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Ab initio study of superconductivity and inhomogeneity in a Hg-based cuprate superconductor
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Understanding physics of high-Tc cuprate superconductors remains one of the important problems in materials
science. Though a number of diverse theories argue about the superconductivity and competing orders,
ab initio and quantitative understanding is lacking. Here, we reproduce the experimental phase diagram of
HgBa2CuO4+y by solving its ab initio low-energy effective Hamiltonian without adjustable parameters. It shows
a superconducting phase in a wide range of hole density δ, and its competition with charge period-4 plus spin
period-8 stripe order near δ ∼ 0.1, in agreement with experimental results including recent x-ray scattering.
Then a crucial role of off-site interactions in stabilizing the superconductivity is elucidated with emphasis
on charge fluctuations. It also clarifies the condensation energy mainly contributed from the on-site Coulomb
interaction. The present achievement will enable deeper, predictable understanding on open issues of the high-Tc

superconducting mechanism and promote ab initio studies on strongly correlated electrons beyond parametrized
model studies.
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I. INTRODUCTION

Since the discovery of high-Tc cuprates, an enormous
number of experimental reports have unveiled their rich and
complex physics, which have shed light on mechanisms of su-
perconductivity. Especially in the underdoped region, uncon-
ventional phenomena such as pseudogap, nematicity [1–3],
and stripe order [4,5] were observed and they are still inten-
sively studied both experimentally and theoretically. Owing
to recent advancement of experimental tools such as the scan-
ning tunneling microscope (STM), resonant x-ray scattering,
and x-ray diffraction imaging, charge orders (spatial inhomo-
geneity) have been widely reported in the underdoped region
of several families of high-Tc cuprates adjacent to supercon-
ducting (SC) phase, signaling their presence as a common
feature [6–17].

Historically, a full theoretical understanding of the com-
plex physics in high-Tc cuprates has been hampered for many
years, partly because previous theoretical approaches were
mostly based on simple models with adjustable parameters
and/or they were solved approximately at various levels.
These limitations yielded diverse theoretical proposals which
are often controversial with each other and relevance to real
materials is not well established because of the uncertainty
about adequacy of assumed parameters and the diversity in
experimental indications. However, owing to the recent de-
velopment of ab initio methods without relying on adjustable
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parameters and tools to solve them accurately, we are now
at the stage of overcoming at least some of these contro-
versies: Methods of deriving ab initio low-energy effective
Hamiltonians, utilizing several tools such as the maximally
localized Wannier function [18,19] and the constrained ran-
dom phase approximations [20], were developed to construct
a parameter-free theory. In the procedure to solve thus derived
ab initio low-energy effective Hamiltonians, recent progress in
accurate numerical methods has opened a possibility to finally
reach conclusive results without adjustable parameters (see
Appendix A for other attempts of ab initio studies).

In fact, on the level of model studies with parameters,
carrier-doped Hubbard model on a square lattice, one of
the well-known simple models for cuprates has been solved
by state-of-the-art numerical tools and its ground state has
shown an overall consensus, indicating the dominance of a
charge-inhomogeneous state such as charge and spin stripe
states, severely competing with d-wave superconductivity in
a wide range of doping concentrations [21–31]. However,
neither the wavelength of the spin/charge order nor the wide
region of the homogeneous SC ground state is quantitatively
consistent with those observed in the cuprates [4,6–15]. This
shows the necessity of quantitative parameter-free studies to
predict or reproduce the physics of real materials beyond the
model study. Therefore, accurate first-principles studies of
the microscopic Hamiltonian without adjustable parameters
are desired to make an essential step forward to complete
understanding of the long-standing issue on physics of the
cuprate superconductors.

Here, we study an ab initio low-energy effective Hamil-
tonian derived for the high-Tc cuprate HgBa2CuO4+y [32,33]
by using a many-variable variational Monte Carlo (mVMC)
method [34,35] and its refinement by combining with the
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fat-tree tensor network [28] and/or the power Lanczos method
[36] together with variance extrapolations of energies to reach
sufficient accuracy. We found that a quantitative evaluation
of effects from off-site Coulomb interactions is crucial to
reproduce d-wave superconductivity stabilized against the
charge order as observed in the experimental results on the
cuprates, in contrast to the charge-order dominance found
in the simple Hubbard model. In contrast to earlier studies
referred to in Appendix A, this is a quantitative reproduction
of the dominance of superconductivity in the cuprates without
any adjustable parameters despite the severe realistic compe-
tition with the charge inhomogeneities. Such a quantitative
reproduction is an important and imperative step for further
understanding the mechanism and future design for better
functionality. We then elucidate a strong positive correlation
between the enhancement of superconductivity and that of
uniform charge susceptibility.

In Sec. II, we describe the ab initio low-energy effective
Hamiltonians which we will analyze. The details of our
numerical method are explained in Sec. III. The results for
homogeneous states are shown in Sec. IV. Then, we show the
results for inhomogeneous states in the subsequent Sec. V.
In Sec. VI, we analyze effects of off-site screened Coulomb
interactions. We also present the results which analyze the
connection between charge fluctuations and superconductivity
in Sec. VII. Finally, we discuss and summarize our results in
Sec. VIII.

