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Topological classification of molecules and chemical reactions with a perplectic structure
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In this paper, a topological classification of molecules and their chemical reactions is proposed on a
single-particle level. We consider zero-dimensional electronic Hamiltonians in a real-space tight-binding basis
with spinless time-reversal symmetry and an additional spatial reflection symmetry. The symmetry gives rise
to a perplectic structure and suggests a Z2 invariant in form of a Pfaffian, which can be captured by an
entanglement cut. We apply our findings to a class of chemical reactions studied by Woodward and Hoffmann,
where a reflection symmetry is preserved along a one-dimensional reaction path and argue that the topological
classification should contribute to the rate constants of these reactions. More concretely, we find that a reaction
takes place experimentally whenever the reactants and products can be adiabatically deformed into each other,
while reactions that require a change of topological invariants have not been observed experimentally.
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I. INTRODUCTION

The advancements of the topological description of non-
interacting crystalline matter within the last decade have
revolutionized the field of condensed-matter physics [1–4].
Topological considerations first predicted the existence of
unremoveable exotic surface or edge states and have led to
the discovery of many new phases of matter in crystals [5,6],
e.g., exotic fermionic states without analogues in high-energy
physics [7]. A state of matter is topologically nontrivial if
the ground state (GS) of the system cannot continuously be
deformed into the atomic limit without gap-closing. Spatial
and nonspatial symmetries determine the way this atomic
limit is approached and give rise to a large variety of differ-
ent noninteracting and interacting topological phases [8–11].
These methods have recently found to be relevant for other
areas of physics, e.g., mechanical systems, electric circuits,
and even weather phenomena [12–16].

In a like manner, it is known that topological effects play
an important role in molecular systems and their chemical
reactions. For example, the geometric phase acquired by mov-
ing around a conical intersection has been shown to strongly
influence the reaction rate of simple chemical reactions due to
interference of different reaction paths [17–20]. Further, it has
been proposed that the surface states of Weyl semimetals or
topological insulators could influence the outcome of chemi-
cal reactions as catalysts [21–24].

Chemical reactions are rare events of the quantum dy-
namics on the Born-Oppenheimer surface and generally are
complicated dynamical problems. Despite empirical rules that
provide strong guidelines, it is not fully understood why
certain chemical reactions work the way they do, e.g., the
Woodward-Hoffmann rules (WHR) [25]. In this paper, we
approach this problem from a topological point of view and
propose a topological classification for molecules and their
reactions that are described by these rules. The way this clas-
sification manifests itself in molecules is necessarily different

from the solid state, since molecules are finite-sized objects:
When two crystals with different topological invariants are
brought in contact, the spectral gap has to close at the in-
terface, since a topological invariant can only change at a
gap closing point [26]. At the interface, one therefore finds
topologically required gapless states [Fig. 1(b)]. In molecules,
such states will not appear due to their zero-dimensional (0D)
nature; the interface states can generically be gapped out or
are not well defined.

Instead, we here propose that a topological classification
of molecules can manifest itself in their chemical reactions.
We study chemical reactions of a set of reactant molecules
R that transform into a set of product molecules P (R → P)
and describe the transformation of the GS of the reactant
Hamiltonian HR into the GS of the Hamiltonian HP describing
the products. A common way to model this process is to define
a reaction path via a reaction coordinate τ . This allows us
to describe a chemical reaction as a continuous deformation
of a reaction Hamiltonian H(τ ) = f (τ )HR + g(τ )Hp, with
f (0) = g(1) = 1 and f (1) = g(0) = 0, which one can clas-
sify topologically.

This approach allows us to distinguish between two dif-
ferent cases as displayed in Figs. 1(c) and 1(d). In the first
case, reactants and products possess the same topological
invariant. By definition, the GS of HR can be smoothly, i.e.,
adiabatically, deformed into the GS of HP; concordantly, the
GS of H(τ ) is separated from the excited states by a gap for
all τ . In the second case, the reactants and products differ in
their topological invariants; the gap of H(τ ) has to close along
the reaction path and the GS of reactants and products cannot
be adiabatically transformed into each other, i.e., the reaction
has to proceed in a nonadiabatic fashion.

