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The large-scale dynamics of quantum integrable systems is often dominated by ballistic modes due to the
existence of stable quasiparticles. We here consider as an archetypical example for such a system the spin- 1

2
XXX Heisenberg chain that features magnons and their bound states. An interesting question, which we here
investigate numerically, arises with respect to the fate of ballistic modes at finite temperatures in the limit of
zero magnetization m=0. At a finite magnetization density m, the spin-autocorrelation function �(x, t ) (at high
temperatures) typically exhibits a trimodal behavior with left- and right-moving quasiparticle modes and a broad
center peak with slower dynamics. The broadening of the fastest propagating modes exhibits a subdiffusive t1/3

scaling at large magnetization densities m→ 1
2 , familiar from noninteracting models; it crosses over into a diffu-

sive scaling t1/2 upon decreasing the magnetization to smaller values. The behavior of the center peak appears
to exhibit a crossover from transient superdiffusion to ballistic relaxation at long times. In the limit m→0, the
weight carried by the propagating peaks tends to zero; the residual dynamics is carried only by the central peak;
it is sub-ballistic and characterized by a dynamical exponent z close to the value 3

2 familiar from Kardar-Parisi-
Zhang (KPZ) scaling. We confirm that, employing elaborate finite-time extrapolations, that the spatial scaling of
the correlator � is in excellent agreement with KPZ-type behavior and analyze the corresponding corrections.

DOI: 10.1103/PhysRevB.101.045115

I. INTRODUCTION

Interaction effects in strictly one-dimensional quantum
systems tend to be strong. This is, roughly speaking, because
the dimensional reduction weakens the efficiency of screening
and makes it difficult for two excitations approaching each
other to avoid a collision. The overall reduction of phase space
for (few-body) scattering processes has one more interest-
ing consequence: Classes of one-dimensional model systems
(integrable) can be identified that carry an extensive amount
of conserved quantum numbers and their thermodynamic
properties can be interpreted in terms of effective particles [1].

When it comes to the hydrodynamic regime, it is well
known that conservation laws tend to manifest in the ana-
lytical structures of kinetic coefficients. Therefore, it is an
interesting endeavor to inquire into the hydrodynamics of
fully integrable systems as has been done, recently.

Corresponding generalized hydrodynamic descriptions
(GHD) have been proposed [2,3]. They feature kinetic equa-
tions for generalized phase-space distributions, akin to the
theory of classical soliton gases [4,5]. Diffusive corrections
and entropy production due to quasiparticle scattering have
been incorporated recently [6–8]. Moreover, quantum hydro-
dynamics for one-dimensional systems at zero temperature
developed earlier,1 formulated in terms of density and velocity

1The development of hydrodynamics for 1D systems is a field with
a long history. We only cite one of the pioneering works, Ref. [43],
and Refs. [9,44] for a more recent overview.

fields, was shown to be reproduced by GHD in the corre-
sponding limit [9]. In this work, we numerically investigate
the spin dynamics in isotropic Heisenberg chains at high
temperatures for varying total magnetization density m. In the
limit m→ − 1

2 , i.e., close to the ferromagnetic vacuum, only
bare magnons contribute to the spin-autocorrelation function
�(x, t ), visible as a cone in Fig. 1. The front of the cone ex-
hibits a time window of subdiffusive broadening reflecting the
dispersion of the quasiparticles (see Ref. [10] and references
therein). The crossover time into the true asymptotic regime,
which we find to be diffusive, consistent with Ref. [11], is
expected to diverge in the limit m→ − 1

2 . Concomitantly, at
intermediate m, additional ballistic modes can be identified
corresponding to 2-magnon bound states.

An intriguing question arises about the fate of the dynamics
in the limit of zero magnetization. In this case, it is understood
that the quasiparticles effectively do not carry magnetization
[12]. Consistently, we observe the weight of the propagating
peaks in �(x, t ) to disappear. At zero magnetization m=0,
and elevated temperatures T → ∞, a sub-ballistic dynamics
of spin excitations takes over, as has been reported in a number
of numerical studies dating back to [13]. However, it has long
remained controversial whether a ballistic contribution to the
spin dynamics, as measured by the Drude weight, exists (see
Ref. [14] for an overview). Most recent analytical studies
suggest that the Drude weight indeed vanishes for any finite
T > 0 [14,15]. The peculiar residual dynamics has been iden-
tified as superdiffusive relaxation with a dynamical exponent
close to z≈ 3