II. Ab initio EFFECTIVE HAMILTONIANS

In a previous work, Hirayama et al. derived low-energy ef-
fective Hamiltonians for HgBa2CuO4 and La2CuO4 from first
principles [32,33]. In this derivation, they employed the con-
strained GW calculations supplemented by the self-interaction
correction (cGW-SIC) to remove the double counting of
the exchange correlations [37,38]. To derive the screened
Coulomb interactions, the constraint random phase approxi-
mation was employed [20]. Reference [33] further employed
the procedure of the self-consistent feedback of interband
interaction between the low-energy and high-energy degrees
of freedom by considering the pinning of orbital occupation
by following the spirit studied before [39]. The feedback
treatment in Ref. [33] is the following: When the effective
cGW Hamiltonian is solved, the obtained low-energy orbital
occupation may differ from the GW charge distribution in
general. However, the electrons contained in a large number
of bands outside the degrees of freedom of the effective
Hamiltonian impose strong (Hartree) potential, which gener-
ates the constraint to pin the orbital occupation rather than
on the chemical potential for the electrons in the low-energy
degrees of freedom. Therefore, each orbital filling should be
preserved when one solves the effective Hamiltonian [39,40].
In this study, we employ the ab initio single-band effective
Hamiltonian for the target antibonding orbital of HgBa2CuO4

thus derived in Ref. [33], which takes the form of

H = −
∑

σ

∑

i, j

ti jc
†
iσ c jσ +

∑

i

Uni↑ni↓ +
∑

i< j

Vi jnin j . (1)

We consider the two-dimensional CuO2 plane with i, j
representing unit cell indices, where the maximally localized

TABLE I. Derived parameters of the ab initio effective Hamil-
tonian. Ab initio hopping amplitudes and screened Coulomb in-
teractions derived for the single-band effective Hamiltonian for
HgBa2CuO4 [33]. tn and Vn represent the nth nearest-neighbor hop-
ping parameters and Coulomb interactions, respectively. The long-
range part of off-site Coulomb interactions is obtained by fitting
the available data to the 1/r function (see Appendix B). Other off-
diagonal Coulomb interactions are negligible.

One body t1 t2 t3 t4 t5

Parameters (eV) 0.509 −0.127 0.077 −0.018 −0.004
Two body U V1 V2 V3 V4

Parameters (eV) 3.846 0.834 0.460 0.318 0.271

Wannier function is constructed for the molecular orbital
[18,19]. c†

iσ (ciσ ) is the creation (annihilation) operator of
electrons with spin σ (=↑ or ↓) at the ith Wannier orbital,
and the number operator is ni = ∑

σ niσ with niσ = c†
iσ ciσ .

Here, ti j is the hopping parameter, depending on the relative
coordinate vector ri − r j , where ri is the position vector of the
center of the ith Wannier orbital. U and Vi j are the screened
on-site and off-site Coulomb interactions, respectively. The
dominant components of the ab initio values derived in
Ref. [33] are quoted here in Table I for the self-contained
description. The derived screened Coulomb interaction still
decays as ∼1/r because the metallic screening is excluded
in the derivation of the ab initio low-energy effective Hamil-
tonian. Therefore, we employ the Ewald summation method
to treat its long-range part accurately without truncation [41]
(see Appendix B). On the other hand, the hopping parameters
are short ranged and it is enough to include them up to
the third-nearest-neighbor hopping. We note that the off-
diagonal interaction parameters other than the density-density
interactions are small (<0.015 U ), and thus can be ignored.
In this paper, we analyze the above Hamiltonian on square
lattices with N = L × L sites. When hole carriers are doped
into the Mott insulator at half filling 〈n〉 = ∑

iσ 〈niσ 〉/N = 1,
several different states are severely competing, and therefore
highly accurate wave functions are required to determine the
ground states.

III. NUMERICAL METHOD

In our simulations, we used the many-variable variational
Monte Carlo method [24,34,35]. Our variational wave
function takes the following form: |ψ〉 = PGP JPd−h|φpair〉.
Here, PG = exp (

∑
i α

G
i ni↑ni↓), P J = exp (

∑
i< j α

J
i jnin j ),

and Pd−h = exp [−∑4
m=0

∑
l=1,2 α(l )

m

∑
i ξ

(l )
i(m)] are the

Gutzwiller factor [42], the long-range Jastrow correlation
factors [43,44], and the doublon-holon correlation factor
[45], respectively. ξ

(l )
i(m) is the diagonal operator in the

real-space representations which takes unity when a doublon
(holon) exists at the ith site and m holons (doublons)
exist at the lth nearest neighbor. Otherwise, it takes zero.
α’s are the coefficients which should be optimized. In
practice, we impose the translational symmetry on them.
|φpair〉 is the generalized pairing wave function defined

by |φpair〉 = (
∑

iσ, jσ ′ fiσ, jσ ′c†
iσ c†

jσ ′ )
Ne/2|0〉, where fiσ, jσ ′
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are variational parameters and Ne is the total number
of electrons. We usually consider the case of σ =↑ and
σ ′ =↓. This can be regarded as a generalization of the
Hartree-Fock-Bogoliubov-type wave function with AF/CO
and SC orders [34,46], and thus flexibly describes these states
as well as paramagnetic metals. To reduce the number of
independent variational parameters, we assume that fi j have a
sublattice structure such that fi j depend on the relative vector
ri − r j and a sublattice index of the site j, which we denote
as η( j). Thus, we can rewrite it as fη( j)(ri − r j ). In the
present study on the homogeneous states, we assumed a 2 × 2
sublattice structure. In this case, the number of independent
fi j reduces from N2 to 2 × 2 × N . For studies on the ClcSls
stripe states, we extended the sublattice structure of fi j to
ls × 2, where lc is a fraction of ls. We consider systems under
the periodic-antiperiodic boundary condition.