The quantum mechanical observable associated with
chemical reactions is the reaction rate. For adiabatic reactions,
i.e., the first case, the Born-Oppenheimer approximation is
usually valid and the reaction rate can be calculated by solely
focusing on the GS of H(τ ). The rate is determined by the
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FIG. 1. (a) An interface of two materials with the same topological invariant. While the valence band maxima (VBM) and conduction
band maxima (CBM) change due to interface effects, the gap does not close at the interface. (b) An interface of two materials with different
topological invariants. The spectral gap has to close at the interface and topologically protected surface states emerge. (c) A chemical reaction
in which the reactants and products have the same topological invariant. The spectral gap does not close along the reaction path and the reaction
proceeds adiabatically and the reaction rate k is determined by the activation barrier �R. (d) A chemical reaction in which the reactants and
products have a different topological invariant. Here, the spectral gap closes along the reaction path. The reaction rate is proportional to the
probability pRP to transition between the GS of the reactants |R0〉 to the ground state of the products |P0〉, which can be estimated from
Landau-Zener theory.

energy barrier of the reaction, which is determined by the
energy of a transition state [Fig. 1(c)]. In the second case,
transition state theory is not valid, as the higher energy states
of H(τ ) cannot be ignored due to the gap closing point, as
e.g. in the non-adiabatic regime of Marcus theory [27,28].
In a simplified picture where one assumes only one possible
reaction path the reaction rate can be approximated from
Landau Zener theory close to the gap closing point. For
example, the rate can be computed as k = ∫

dE p(E )e−βH ,
where β is the inverse temperature, H is the Hamiltonian in
the microcanonical ensemble and p(E ) is the probability to
jump from the left surface to the right surface for a given
energy E [Fig. 1(d)]. Close to the crossing point, one can
approximate this probability with the Landau-Zener proba-
bility p(E ) � pLZ = 1 − e−ξ�2

, where � is the gap between
the two potential energy surfaces and ξ is a constant that
depends on the details of the Hamiltonian. One therefore finds
a vanishing reaction rate k in case of a crossing (� = 0),
while it is exponentially small in the presence of a small gap.
The physical picture is the following: Instead of ending up in
the GS of HP, the final state of the reaction will be a linear
combination of excited states and therefore the rate for the
reaction, vanishes in this case.

For reactions with several competing reaction pathways
that cannot be described by a single, one-dimensional reaction
pathway, these conclusions do not necessarily remain true, as
Landau-Zener theory is a manifestly one-dimensional theory.
However, the nonadiabatic couplings due to the level crossing
are still expected to be significant for paths close to the
crossing [29].

II. OUTLINE

The paper is structured as follows: We begin with the
topological classification by introducing a simple toy-model
in Sec. III, where we summarize and discuss the main results
without derivation. In the following section, Sec. IV, we
review the theory of bisymmetric matrices and derive the most
general form of a spinless, time-reversal symmetric Hamilto-
nian of even matrix dimension with a reflection symmetry. In
addition, we derive a general expression for the Z2 topological
invariant that has been introduced in the first section.

In Sec. V, we discuss the implications of the topological
classification on the theory of chemical reactions, in particular
the case of the WHR that are described by our models.

III. A SIMPLE EXAMPLE

Before discussing the most general case, we start with a
simple example of a 4 × 4 Hamiltonian H(t ) at half filling,
which depends on a single tuning parameter t that takes on
the role of the reaction coordinate while the other parameters
a, h, g of H(t ) remain constant. The Hamiltonian models the
reaction of two ethylene molecules that approach each other
along a reflection symmetric reaction pathway, which is mod-
eled by tuning t (see Sec. V for a more detailed discussion).
The Hamiltonian in the site basis is given as

H(t ) =

⎛
⎜⎝

g − μ t h a
t −g − μ a h
h a −g − μ t
a h t g − μ

⎞
⎟⎠, (1)
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where μ is the chemical potential, which will be used to define
a suitable reference energy. The Hamiltonian is time-reversal
symmetric with T = K, where K is the antiunitary complex
conjugation operator. H(t ) possesses a reflection symmetry J ,

J =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ (2)

such that [H(t ), J] = 0 for all t . Note that the tuning-
parameter t is not affected by any symmetry. Since
[H(t ), J] = 0, there exists a orthogonal matrix K which block
diagonalizes both J and H(t ):

K = 1√
2

⎛
⎜⎝

−1 0 0 1
0 −1 1 0
1 0 0 1
0 1 1 0

⎞
⎟⎠. (3)

We arrive at

HB(t ) = KH(t )KT =
(

H−(t ) 0
0 H+(t )

)
, (4)

where the blocks corresponding to the ± eigenspaces of J are
obtained as H± = (±a + g − μ t ± h

t ± h ±a − g − μ).