2 [16–20]. Consistent with numerical observa-
tions, it was confirmed analytically that the spin-diffusion
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FIG. 1. Spin-autocorrelation function �(x, t ) for total-
magnetization density m≈ − 0.48, −0.38, −0.17 (left, center,
right) and m= − 0.17 (right). Ballistic propagation manifests itself
in the “light-cone” structures. At small magnetization a broad
center peak is seen that develops a critical, KPZ-type dynamics
in the limit m→0. Data have been calculated as explained in the
Sec. II B.

coefficient diverges [12]. Recently, Ref. [21] showed numer-
ically that not only the exponent z, but also the spatial shape
of the spin-spin autocorrelation function is in agreement with
Kardar-Parisi-Zhang (KPZ) scaling. We confirm this result
and carefully analyze the corrections to KPZ scaling, which
we find to be of the form t−y, y ≈ 1

3 . Our calculations for
the high-temperature spin autocorrelator follow a protocol
pioneered in Ref. [17], employing standard matrix product
operator (MPO) techniques. We observe that the magneti-
zation dynamics with bond dimensions χ � 1000 exhibits
unphysical fluctuations for times t � 30, which are short in
comparison to the scaling limit. Remarkably, the qualitative
characteristics of the long-time limit, such as the dynamical
exponent and the KPZ scaling, appear to be rather forgiving
in the sense that it emerges after removing fluctuations by
performing running averages (see Ref. [21]).

II. MODEL AND METHOD

A. Model and observable

The Hamiltonian of the XXZ Heisenberg chain is given by

Ĥ = J

L
2 −1∑

x=− L
2

[
Ŝx

x Ŝx
x+1 + Ŝy

x Ŝy
x+1 + �Ŝz

xŜz
x+1

]
. (1)

We choose J=1 as the unit of energy and concentrate on
�=1.2 The total z component of spin M̂ = ∑

x Ŝz
x is con-

served, i.e., commutes with Ĥ . The length of the chain is cho-
sen L�200 such that, on the timescales shown, the boundaries
do not affect the results of this work.

Our observable is the spin dynamics by means of the
equilibrium Sz correlation function:

�(x, t ) = N
(〈

Ŝz
x(t )Ŝz

0

〉
h − 〈

Ŝz
0

〉2
h

)
(2)

with Ŝz
x(t ) = eiĤt Ŝz

xe−iĤt . Averages are taken with respect to
an infinite-temperature ensemble

〈X̂ 〉h = Tr[e−hM̂ X̂ ]

Tr e−hM̂
, (3)

2The sign of � is insignificant for the observables studied in this
work.

where h controls the average magnetization 〈M̂〉h =
L
2 tanh ( h

2 ). The prefactor in (2) is time independent and nor-

malizes the correlator:
∑

x

�(x, t ) = 1.

Instead of directly evaluating �(x, t ), we adopt the sim-
ulation protocol suggested in [17] and compute the time
evolution of a nonequilibrium initial state

ρ̂0 ∼ exp

(
−hM̂ −

∑
x

μxŜz
x

)
(4)

corresponding to a high-temperature state with varying M
density. The initial spin profile has a “domain wall” shape:

μx =
{+μ, x > 0

−μ, x � 0.
(5)

Then, in the limit of small μ, the nonequilibrium spin densities
can be related to the equilibrium correlator �(x, t ):

∂xTr
[
ρ0Ŝz

x(t )
] ≈ μ

(〈
Sz

x(t )Sz
0

〉
h − 〈

Sz
0

〉2
h

) + O(μ2). (6)

The spatial derivative is evaluated numerically. While such a
linear-response relation is easily seen to hold for continuous x,
an exact relation for the lattice model was derived in Ref. [21].
We chose μ = 0.001 in the numerical simulations.

B. Method

Time evolution ρ̂(t ) = e−iĤt ρ̂(t=0)eiĤt is carried out us-
ing a matrix product decomposition of (4) (controlled by
the maximum bond dimension χ ) and conventional Trotter
decomposition (controlled by the time increment �t) of the
Liouvillian superoperator L corresponding to the Hamilto-
nian (1): Lρ̂ ≡ [Ĥ, ρ]. Conservation of Ŝz implies a block-
diagonal structure of ρ̂, which is exploited in order to speed
up the calculations. As these are standard techniques used in
the field, further details are delegated to Appendix A. The
calculations were performed using the ITensor library [22].