In doped regions, the SC state and stripe states as well as
the AF state are severely competing. To determine the lowest
energy state among them, highly accurate results of energies
are required. Therefore, we performed extrapolations of ener-
gies to the zero-variance limit [47–49]. For this purpose, we
obtained improved energies by combining the fat-tree tensor
network [28] and/or performing the first Lanczos step. In
recent studies, it has been shown [31] that for the simple
Hubbard model, the energies obtained by the same procedure
have the same level of accuracy with those obtained by the
different state-of-numerical methods [29]. Examples of the
extrapolations in present studies are shown in Fig. 9(a) of
Appendix E (L = 24). In Figs. 9(b) and 9(c), we also present
the results for different system sizes (L = 18, 24, 30) to show
the size dependence of the extrapolated energies.

IV. HOMOGENEOUS STATES

We first study charge-homogeneous states. Here, we as-
sumed the 2 × 2 sublattice structure for our variational
wave function [35]. The measured physical quantities are
the spin-structure factor Ss(q) = 1

3N

∑
i, j〈Si · S j〉eiq·(ri−r j ) (Si

is the spin operator at the site i) and the simple aver-
age of the d-wave SC correlation function over the long-
range part: Pd = 1

M

∑√
2L/4<r Pd (r), where r[= (rx, ry)] be-

longs to (−L/2, L/2]2 and M is the number of lattice
points satisfying

√
2L/4 < r = |r| <

√
2L/2. The correla-

tion function is defined by Pd (r) = 1
2N

∑
ri
〈	†

d (ri )	d (ri +
r) + 	d (ri )	

†
d (ri + r)〉 with the order parameter 	d (ri ) =

1√
2

∑
r fd (r)(cri↑cri+r↓ − cri↓cri+r↑). fd (r) is the dx2−y2 form

factor defined by fd (r) = δry,0(δrx,1 + δrx,−1) − δrx .0(δry,1 +
δry,−1). In Fig. 1(a), we plot Ss(π, π )/N and Pd as functions
of the doping concentration δ = 1 − 〈n〉 at L = 30. Here, we
find two phases: antiferromagnetic (AF) phase for δ � 0.1
and SC phase becomes the ground state for δ � 0.1. Typical
size and spatial dependencies of Pd (r) for the SC ground
state are shown at δ 	 0.167 in Fig. 1(b). The ground-state
phase diagram shown in Fig. 1 indicates that the d-wave SC
state is the ground state in an extended region of doping
concentration in the thermodynamic limit in agreement with
the experimental phase diagram.

Around δ 	 0.1, the physical properties in Fig. 1(a)
sharply change, which is indicative of a first-order transition.
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FIG. 1. (a) Physical quantities Ss(π, π )/N and Pd of homoge-
neous states (L = 30) as functions of δ. Gray region indicates a
region where AF, SC, and a stripe state are severely competing.
(For the energy competition with stripe states, see Fig. 3). (b) Size
dependence of Pd (r) at δ 	 0.167. In the inset, Pd (L = 24, 30, and
36) is extrapolated to the thermodynamic limit.

However, in the presence of long-range Coulomb interactions,
the macroscopic phase separation is forbidden and, instead, it
is replaced by other phases such as stripes or a mesoscopic
mixture of two competing phases (microemulsions) [50–52].
Indeed, we will show in the subsequent paragraphs that a
stripe state intervenes in this region.

A question arises regarding the character of the observed
SC state: whether the SC state is interaction-energy driven
or kinetic-energy driven in the ab initio Hamiltonian. In
VMC studies [24,27,53] and cluster dynamical mean-field
theory (cDMFT) studies [54,55] on the Hubbard model, it
was observed that the character changes from interaction-
energy driven to kinetic-energy driven at some intermediate
values of U/t1, with t1 being the nearest-neighbor hopping,
although there is quantitative differences in its values. How-
ever, studies on ab initio Hamiltonians to see which is correct
in reality are missing. To examine it using our ab initio
Hamiltonian, we calculated the energy difference between SC
and normal (paramagnetic) states: 	E = ESC/N − ENormal/N ,
	Ekin = Ekin,SC/N − Ekin,Normal/N , and 	Eint = Eint,SC/N −
Eint,Normal/N . The subscripts kin and int denote the kinetic
part [the expectation value of the first term of Eq. (1)] and the
interaction part [the sum of other (second and third) terms] of
energies, respectively. Note that the conventional definition of
the condensation energy Econd = −	E has the opposite sign,
where 	E is negative when the SC state has lower energy. The
results are obtained by the mVMC method (without variance
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FIG. 2. Super-normal energy difference. (a) Super-normal en-
ergy difference 	E (= − Econd), 	Ekin, 	Eint, 	EU , and 	EV as
functions of δ. (b) λint-dependence of the super-normal energy
difference. Since, for large λint beyond the realistic value λint = 1,
the antiferromagnetic order often develops during the optimization
process of the SC or normal state, we imposed the translational
symmetry on |φpair〉 to exclude the antiferromagnetism and discuss
the condensation energy between pure SC and normal states.