A. Spectrum of HB(t )

The two eigenvalues of H+ are given as

εe
±(t ) = a ±

√
g2 + (h + t )2 − μ (5)

and the eigenvalues of H− are given as

εo
±(t ) = −a ±

√
g2 + (h − t )2 − μ. (6)

For the sake of simplicity, we assume a2 > g2 + h2 as well
as t > 0. Now, while tuning t , there can be a level crossing
between two states of the different blocks,

εe
−(t ) = εo

+(t ) ⇔ t = tc := a
√

a2 − g2 − h2

√
(a − h)(a + h)

. (7)

This crossing point is a gap closing point between the two
eigenspaces of J , and therefore the Hamiltonians HB(t < tc)
and HB(t > tc) should be topologically different. We expect
that this can be characterized by a topological invariant ν(t )
that completely characterizes the 0D Hamiltonian for each
t . The invariant should not change if trivial bands are added
and should be robust to deformations that do not close the
gap between the occupied states. Due to the lack of a chiral
or particle hole-symmetry, there is no natural zero of the
energy, which we need to define the topological invariant. We
therefore define the zero of the energy to be at the crossing
point tc and set μ = a −

√
(tc + h)2 + g2, which enforces half

filling.

B. Topological invariant and Z2 structure

We here propose, with the derivation given in Sec. IV, that
this invariant derives not directly from the Hamiltonian, but

(a)

(b)

(c)

(d) Eig(He)

1

2 3

4

A B

ν(t)

E

FIG. 2. (a) Eigenvalues of H(t ) and topological invariant ν(t )
as function of t for a = 1, g = 0.4 and h = 0.2. (b) Eigenvalues
of the doubled Hamiltonian HD(t ) with M = 0.1 (c) Real-space
picture of entanglement cut and definition of subsystem A and B.
(d) Entanglement spectrum for a = 1, g = h = 0 as a function of t .
The symmetry breaking mass has been set to m = 0.0001.

from the matrix

S (t ) = �HB(t )

=

⎛
⎜⎝

0 0 −a − g + μ −h − t
0 0 −h − t −a + g + μ

a − g + μ h − t 0 0
h − t a + g + μ 0 0

⎞
⎟⎠,

(8)

where the σi are the Pauli matrices and � = −σ1 ⊗ σ0. The
invariant is given as

ν(t ) = Pf[S(t )] = sgn[−(h + tc)2 + (h + t )2], (9)

which means that ν(t ) = −1 for t < tc and ν(t ) = 1 for t >

tc, while it jumps abruptly at the crossing point t = tc. The
invariant is a Z2 invariant since it can only take on the values
±1. For t < tc and t > tc, there exists a gap between the lowest
two energy eigenstates and the highest two energy eigenstates
[Fig. 2(a)].

To prove that the topological classification is indeed a Z2-
classification, we now double the size of the Hamiltonian:

HD(t ) = HB(t ) ⊗ σ3. (10)

Similarly, JD = JB ⊗ σ0. There exist several symmetry pre-
serving mass terms M, such that {M,HD(t )} = [M, Jd ] =
[M, T ] = 0, which indicates that the system becomes topo-
logically trivial upon doubling the system. For example, M
can be chosen to be the matrix M = σ3 ⊗ σ0 ⊗ σ1, which gaps
out every crossing, while preserving the spatial symmetry J
and TRS [Fig. 2(b)].