We offer a remark concerning the convergence with bond
dimenion χ . Quite generally, the convergence properties with
respect to χ are far from universal: depending on the system
(i.e., the Hamiltonian), the initial state, and certain compu-
tational details, convergence of a given observable can be
reached at significantly different χ values. Indeed, a remark-
able observation was made in [17]: Evolving initial states of
type (4), the authors could obtain results for the spin and
current densities that are roughly independent on χ up to
long times t � 150. This exceeds simulation times reported
for direct evaluation of correlation functions by almost an
order of magnitude (see, e.g., Refs. [23,24] for an analysis
of convergence properties).

While our results fully confirm the qualitative conclusions
of [17,21], we do observe corrections upon increasing χ .
For example, the diffusion constant at �=2 is observed
to keep increasing with χ > 1000 where its value has in-
creased to D�0.63 as opposed to D ≈ 0.4 reported in [17]
(see Appendix B). Based on the impression that results may
still exhibit a significant dependence on the bond dimension,
the convergence of dynamical properties with χ will receive
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FIG. 2. Spin density profiles at time t=60 for varying magne-
tization density m. The outer peaks at |x|≈vmt≈60 correspond to
propagating magnonlike excitations with a velocity vm�1, which
is slightly renormalized with increasing m. For m= − 0.38, distinct
peaks can be observed around x≈vmt/2≈30, which we attribute to
2-magnon bound states. The center peak seen for m= − 0.12 exhibits
sub-ballistic broadening ∼tβm (t ) on the timescales shown here. In
the limit of m → 0, our results are consistent with an exponent of
βm=0(t → ∞) = 2

3 as observed in previous studies.

a special attention below. An additional discussion of conver-
gence behavior is given in Appendix A 3.

III. RESULTS

The form of the correlation function (2) is determined by
the motion of the quasiparticles. We refer to Ref. [25] for
a discussion of the analytic properties of this correlator. In
the limit of m = 〈M̂〉h/L → −0.5, the correlator � probes
dynamics close to the fully polarized state. Excitations of
this state are magnons and bound states of n magnons with
bare group velocity vb ∼ J

n [1]. Due to the integrability of the
model, quasiparticles remain stable even for |m| < 0.5 and
give rise to ballistic modes in the spin dynamics, which are
observed in �(x, t ) as a set of propagating peaks. The spatial
dependence of � at fixed time for varying m is illustrated
in Fig. 2: At strong magnetization |m|→0.5, only magnons
contribute to �, which manifest themselves as a sequence of
left- and right-moving peaks with velocities ±vm. The evolu-
tion of these peaks and their dependence on m is analyzed in
Sec. III A. At intermediate |m| we can also identify another
pair of distinct peaks in �, which move with a slower velocity
that is given by roughly half the magnon velocity (as indicated
by the arrows in the figure). Therefore, they can be associated
with 2-magnon bound states.

Upon further decreasing |m|, only a single propagating
peak in � is left; the remaining weight is carried by a
broad peak centered around x = 0, at least on the timescales
studied here. This peak exhibits anomalous KPZ scaling at
vanishing total magnetization m=0, which we analyze in
Sec. III B. The behavior of the center peak for finite m is
discussed in Sec. III C.

A. Finite magnetization: Magnon modes

1. Shape of the magnon peak

In the limit m→ − 0.5, the correlator �(x, t ) probes spin
dynamics close to the fully polarized state, which is the
(grand-canonical) ground state of the ferromagnetic Heisen-
berg chain. The fastest excitations of this state are free
magnons with bare dispersion ε(k)∼ − J cos(k) and a max-
imum group velocity of v=J (=1).

In the context of noninteracting models, it is well known
that nonlinearity of the free quasiparticle dispersion gives rise
to a peculiar scale invariance of density profiles close to the
“light cone” [26,27], i.e., for x=±vt (where v denotes the
velocity of the fastest quasiparticle mode). More specifically,
the broadening of the ballistic front is given by a subdiffusive
power law t1/3. Recently, attempts have been made to interpret
these findings in the context of GHD [10,28]. We would like
to stress that the exponents arising here, while similar to
the KPZ exponents, are believed to have a different origin as
the dynamical exponent z discussed in Sec. III B 1 below. The
latter is interpreted as a consequence of interactions between
quasiparticles.