extrapolations) and are shown on the doping concentration
dependence at ab initio parameters in Fig. 2(a). Here, we also
plotted the contributions from the on-site interaction part 	EU

and the off-site interaction part 	EV of 	Eint (i.e., 	Eint =
	EU + 	EV ) separately in the plot. From Fig. 2(a), we ob-
serve that the SC state is decisively interaction-energy driven
at ab initio parameters (U/t1 ∼ 7.56). The main contribution
of the gain of the condensation energy (−	E ) is clearly from
the on-site interaction part. This indicates that the main source
of the energy gain of the SC state is attributed to the reduced
energy cost of the double occupation in the SC state. This
is because the double occupation is prohibited by symmetry
for the d-wave pair. Although there exists an uncertainty in
the decomposition into the interaction and the kinetic energy
parts depending on the choice of the number of electronic
orbitals considered [56], the present conclusion about the

interaction-driven superconductivity is unambiguous and firm
for the ab initio single-band effective Hamiltonian.

We remark that the energy of the SC state is also severely
competing with the paramagnetic normal metal, in contrast to
the more stable SC state found in the Hubbard model [24].
The interpolation between the ab initio effective Hamiltonian
and the Hubbard model in the strong coupling region reveals
that the stable SC states in the Hubbard limit, which is
well separated from the non-SC excited state, is adiabatically
connected to the SC state in the ab initio limit, which is
highly degenerate with the normal metal within the accu-
racy of the present method (see Appendix C). These nearly
degenerate states are consistent with experiments since the
experimentally estimated condensation energy is as small
as 0.1 meV [57,58], which is beyond any available nu-
merical method, including the present numerical accuracy
(∼1−2 meV).

V. INHOMOGENEOUS STATES

We next consider charge inhomogeneous states. To de-
scribe states with long-period structures such as stripe states,
we employ larger sublattice sizes imposed on the pair-product
part of the variational wave function. In Fig. 3(a), we present
physical quantities of stripe states which are competing with
homogeneous states. Here, the charge structure factor Sc(q) =
1
N

∑
i, j〈nin j〉eiq·(ri−r j ) is plotted as well as Ss(q). The wave

vector q at the peak of the structure factors is described
as qSDW or qCDW. ClcSls represents charge/spin stripes with
the period of lc/ls in one direction parallel to the nearest-
neighbor Cu-Cu bond, whereas in the vertical direction, there
are only antiferromagnetic spin modulations with the wave-
length of two unit cells. The real-space spin/charge configu-
rations are shown for its unit cell of symmetry broken state
in Fig. 3(b). Since the energies of stripes with lc � 6 are
higher than those with lc � 5, we do not include them here.
The spin and charge structure factors divided by the system
size show that the spin orders are monotonically decreasing
as δ increases, and the charge orders have dome structures
[30], whereas SC correlation Pd is extrapolated to vanish-
ingly small values in the charge inhomogeneous state (see
Appendix D).

To clarify the energy differences, we show the energies of
stripe states relative to the homogeneous states in Fig. 3(c).
Experimentally, the wave vectors of charge orders observed
in the underdoped region of the hole-doped high-Tc cuprates
are q ∼ 0.15−0.35 r.l.u. (reciprocal lattice unit) in the a axis
[4,6–15]. In our results, the stripes with lc = 3−5 corre-
sponding to wave vectors q ∼ 0.1−0.33 r.l.u. are competing
with homogeneous states in the underdoped region δ < 0.15.
However, the stripe states have lower (or at least very close)
energies only around δ ∼ 0.1. This should be contrasted with
the stripe ground state dominating a wide doping concen-
tration for the simple Hubbard model [29–31] and shows
the importance of using ab initio values for the Hamiltonian
parameters to describe the competition in real materials. For
HgBa2CuO4+y recent x-ray scattering experiments observed
charge orders with q 	 0.23 for δ 	 0.12 [14] and q 	 0.28
for δ 	 0.09 [13]. In our results of Fig. 3(c), the stripe
with lc = 4 (q = 0.25) is particularly competitive for δ ∼ 0.1,
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FIG. 3. Physical quantities of inhomogeneous states.
(a) Ss(qSDW )/N and Sc(qCDW )/N of stripe states as functions
of δ. qSDW and qCDW are the momenta at the peak of Ss and Sc,
respectively. The linear system sizes are L = 20 for C5S5 and
L = 24 for others. The size dependence is small except for C2S4.
For detailed size dependence, see Appendix D. (b) Spin/charge
configurations of several stripes. The hole concentrations are δ = 0.1
for C5S5, δ = 0.125 for C4S8, δ 	 0.167 for C3S3 and δ 	 0.347
for C2S4. In the same way as the previous studies [26,29,71], we
represent the hole density δ = 1 − 〈ni〉 and the local spin moments
〈ni,↑ − ni,↓〉/2 by the circle radius and the arrow length, respectively.
Their values are also given as the green numbers and red numbers,
respectively. (c) Stripe-state energies relative to homogeneous states.

which is close to the experimental observations. This is again
different from the stripe period of lc > 5 stabilized in the
simple Hubbard model for δ ∼ 0.1 [31]. Our extrapolation of
the charge orders indicates that they have small but nonzero
values in the thermodynamic limit (Appendix D), whereas
the experimentally observed charge orders are short ranged,
probably partly due to disorder or impurity effects.