C. Entanglement spectrum

The topological transition at t = tc is accompanied by a
change in the single-particle entanglement spectrum between
two spatial blocks A and B [Fig. 2(e)] of the Hamiltonian H(t )
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that are connected by varying t . The entanglement spectrum
is the spectrum of the entanglement Hamiltonian HB

e which
is defined through the reduced density matrix of subsystem B
via [30]

ρB = 1

TrB
[
e−HB

e

]e−HB
e . (11)

For noninteracting systems, it can conveniently be obtained
from the eigenvalues λm of the flattened Hamiltonian Q pro-
jected on subsystem B as

QB(t ) = 1 − PB

( ∑
n∈occ

|n, t〉 〈n, t |
)

PB, (12)

where PB is the projector on subsystem B and |n, t〉 is an
eigenstate of the Hamiltonian H(t ). The eigenvalues pi of the
entanglement Hamiltonian HB

e can be obtained from inverting
the relation

λn = 1

2
tanh

( pn

2

)
. (13)

In this part, we solve the problem for the analytically tractable
case of g = h = 0. To define the occupied bands for all t , we
have to introduce an infinitesimally small symmetry-breaking
term M = mσ0σ3. In the limit of m → 0, the projected flat
band Hamiltonian is then given as

QB(t ) =

⎛
⎜⎜⎝

1
4 m

(
1

|t−1| + 1
t+1

)
0 0 1

4

(
1 + 1

sgn(1−t )

)
0 1

2 0 0
0 0 1

2 0
1
4

(
1 + 1

sgn(1−t )

)
0 0 1

4 m
( − 1

|t−1| − 1
t+1

)
⎞
⎟⎟⎠.

(14)

Expanding around m → 0 again, the eigenvalues λn to lowest
order in m are

1

2
,

1

2
,

{± tm
2t2−2 + O(m3) t > 1

±[ − 1
2 − m2

4(t2−1)2 + O(m3)
]

t < 1.
(15)

Keeping only the nonsingular entanglement eigenvalues, we
arrive at

p± =
{

±[
2 log(m) + log

(
1

4(t2−1)2

) − 2
]

t < 1

± 2tm
t2−1 t > 1,

(16)

which is plotted in Fig. 2(d). The entanglement spectrum
shows a discontinuous jump at t = tc = 1. For t < 1, the spec-
trum is nonzero and depends on the values of m and t , whereas
it becomes quantized to zero for t > 1 as m → 0, which is a
general indication of a topological phase transition [30,31] .

IV. GENERAL THEORY OF BISYMMETRIC
HAMILTONIANS

In this section, we introduce the general theory of real
2n × 2n Hamiltonians H which commute with a reflection
symmetry J . For this, we choose a special basis in which
the reflection symmetry takes on the form of the so-called
exchange matrix

J =
(

0 J
J 0

)
, (17)

where J is the n × n matrix with 1’s along the antidiagonal
and 0’s everywhere else, such that Ji, j = δi,n− j+1. J is an
involution and therefore the eigenvalues are ±1.

We begin with a few preliminary definitions. A matrix
X , for which X = JXJ , is called perplectic or centrosym-
metric. Matrices Y obeying Y = JY T J , where Y T is the
transpose of Y , are called persymmetric. Symmetric cen-
trosymmetric or equivalently symmetric persymmetric ma-
trices H = HT , H = JHJ are called bisymmetric. Similarly,
skew-persymmetric matrices V are defined via V = −JV T J ,
skew-centrosymmetric S via S = −JSJ and finally we call
a matrix doubly skew if it is skew symmetric and skew
centrosymmetric.

The above-mentioned types of matrices have been studied
extensively and therefore we restrict ourself to only a brief
review of the most relevant properties [32–34]. The most
general real perplectic 2n × 2n square block matrix X is
given as

X =
(

U JV J
V JUJ

)
, (18)

with U,V ∈ R2n×2n.
The most general real Hamiltonian which commutes with

J therefore has to be bisymmetric, due to the additional
constraint H = HT , and is given as

H =
(

A JBJ
B JAJ

)
, (19)

where A = AT is symmetric and B = JCT J is persymmetric.
The Hamiltonian H possesses n J -symmetric and n J -
antisymmetric eigenvectors.

Topological invariant

We wish to characterize the Hamiltonian in Eq. (19) topo-
logically by defining Nocc occupied states ordered by energy.
We define the zero of energy via a suitable shift of the
chemical potential, such that Nocc states have an energy ε � 0.
In the case of a degeneracy of the highest energy state, we
define the zero of energy at the point of degeneracy.

Working in the basis in which J is diagonal, we arrive at

HB = KHBKT =
(

A + JB 0
0 A − JB

)
(20)

with

K = 1√
2

(
1 −J
1 J

)
. (21)

Thus the eigenstates of the different blocks of HB are given
by the eigenstates of the symmetric matrices A ± JB.