In Fig. 3(a) we show that, for large magnetization
(m ≈ −0.5), � appears to exhibit the sub-diffusive scaling
close to the light-cone, as in the non-interacting case:

�(x, t ) ∼ 1

t2/3
F

(
x ± vmt

t1/3

)
(7)

for x∼vmt , where the F (y)=22/3Ai2(21/3y) with Ai(y) denot-
ing the Airy function [26]. In order to achieve a collapse of our
numerical data for different times, we need to account for a
small renormalization of the bare magnon velocity (the actual
velocity vm is taken as a fit parameter here).

The question of whether the t1/3 scaling survives in the
presence of interactions has been discussed in recent works
[10,11,28]. In Ref. [28], it was shown numerically to occur
for any values of � if the initial state is given by a polarized
product state, consistent with our findings for the spin correla-
tor. On the other hand, for more generic nonequilibrium situa-
tions, it is expected that diffusive dynamics [8] will eventually
dominate over the dispersive t1/3 scaling in the long-time
limit. Numerical evidence for such a diffusive scaling of spin
profiles close to the light cone was given in Ref. [11] in the
regime � < 1. In the following, we study the crossover in
more detail, as a function of both magnetization and time.

Upon decreasing |m|, going away from the fully polarized
limit, we observe that the features of F (y), as given in Eq. (7),
are increasingly washed out. We indeed find that, for small
enough |m|, the broadening of the magnon peak appears to
follow a diffusive t1/2 scaling at variance with the subdiffusive
t1/3 scaling observed for |m|→0.5 [see Fig. 3(c)]. From the
reasoning above, one would expect that the width of the fastest
propagating peak σmag can be described by σ 2

mag(t ) = Dmagt +
(κt )2/3. The latter prefactor κ can be determined from our data
in the limit |m|→ 1

2 [see Fig. 3(a)], which yields κ ≈ 0.18.
Stipulating that κ is independent of the magnetization m, we
define a crossover timescale

tc ∼ κ2

D3
mag

≈ 0.03

D3
mag

, (8)
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FIG. 3. Rescaled correlator close to the light cone x=vmt for different values of m. The figures illustrate the evolution of the magnon
peak as a function of magnetization m and time t . (a) In the strongly magnetized case m ≈ −0.5, numerical results are compared with the
exact scaling function for noninteracting systems [26]. We also show data for a slightly smaller value of |m|, which illustrates how the profile
is smeared out away from the fully polarized limit. (b) For an intermediate value of the magnetization |m|≈0.38, we find that the scaling
collapse, as observed in Fig. 3(a), holds only approximately at relatively short times. In order to illustrate the deviations, we also show data for
t = 120. (c) At m ≈ −0.1, the numerical data can be described by a Gaussian close to the peak, i.e., around ξ=0. Note the different rescaling
of the spatial coordinate as compared to Figs. 3(a) and 3(b). In the weakly magnetized limit, we found that a diffusive rescaling of the spatial
coordinate yields a better collapse of the numerical data (see discussion in the main text).

such that for t 	 tc the broadening is subdiffusive
σmag ∼ t1/3, and for t 
 tc it is diffusive σmag ∼ t1/2. For
small and intermediate values of |m|, estimates for the
prefactor Dmag can be obtained from numerical data, e.g.,
from Gaussian fits as seen in Fig. 3(c). In this manner, we
obtain the estimates for tc shown in Fig. 4. In the strongly
magnetized limit, the diffusion constant associated with the
broadening Dmag is expected to be determined by the magnon
occupation factor θ1 only [12,19]:

Dmag ∼ θ1(1 − θ1)
|m|→1/2≈ θ1 = (1/4 − m2), (9)

while contributions from bound states are suppressed. Indeed,
we find that our numerical results for tc are consistent with a
divergence of the form ∼(1/4 − m2)−3 upon approaching the
fully magnetized limit m = 1

2 (see Fig. 4).

FIG. 4. Estimate for the crossover timescale that separates the
diffusive (t > tc) from the subdiffusive (t < tc) growth of the width
of the fastest propagating peak. The crosses indicate numerical
results, while the dashed line is a conjecture based on Eq. (9). Error
bars reflect the residual time dependence of the numerical values
obtained for Dmag.