P
d(r

)

r
0 10 205 15

only U
up to V1

up to V2

up to V3

up to V4

Ewald sum10-1

10

1

10-2

10-3

δ ≈ 0.167

FIG. 4. Pd (r) at δ 	 0.167 (L = 30) for several cases of interac-
tion ranges. In the legends,“only U” means that we truncated the
off-site interactions and “up to Vi” means that we included them
up to Vn.

VI. EFFECTS OF OFF-SITE SCREENED
COULOMB INTERACTIONS

In a previous study on the Hubbard model, controver-
sial results were reported: The nearest-neighbor interaction
works destructively for d-wave superconductivity in a vari-
ational Monte Carlo study [24], while a dynamical mean-field
(DMFT) study showed the insensitivity of superconductivity
to the nearest neighbor repulsion [59]. Effects of off-site
Coulomb interactions beyond the nearest-neighbor pair were
mostly neglected in the literature. To clarify the role of the
realistic off-site interactions, we have studied the interaction-
range dependence of Pd (r) by switching off specific long-
ranged parts of Vi j from the ab initio value as shown in
Fig. 4. It indicates that V1 and V3 have particularly strong
effects on the superconductivity. Here, Vn stands for the off-
site interaction for the nth neighbor pair. V1 and V3 both work
in the directions along the Cu-O-Cu bonds. The destruction
by V1 is consistent with the result in Ref. [24]. [Note that
the short-ranged part of Pd (r)(r < 2) are not largely affected
by V1. When we consider the mean-field nature of DMFT,
which takes into account only the short-ranged correlations
by regarding them as mean fields, this insensitivity is also con-
sistent with Ref. [59]. Nevertheless, the true long-range order
to be examined in the long-ranged part is severely suppressed
by V1]. The partial recovery by including V3 can be ascribed to
the frustrative competition with V1. Eventually, the full ab ini-
tio interactions reduce the SC long-range order from the case
with U only by nearly one order of magnitude. We note that
the result “up to V4” is already close to the “Ewald sum.”. This
indicates that short-range part of off-site Coulomb repulsions
predominantly determines the superconductivity because of
the short coherence length (Cooper pairs are formed locally
in real space).

A more important effect of off-site interaction is observed
in the energy competition between the SC state and stripe
states. Without the off-site Coulomb interactions, they are
almost degenerate (see Appendix E). Therefore, the off-site
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FIG. 5. Comparison among superconductivity, spin structure
factor, and uniform charge susceptibility. Pd (blue squares),
Ss(π, π )(green diamonds), and χc(red circles) as functions of λV at
δ 	 0.167 (L = 30). Here, we included the off-site Coulomb interac-
tions up to the fourth neighbor (V4). Note that the long-range tail of
the interactions beyond V4 have little effect on the superconductivity
[see Fig. 1(b)]. In the presence of the true long-range Coulomb
interaction, the uniform charge susceptibility becomes zero, while
the realistic metallic screening between different layers can make
it short ranged, and thus χc has finite values in realistic situations.
Therefore, we here analyze χc with this finite cutoff to compare its
trend as a function of χc with Pd .

Coulomb interactions play a crucial role in energetically sta-
bilizing the SC state against stripe states. Note that the Hub-
bard model with only the on-site interaction and the nearest-
neighbor transfer even more favors the stripe states [29,31].

VII. CONNECTION BETWEEN CHARGE FLUCTUATIONS
AND SUPERCONDUCTIVITY

In previous studies, the tight connection between the en-
hancement of superconductivity and that of charge fluctua-
tions was observed in the homogeneous states of the simple
Hubbard model [24]. To examine the relevance of charge and
spin fluctuations in the case of realistic Hg-based cuprates,
we introduce a single parameter λV which rescales all the
off-site Coulomb interactions V uniformly and thus enables us
to monitor the effect on the superconductivity. More precisely,
we consider the Hamiltonian where the off-site Coulomb
interaction terms HV are replaced by λVHV . In Fig. 5, we
show Pd , Ss(π, π ), and the uniform charge susceptibility χc as
functions of λV at L = 30 and δ 	 0.167. Here, χc is defined
by d〈n〉/dμ (μ is the chemical potential) and it was obtained
from the calculated μ−δ curves (see Appendix F). As seen
in this figure, the enhancement of Pd is accompanied by
that of χc rather than Ss(π, π ) (spin correlation). This shows
that charge fluctuations or the resulting effective attraction
between carriers is crucial for the enhancement of supercon-
ductivity, whereas it also causes the competing inhomogeneity
(stripes).

VIII. DISCUSSION AND SUMMARY

We here discuss the issue on the origin of the condensation
energy in more detail. To elucidate whether large interactions

induce the crossover to the kinetic-energy-driven supercon-
ductivity near the ab initio Hamiltonian, we here introduce a
single parameter λint which rescales all the interaction terms
Hint uniformly as λintHint. The λint dependence of the conden-
sation energies is shown in Fig. 2(b). This shows that λint >

1.8 (U/t1 > 13.6) is required for 	Ekin > 0, much larger
than the ab initio value λint=1. (If we employ the crossover
point as the crossing of 	Ekin and 	Eint , it is even as large
as λint = 2.1). Such a large U/t1 required for the crossover
is more or less consistent with the previous VMC studies
on the Hubbard model in similar regions of δ [27,53]. In
the cDMFT and the dynamical cluster approximation (DCA)
studies of the t-J or Hubbard models [54,55,60], aside from
the variety of the results not necessarily consistent each other,
it was reported that the SC state can become kinetic-energy
driven above relatively small values of U/t1 ∼ 5.5 at low
doping concentration. To realize a kinetic-energy-driven SC
state for δ > 0.1, large U/t1(	 9) was reported to be still
necessary in the cDMFT study [55]. A very large U required
for the crossover in the present Hamiltonian in comparison
to the cDMFT and DCA may be ascribed partly to the re-
alistic off-site interaction which effectively compensates the
contribution from U and another possible origin is the real
antiferromagnetic correlation underestimated in the cDMFT
and DCA.