For each Hamiltonian of the form of Eq. (19), there
exists a one-to-one mapping to a nonsymmetric skew-
centrosymmetric matrix S via

S = �3H =
(

A JBJ
−B −JAJ

)
, (22)

with �3 = 1n×n ⊕ −1n×n. The diagonalizable, nonsymmetric
matrix S , by definition, possesses a chiral symmetry JSJ =
−S . Therefore, the eigenvalues λi ∈ C come in pairs: If (x, λ)
is an eigenpair of S , (J x,−λ) is an eigenpair as well.
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tc

(a)

(b)

FIG. 3. (a) Real and imaginary parts of the eigenvalues of SB(t )
as function of t for a = 1, g = 0.4, and h = 0.2 for the model defined
in Sec. III. The crossing point of HB(t ) at t = tc corresponds to a zero
mode of SB(t ) highlighted by a red line. (b) Evolution of the real and
imaginary parts of the eigenvalues of SB(t ) as a function of t . The
t = tc plane is highlighted and the zero eigenvalues are highlighted
by a black ball.

Now, instead of characterizing the Hamiltonian HB, we
choose to characterize the S in the diagonal basis of J :

SB = KSKT =
(

0 A + JB
A − JB 0

)
. (23)

This is motivated by the observation that the null space of HB

is the null space of SB, since

ST
B SB = H2

B. (24)

It can be shown that only the null space of SB can be expressed
in the basis of HB, while the nonzero eigenvectors of SB are
neither even nor odd under JB [35]. We now assume that there
is a degeneracy between an eigenstate |+〉 of A + JB and an
eigenstate |−〉 of A − JB at zero energy. It follows that the
vector [|+〉 , |−〉]T is a zero mode of SB, since

SB

[|−〉
|+〉

]
=

[
(A + JB) |+〉
(A − JB) |−〉

]
=

[
0
0

]
. (25)

The zero modes of SB thus correspond to the double degen-
eracies between the different blocks of HB at zero energy.
At this point, the real and imaginary parts of the eigenvalues
coalesce at a so-called exceptional point (Fig. 3). Exceptional

FIG. 4. (a) Reaction of two ethylene (C2H4) molecules to cy-
clobutane (C4H8). There are two double bonds involved in the re-
actions, which contribute four π electrons, which is forbidden by the
WHR. (b) Reaction butadiene (C4H6) with ethylene to cyclohexene
(C6H10). There are three double bonds involved in the reactions,
which contribute six π -electrons, which is allowed by the WHR.
(c) Eigenvalues of H(t ) and topological invariant ν(t ) for the reaction
depicted in (a). (d) Eigenvalues of H(t ) and topological invariant ν(t )
for the reaction depicted in (b).

points have recently attracted interest as they are relevant for
the topological classification of non-Hermitian Hamiltonians
in translationally invariant systems [36,37]. To measure this
coalescence, we introduce

ν = sgn Pf[SB] (26)

as a topological invariant. The Pfaffian Pf[SB] vanishes iff SB

possess a zero mode, which corresponds two zero modes of
HB with opposite J eigenvalues.

The topological invariant proposed here can therefore mea-
sure if two eigenstates of HB cross at zero energy as one con-
tinuously varies a parameter of the system, e.g., a hopping as
discussed in Sec. III, for a suitable defined chemical potential.

V. APPLICATION TO CHEMICAL REACTIONS

The model introduced in Sec. III describes the reaction of
two ethylene (C2H4) molecules to cyclobutane (C4H8) in the
subspace of the carbon-pz orbitals. Reactions of this type are
called pericyclic reactions and their outcome can be predicted
and rationalized via the WHR [38].