2. Velocity

Tracking the outermost peak appears to be the simplest
scheme for extracting renormalized magnon velocities. We
achieve this by fitting the numerical data to a Gaussian close
to the peak and then obtain the velocity via linear regression.
The results are shown in Fig. 5. For large magnetization |m|,
however, such a scheme does not yield accurate results on the
timescales t � 100 studied in this work. The reason for this
failure becomes obvious from the scaling shown in Fig. 3(a):
ξ=0 does not correspond to the position of the peak but
rather to a different point at larger ξ (corresponding to the
turning point of the Airy function). Therefore, the position of
the peak xp(t ) exhibits a subleading term xp = vmt + const
× t−2/3 + · · · at short times, when the subdiffusive scaling
still holds approximately. We also show velocities obtained
from fitting the profile to the function F (y) [see Eq. (7)] at
large |m|. The thus obtained values linearly extrapolate to the
correct bare magnon velocity: vm ≈ 1.0 + 0.43(|m| − 1/2)

FIG. 5. Renormalized velocities of the “magnon peak” as a
function of the magnetization density m. The dashed line corresponds
to a linear fit of the blue data points, which have been obtained
obtained from fitting the ballistic peaks to the scaling function (7)
[cf. Fig. 3(a)].
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FIG. 6. Characteristics of the spin dynamics computed from �(x, t ) at zero magnetization m=0. (a) Time dependence of the width �x
of the correlator. The black line serves as a guide to the eye, indicating a power law t1/z corresponding to the KPZ exponent z = 3

2 . The
inset highlights the dependence on the maximum bond dimension χ , which is not visible in the main plot. (b) The effective, time-dependent
exponent β(t ) [see Eq. (11)] highlighting deviations from true power-law behavior and significant residual dependency on the bond dimension
χ . (c) The graph suggests that corrections to the power-law behavior can be described by a subleading term ∼t1/3. The offset and slope obtained
from the fit (dashed black line) are discussed in the main text.

for m � −1/2. In the opposite limit m→0, the renormalized
magnon velocity appears to approach a value of vm=0 ≈ 1.2,
which is consistent with the value for the “Lieb-Robinson”
velocity at vanishing magnetization that was obtained in [12]
(see Fig. 1, inset, of that reference).

B. Spin profiles at m = 0: KPZ scaling

A recent numerical work [21] studied the high-temperature
spin correlator (2) in the isotropic Heisenberg chain at vanish-
ing total magnetization, i.e., m=0. Interestingly, the authors
found that the spatial profile is given by scaling functions
of the KPZ universality class, consistent with the dynamical
exponent z= 3

2 observed earlier [16,17]. In this section we
confirm these observations by carefully analyzing transients
and corrections to scaling, as well as the dependence of the
numerical results on the bond dimension.

The KPZ equation was initially suggested as a description
of universal properties of surface growth [29]. The closely
related stochastic Burger’s equation appears as a hydrody-
namic limit in many classical many-body systems in one
dimension (see, e.g., Ref. [30]). Manifestations of KPZ uni-
versality in quantum systems are subject to ongoing research
(see Refs. [31–34] for works outside of the present context). It
should be noted, however, that a theoretical understanding of
why KPZ universality emerges in the integrable XXX chain
is still lacking. Some aspects of the superdiffusive dynamics
have been captured by a kinetic theory [19]. Furthermore,
numerical studies have provided insight regarding the relevant
conservation laws: A recent study indicates that integrability
is indeed a crucial ingredient in order to observe a dynamical
exponent z = 3

2 in spin chains;3 the relevancy of energy
conservation is presently investigated [21].

3See Ref. [20]. It should be noted, however, that previous stud-
ies found superdiffusive dynamics also in the nonintegrable spin-1
Heisenberg chain [38,45] at high temperatures.

1. Time evolution of �x(t )

As ballistic contributions are absent at m=0, the dynamics
of the center peak is characterized by the width

�x(t ) =
(∑

x

x2�(x, t )

)1/2

. (10)

This quantity can be interpreted as the root-mean-squared
displacement of an excess spin density initially localized at the
origin x=0. The corresponding numerical data are displayed
in Fig. 6(a), exhibiting an approximate power law t1/z with
dynamical exponent z ≈ 1.5. z being close to 3

2 has been ob-
served before [16,17] and was giving a motivation to inquire
into the possibility of KPZ dynamics.