In the optical experiments on the cuprates, it was reported
that the SC state is driven by a reduction of the kinetic energy
in the underdoped region [61], which is consistent with the
cDMFT studies on the Hubbard model at large U/t1 [54,55]
and the t-J model [60]. However, this looks different from the
present result, at least at ab initio parameters. We here discuss
the origin of this apparent discrepancy.

The total condensation energy appears to be in the order of
1 K commonly in the cuprates as indicated by the specific-heat
measurement [62] while the kinetic energy gain integrated up
to 1.25 eV has the order of 10 K [61]. On the other hand,
recent ellipsometer measurement suggests that the Coulomb
energy loss contributed from small momentum |q| has the
energy scale of only 1 K [63]. These somewhat puzzling
features imply that the kinetic energy gain at lower energy
below the above cutoff could cancel the loss at higher energy
contribution and/or the interaction energy gain/loss could
be distributed over a wide |q| region. These possibilities are
compatible with the present result. First, our result indicates
that the Coulomb energy gain must come from the on-site
Coulomb interaction part related to the double occupation
of two electrons and this local character means that the
gain must be distributed more or less uniformly in a wide
momentum area beyond the accessible range in Ref. [63] (see
Appendix G). In addition, the main contribution measured
in optics to the condensation energy should come from the
energy scale of the Mott gap (double occupation energy) and
therefore beyond the experimental energy cutoff in Ref. [63].
Correspondingly, the kinetic energy loss in the present results
may also be distributed in the high-energy range again beyond
the optical energy cutoff in Ref. [61]. Although the high-
energy part is overlapped with the interband transition and
is difficult to resolve in experiments for the moment, it is
crucial to test the present first-principles result by the accurate
high-energy or short-time probe.
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In summary, we have studied superconductivity and in-
homogeneity in HgBa2CuO4+y by solving an ab initio
low-energy effective Hamiltonian derived before [33] with an
accurate numerical method. We have found that the charge
uniform d-wave superconductivity dominates the phase di-
agram in the ground state in a wide region of doping con-
centration at δ > 0.1 in agreement with the experimental
phase diagram and in contrast to the result of the simple
Hubbard model. Furthermore, we found that the off-site
Coulomb interactions dramatically reduce the amplitude of
superconductivity, while they greatly contribute to lowering
the relative energy and stabilizing the SC state against the
severely competing stripe phases. The driving force of the
superconductivity to gain the condensation energy is the on-
site interaction energy, where the d-wave SC state greatly
reduces the energy cost of the electron double occupation by
the d-wave pairing symmetry, where the double occupation is
strictly excluded. This energy gain is represented in the high-
energy part of the dynamics involving the doubly occupied
sites and is not experimentally accessible so far. It is desired
to test this prediction in refined measurements.

On the other hand, the stripe state appears as the ground
state in the limited underdoped region around δ 	 0.1 and
the wavelength of the charge order described by charge-4 and
spin-8 lattice constants. These are again consistent with the
experiments, but in contrast to the simple Hubbard model.
Further low doping region δ < 0.1 is dominated by the an-
tiferromagnetic order as is expected.

All of these show that ab initio parameters are crucial
to reproduce physics of high-Tc cuprates quantitatively. By
monitoring the off-site Coulomb interactions beyond the ab
initio values, enhanced charge fluctuations are demonstrated
to synchronize with superconductivity.

For a deeper and more precise understanding of their
physics, studies on the dynamical properties, finite tem-
perature properties, and roles of electron-phonon couplings
[64,65] are desired in future studies based on the present
basic successful understanding. The success in the present
Hg-based compound urges more thorough studies on other
cuprate and iron-based superconductors in the same first-
principles framework to deepen the understanding on the uni-
versality and individual character of the Hg compound, which
then helps in designing better and higher-Tc superconductors.
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APPENDIX A: EARLIAR FIRST-PRINCIPLES STUDIES

Although most theoretical studies employ adjustable pa-
rameters without any derivations, there exist several efforts to
derive parameters of Hubbard-type or t-J-type models based
on first principles (see, for example, Refs. [66–70]). However,
except for very few cases, derived effective Hamiltonians
were not solved to see whether the solution really reproduces
the phase diagram of the cuprates, including the superconduc-
tivity severely competing with the spin-charge stripe states.

In Ref. [66], t-J effective Hamiltonian parameters are
derived using quantum chemical analysis of small clusters.
However, they did not solve the derived Hamiltonian and
it is not clear whether the simple t-J model with only the
nearest-neighbor interaction captures the experimental phase
diagram of the cuprates quantitatively with the severe compe-
titions. In fact, we have shown the importance of the off-site
interactions to understand the severe competition between
the superconductivity and stripes, while such an issue is
neglected by ignoring the possible competition with charge
inhomogeneities.

