-Ni-Se
phases with ordered cation-vacancy structures, which can
serve as a guide for interpretation and refinement of respec-
tive experimental spectra, also measured on a multiphase
material.

Results of our studies allow us to speculate about the in-
fluence of vacancy superstructure on the strength of electron-
phonon interaction and superconductivity-related quantities in
KNi2Se2, e.g., the superconducting critical temperature TC .
Assuming phonon-mediated superconductivity in the K-Ni-Se
system which could be approximately described within the
semiempirical method based on the Allen-Dynes modification
of the McMillan’s theory [41], usually applicable for a system
with strong electron-phonon coupling (λ > 1.5) [42], we may
suggest that the vacancy-containing K-Ni-Se phases would
experience suppressed superconductivity. Such a conclusion
can be drawn from the behavior of the density of electron
states at the Fermi level as well as the Debye temperature,
the latter being closely related to the average phonon fre-
quency. Both factors undergo reduction upon incorporation of
vacancies into the cation sublattice of KNi2Se2, but especially
a decrease in the characteristic phonon frequency reflects a
scattering of phonons on the defects present in the lattice.
Hence, we might expect somewhat suppressed Tc in the K-Ni-
Se phases with cation-vacancy superstructures as compared to
the pristine material.

Despite the present research is limited to harmonic
phonons, it opens a route to more complex and sophisticated
studies enabling determination of the anharmonic effects [43],
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which might be meaningful in the K-Ni-Se phases, not only
because of their quasi-2D structure but also due to vacancy
defects which are likely to induce locally strong asymmetric
displacement potentials [44].

ACKNOWLEDGMENTS

This work was supported by the European Regional
Development Fund in the IT4Innovations national

supercomputing center, the project Path to Exascale
CZ.02.1.01/0.0/0.0/16_013/0001791 within the Operational
Programme Research, Development and Education, the Czech
Science Foundations and Mobility Projects under Contracts
No. 17-27790S and No. 8J18AT004, and student Grant SGS
No. 2019/151. The Interdisciplinary Center for Mathematical
and Computational Modeling (ICM), Warsaw University, is
acknowledged for providing the computer facilities under
Grants No. G28-12 and No. GB70-12.

[1] A. L. Ivanovskii, Phys. C 471, 409 (2011).
[2] H.-H. Wen, Rep. Prog. Phys. 75, 112501 (2012).
[3] D. Mou, L. Zhao, and X. Zhou, Front. Phys. 6, 410 (2011).
[4] J. Yang, B. Chen, H. Wang, Q. Mao, M. Imai, K. Yoshimura,

and M. Fang, Phys. Rev. B 88, 064406 (2013).
[5] G. Huan and M. Greenblatt, J. Less-Common Met. 156, 247

(1989).
[6] H.-K. Jeong, T. Valla, R. Berger, P. D. Johnson, and K. E. Smith,

Europhys. Lett. 77, 27001 (2007).
[7] R. Lizárraga, S. Ronneteg, R. Berger, A. Bergman, O. Eriksson,

and L. Nordström, Phys. Rev. B 70, 024407 (2004).
[8] U. D. Wdowik, G. Jagło, and P. Piekarz, J. Phys.: Condens.

Matter 27, 415403 (2015).
[9] G. Jagło and U. D. Wdowik, RSC Adv. 6, 79121 (2016).

[10] J. R. Neilson, A. Llobet, A. V. Stier, L. Wu, J. Wen, J. Tao,
Y. Zhu, Z. B. Tesanovic, N. P. Armitage, and T. M. McQueen,
Phys. Rev. B 86, 054512 (2012).

[11] J. R. Neilson, T. M. McQueen, A. Llobet, J. Wen, and M. R.
Suchomel, Phys. Rev. B 87, 045124 (2013).

[12] H. Lei, M. Abeykoon, K. Wang, E. S. Bozin, H. Ryu, D. Graf,
J. B. Warren, and C. Petrovic, J. Phys.: Condens. Matter 26,
015701 (2014).

[13] G. Jagło, M. Medala, and U. D. Wdowik, Phys. Lett. A 379, 183
(2015).

[14] D. P. Shoemaker, D. Y. Chung, H. Claus, M. C. Francisco, S.
Avci, A. Llobet, and M. G. Kanatzidis, Phys. Rev. B 86, 184511
(2012).

[15] F. Ye, S. Chi, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D.
Wang, C. H. Dong, and M. Fang, Phys. Rev. Lett. 107, 137003
(2011).

[16] Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian,
G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Phys. Rev. B
83, 140505(R) (2011).

[17] A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti,
L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y.
Mizuguchi, Y. Takano, M. Colapietro, N. L. Saini, and A.
Bianconi, Phys. Rev. B 84, 060511(R) (2011).

[18] M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, and H.
Yuan, Europhys. Lett. 94, 27009 (2011).

[19] Y. J. Yan, M. Zhang, A. F. Wang, J. J. Ying, Z. Y. Li, W. Qin,
X. G. Luo, J. Q. Li, J. Hu, and X. H. Chen, Nature Sci. Rep. 2,
212 (2012).

[20] W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X.
Ma, J.-P. Hu, X. Chen, and Q.-K. Xue, Nat. Phys. 8, 126 (2012).
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