The WHR are based on the number of π -electrons in-
volved in a reaction. Reactions of 4n π electrons, where
n ∈ N, are forbidden, while reactions involving 4n + 2 π

electrons are allowed. For example, in the cycloaddition of
the two ethylenes there are four π electrons involved, because
each double bond contributes two π electrons. Accordingly,
the reaction does not take place under normal conditions
[Fig. 4(a)]. In contrast, the cyclodaddition of butadiene (C4H6)
with ethylene to cyclohexene (C6H10) is allowed according
to the WHR, since there are three double bonds involved,
which corresponds to six π electrons [Fig. 4(b)]. This reaction
takes place readily in the laboratory and is frequently used in
organic synthesis [39]. A common rationalization of the WHR
is based on energetic arguments: Forbidden reactions have to
overcome a large activation barrier �R, because there is a
crossing between the occupied and unoccupied states along
the reaction path [Fig. 4(c)] [38]. Allowed reactions, on the
other hand, have a low reaction barrier �R due to the absence
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of any crossings [Fig. 4(d)]. However, this explanation in
terms of energetics has two main weaknesses:

(i) It does not take into account the strong nonadiabatic
nature of the dynamics in case of a crossing, as discussed in
the introduction. A transition state is not well defined in these
cases and it is well known that nonadiabatic effects such as
surface hopping strongly influence chemical reactions, often
leading to a suppression of the reaction rate [40].

(ii) If the barrier height was the the only way to distinguish
an allowed reaction from a forbidden one, there should be a
crossover between allowed and forbidden reactions, e.g., by
changing the temperature or the solvent. This, however, is
not supported by experiments. Much rather, despite valiant ef-
forts, no forbidden reaction has been reported in the literature
starting from the GS of the reactants.

We therefore want to suggest an alternative way of under-
standing theses reaction rules based on topological arguments
and nonadiabatic effects. The main idea has been discussed in
the Introduction and we briefly review it here: If reactants and
products possess different topological invariants, there has to
be a crossing along the reaction path. This crossing induces
very strong nonadiabatic effects, which prevent the reaction
from proceeding, e.g., by ending up in an excited state instead
of the GS. If the topological invariants of reactants and
products do not differ, the reaction dynamics are adiabatic,
and therefore the reactions will proceed given the right experi-
mental conditions. Experimentally, it has been verified that the
reactions described by WHR follow symmetry-preserving re-
action paths and therefore the topological classification based
on the mirror symmetry J can be applied. We generally find
that the outcome of a pericyclic chemical reaction described
by the WHF correlates with the difference of the topological
invariants of reactants and products. If reactants and products
share the same value of the topological invariant ν(t ) defined
in the last section, they can be smoothly deformed into each
other along the reaction path without a crossing between
occupied and unoccupied states [Fig. 4(d)], corresponding
to an allowed reaction. If the topological invariant changes
during the reaction, no adiabatic symmetry-preserving path
exists and there has to be a crossing along the reaction path
[Fig. 4(c)]; in the language of the WHR, the reaction is
forbidden.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have introduced a topological classi-
fication of molecules with a reflection symmetry and their
chemical reactions. In these reactions, the reflection symmetry

is preserved along the reaction path and results in a Z2

invariant given in Eq. (26) in the form of a Pfaffian, which
is motivated by the theory of perplectic matrices. Our theory
can be applied to chemical reactions that are described by
the WHF, i.e., pericyclic reactions. We find, that Woodward-
Hoffmann-allowed reactions are reactions in which the topo-
logical invariant does not change along the reaction path,
while the invariant of Woodward-Hoffmann forbidden reac-
tions changes during the reaction. In light of these findings, we
propose that certain chemical reactions can be described from
a topological perspective, i.e., by computing a topological
invariant for the reactant and product molecules. In the case
where the invariant of the reactants and products is different,
there has to be a gap closing point along the reaction path, if
the symmetry defining the topological invariant is preserved
along the path. This gap closing point has strong effects on
the dynamics and time-evolution of the system and should
generically lead to a suppression of the reaction rate, since
there is no possibility to adiabatically move from the reactants
to the products.

It remains to be shown that this approach is valid for other
chemical-reaction rules, e.g., the Wade-Mingos rules, and its
extensions, and if more general statements about chemical
reaction rules can be made via a topological approach [41,42].

The results presented here are based on a single-particle
theory and can be applied to all correlated cases in which
the quasiparticle picture is valid. If required, one can
build an effective single-particle Hamiltonian from accurate
ab initio methods such as density-functional theory or the
GW approximation, to which the results of this paper can
be applied. However, strong correlations can be important in
some chemical reactions in which the quasiparticle picture
breaks down. For these cases, no a priori statements can be
made without explicitly calculating the electronic structure
along the reaction path. However, it is still possible to define
topological invariants via interacting Green’s functions in
these cases, which will be discussed in future work [43].
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