In Ref. [67], by improving the density-functional theory,
the antiferromagnetic insulating properties for La2CuO4 were
reproduced, while its insulating gap totally relies on the anti-
ferromagnetic order and the Mott insulating nature is missing.
The central question of the superconductivity was not studied
anyway.

In Refs. [68,69], effective Hamiltonians for a few cuprate
compounds were derived. The Hamiltonian parameters have
an overall consistency between the present Hamiltonian and
that in Ref. [68], while the onsite interaction parameter
derived in Ref. [69] is substantially smaller than our
value. The main reason is that they did not use a proper
disentanglement procedure for the entangled bands employed
in Ref. [33]. Another origin of the discrepancy is that Ref. [69]
derived the Hamiltonian so as to ignore the off-site interaction.
In both Refs. [68,69], severe competitions between the SC
and stripe states and their carrier concentration dependence
were not studied.

Reference [70] derived the effective t-J Hamiltonian by
using the constrained LDA method and solved it by the
variational Monte Carlo method. In the derivation of the
effective t-J Hamiltonian, various refined treatments devel-
oped recently including the cGW method employed in the
present study were not taken into account. Reference [70]
employing the strong-coupling limit reproduced some feature
of superconductivity, while various important aspects such
as the role of off-site Coulomb interaction, which must be
much larger than J and could easily destroy the supercon-
ductivity, and the severe competition with the static stripe
phase were not seriously examined and the importance of the
charge fluctuation was not considered. Recent more refined
studies on a t-J model using the tensor network proposed the
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FIG. 6. r-dependence of the screened Coulomb interactions for
the ab initio single-band effective Hamiltonian of the Hg-based
cuprate. As the unit of the distance, we use the distance between
the nearest-neighbor Cu atoms in the CuO2 plane. The inset shows
the logarithmic plot. The red curve (line in the inset) is obtained
by the 1/r fitting in the long-ranged part.

coexistence of superconductivity with stripes, although there
remains uncertainty in its extrapolation with respect to the
inverse tensor dimension [71].

The present study overcomes many of the limitations in
the previous studies, in terms of the level of reliability and
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FIG. 7. Pd and 	E as functions of λ at δ = 0.1875 (L = 24).
	E is obtained after the variance extrapolation of energies. The
dashed line in the lower panel represents the experimental value
(	E = −Econd) [57,58].
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FIG. 8. Size dependence of Ss(qSDW )/N , Sc(qCDW )/N and Pd for
each stripe. We performed linear extrapolations of Ss(qSDW )/N and
Sc(qCDW )/N to the thermodynamic limit, which are shown as lines.

quantitative accuracy of the effective Hamiltonian as well as
the accuracy of the solver as clarified in Refs. [31] and [33].

APPENDIX B: EWALD SUMMATION

Here we briefly describe how we treated the long-range
part of the screened Coulomb interaction V in our Hamil-
tonian. In Fig. 6, we show the ab initio screened Coulomb
interaction V as a function of the relative distance r. As seen in
the logarithmic plot of the inset, the long-range part decays as
∼1/r for large r and we determined the coefficient by fitting.
Then, in our simulations of finite systems, we employed
the Ewald summation to include the long-range part of the
screened Coulomb interaction V accurately.

APPENDIX C: CONNECTION TO THE HUBBARD MODEL

Since the condensation energy for the Hg-based cuprate is
as small as 0.1 meV, reproducing its value with high accuracy
is beyond the ability of the present numerical approach, be-
cause our errors are typically 1 or a few meV after the variance
extrapolation. However, the observed energies, which is close
between the SC state and the normal metal do not contradict
experiments. Still, it is instructive to show that the observed
SC state is adiabatically connected to the case where one can
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FIG. 9. Extrapolation of energies to zero variance limit. (a) Ex-
trapolations of energies per site E/N of different states to the
variance 	var=0 (L = 24 and δ 	 0.167). Here, 	var is defined
by 	var = (〈H2〉 − 〈H〉2)/〈H〉2. In the legend, SC + AF and PM
represent a coexisting state of SC and AF, and a paramagnetic
metal, respectively. Each state has four energies obtained by different
methods: (1) mVMC method, (2) mVMC + fat-tree tensor network
(FTTN) method, (3) mVMC + first Lanczos method, and (4) mVMC
+ FTTN + first Lanczos method. The energies are decreasing in
this order. For FTTN, we used the bond dimension D = 2. (b),
(c) Variance extrapolations of SC states and C3S3 states for different
system sizes, respectively. 	var becomes smaller for larger system
sizes because it should scale as 1/N . The extrapolated energies for
different system sizes agree with each other within error bars.

clearly establish the SC ground state with resolved positive
condensation energy within the numerical accuracy. This is
the case of the simple Hubbard model (with only t1 and U ) at
a specific hole density and U/t1. In the Hubbard model, the
SC state has been more clearly shown to be the ground state
around δ 	 0.2 in a recent study [31].

To connect the Hubbard model at U/t1 = 10 to the
ab initio Hamiltonian, we introduce a single parameter λ

which uniformly rescales all the parameter differences be-
tween the two Hamiltonians. We define λ such that λ = 0
and 1 correspond to the Hubbard model and the ab initio
Hamiltonian, respectively, and λ linearly interpolates these
two limits. In Fig. 7, we show Pd and 	E as functions of λ

at δ = 0.1875 (L = 24). From Pd , we see that the SC state at
λ = 0 smoothly connects to λ = 1. In addition, 	E is positive
on the λ = 0 side. At λ = 0, the competition with stripe states
was also studied in Ref. [31], and it has been shown that the
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FIG. 10. Variance extrapolation of energies of different states for
the Hamiltonian without the off-site Coulomb interactions (L = 24).

energies of homogeneous states are lower than those of stripe
states around δ 	 0.2, including δ = 0.1875. Therefore, we
conclude that the SC state is the ground state at λ = 0.

APPENDIX D: SIZE DEPENDENCE OF STRIPE ORDERS

In Fig. 3(a) of the main text, we showed Ss(qSDW)/N
and Sc(qCDW)/N of stripe states. Here, we show the size
dependence of them. In Fig. 8, we plot the structure factors
as functions of 1/L. We also include Pd to show its super-
conductivity. The linear extrapolations to the thermodynamic
limit indicate that both the spin and charge orders are long
ranged. On the other hand, Pd is strongly suppressed for larger
systems, demonstrating the nature of competition between
superconductivity and stripes.

APPENDIX E: ENERGY COMPETITION WITHOUT
OFF-SITE COULOMB INTERACTIONS

To understand the role of off-site Coulomb interactions on
energy competitions among different states, we here present
the results of the energy competition without off-site Coulomb
interactions. We first show the variance extrapolation of en-
ergies for the ab initio Hamiltonian in Fig. 9. Figure 10
shows the variance extrapolation of energies where the only
difference is that we here switched off the off-site Coulomb
interactions. As a result, the extrapolated energies become
very close, and thus the SC state is more severely compet-
ing with stripe states. This shows that the off-site Coulomb
interactions play a crucial role of energetically stabilizing the
SC state against stripe states.

APPENDIX F: UNIFORM CHARGE SUSCEPTIBILITY

Here we explain how we obtained the uniform charge
susceptibilities χc shown in Fig. 5 of the main text. It is de-
fined by χc = d〈n〉/dμ, where μ is the chemical potential. To
obtain it, we first calculated total energies E at two different
electron numbers Ne and N ′

e which are close to each other.
Then, we evaluated μ at the middle filling Ne = (Ne + N ′

e)/2
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FIG. 11. μ−δ curves for λV = 0, 0.4 and 1 (L = 30). Unimpor-
tant constant terms are shifted for clarity. The results are obtained by
the mVMC method without variance extrapolations.

as μ(Ne) = [E (Ne) − E (N ′
e)]/(Ne − N ′

e). After we obtain the
μ−δ curve, we performed a linear fitting near δ 	 0.167
to estimate the slope. Since χ−1

c = −dμ/dδ, we can finally
obtain χc as the inverse of the negative slope. Figure 11 shows
the μ−δ curves and the results of fittings for λV = 0, 0.4,
and 1.

APPENDIX G: MOMENTUM-RESOLVED CONDENSATION
ENERGY IN INTERACTION- VS KINETIC-ENERGY PARTS

In recent temperature-dependent ellipsometry measure-
ments on Bi-based cuprates [62], the partial Coulomb energy
for the wave vector q ∼ 0 was measured. They reported that
the Coulomb energy gain around the wave vector q ∼ 0 to
stabilize superconductivity is comparable to the total conden-
sation energy 1 K reported in the specific-heat measurement
with a similar tendency for the doping concentration depen-
dence [63]. However, the whole kinetic energy loss or gain
as compared to the normal state has the scale of 10 K [61],

L=30, δ ≈ 0.11 L=30, δ ≈ 0.11
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FIG. 12. Super-normal energy difference 	E (= − Econd ) com-
ing from the momentum-resolved Coulomb interaction energy
Eint (q). (a) Dependence along the symmetry line from (0,0) to (π, 0).
(b) Dependence along the symmetry line from (0,0) to (π, π ).

one order of magnitude larger than the interaction energy
gain/loss coming from the small q region as inferred from
the optical conductivity measurement. This implies that there
is much larger energy scale distributed in the large q region
(including q ∼ (π, π ) region) of the interaction energy to
compensate the kinetic energy gain/loss and to stabilize the
experimental SC state with the positive condensation energy
of the order 1 K. To gain insight from the theoretical analysis
of the ab initio Hamiltonian, we calculated the q-resolved
Coulomb interaction energy Eint (q) and its energy difference
	Eint (q) = Eint,SC(q)/N − Eint,Normal(q)/N . Here, we define
Eint (q) from Eint = 1

2N

∑
q Eint (q) and Eint (q) = V (q)〈nqn−q〉.

V (q) is the Fourier transformation of the sum of all the
screened Coulomb interaction after the Ewald summation.
The results along two symmetric directions in the Brillouin
zone are shown in Figs. 12(a) and 12(b). Although the res-
olution of the available data is not sufficient enough in this
tiny energy scale with presumable oscillatory q dependence,
we find a trend of large energy gain in a wide q region, which
is consistent with the above experimental indications and the
intuition from the local energy gain addressed in the main
text as the main energy gain in the on-site interaction part
associated with the double occupation energy.
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Hardy, R. Liang, D. Bonn, and M.-H. Julien, Nature 477, 191
(2011).

[17] T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W.
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