Convergence of effective exponent function.. In order to
highlight the deviations from a true power-law behavior as
well as the dependence on the bond dimension χ , we intro-
duce the effective exponent

β(t ) = d log �x(t )

d log(t )
. (11)

Results are shown in Fig. 6(b). While saturation of β(t ) near
a value of 2

3 is observed at relatively small χ , deviations
grow at better χ values; concomitantly, the “noise” on β(t )
seen in Fig. 6(b) diminishes. Strictly speaking, the asymptotic
value β(t→∞) is not reliably obtained from the data without
further analysis.

Corrections to scaling.. To obtain a reliable estimate of
β(t→∞) we analyze the transients, i.e., preasymptotic cor-
rections. Our data suggest the following functional form:

�x ≈ at2/3(1 + bt−1/3) (12)

[see Fig. 6(c)]. By extrapolation of the numerical data (as
indicated in the figure), we obtain �x ≈ 1.125t2/3 for the
leading term. The numerical value of the prefactor will be
discussed below. While the exponent of the subleading term in
Eq. (12) is difficult to determine with certainty, an expansion
of �x in powers of t1/3 appears natural.
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FIG. 7. (a) Numerical data for the tails of �(x, t ), rescaled assuming a dynamical exponent of z = 3
2 , is compared to the KPZ prediction

λ−1 fKPZ( x
λt2/3 ) taken from [36]. Numerical results clearly exhibit a residual time dependence in the tails of �. The parameter λ = 1.57 has

been chosen in order to be consistent with our extrapolation of �x(t ). The important point of this figure is that the red line, corresponding
to an extrapolation with respect to time, agrees very well with the KPZ prediction. (b) The center of the correlation function � can be fitted
by the KPZ scaling function with λ = 1.5. The value of λ obtained from such a fit is still time dependent on the timescales shown here (see
discussion in the main text). (c) Illustration of the extrapolation scheme, which gives rise to the values of the red line shown in Fig. 7(a).
Extrapolation is carried out for a fixed ξ = x

t2/3 (after interpolating numerical data) presuming that corrections to scaling follow Eq. (15). The
irregular oscillations in the data, which are observed at longer times, are a signature of truncation errors (see Appendix A 3).

2. Spatial profile: Comparison with KPZ scaling

We now turn to the analysis of how �(x, t ) depends on the
spatial coordinate x and compare it with the relevant KPZ scal-
ing function fKPZ(x).4 Exact results for fKPZ were obtained in
Ref. [35] and its numerical values have been tabulated [36].
fKPZ resembles a Gaussian for small arguments, but it exhibits
faster decay in the tails: fKPZ(y) ∼ exp(−C×|y|3) for |y|
1
with C≈0.3.

KPZ universality would imply the following scaling form
of the spin correlator:

�(x, t ) = 1

λt1/z
fKPZ

(
x

λt1/z

)
≡ �λ

KPZ

(
x

t1/z

)
(13)

with z = 3
2 . Our results for �(x, t ) are shown in Fig. 7 as

a function of the scaling variable ξ= x
t2/3 . Before discussing

the spatial dependence of the correlator, we recall our earlier
result suggesting �x(t )/t2/3 ≈ 1.125 in the long-time limit
[see Eq. (12)]. Presuming KPZ scaling, we can relate the
asymptotic time dependence of �x to the parameter λ via

�x(t )

t2/3

t→∞−→ λ

(∫
dy y2 fKPZ(y)

)1/2

≈ 0.715λ, (14)

which implies λ ≈ 1.125/0.715 ≈ 1.57. The corresponding
prediction for the correlator �(x, t ) together with the nu-
merical data is shown in Fig. 7(b). We observe that the
spatial shape based on KPZ scaling �λ=1.57

KPZ deviates from the
numerical data for the relatively short times t = 35, 45, 65
shown here. However, the results for t2/3�(ξ ) still exhibit a
time dependence, which is most easily seen in the tails of the
correlator [see Fig 7(a)]. Consistent with the analysis above,
we suggest that such finite-time corrections vanish as t−y

4In the original context, fKPZ determines the asymptotic shape of
the correlation function 〈v(x, t )v(x′, t ′)〉, where v(x, t ) denotes a
solution of the stochastic Burger’s equation and 〈. . .〉 averaging with
respect to realizations of the noise.

with y = 1
3 :

�(x, t ) = �λ
KPZ(ξ )(1 + g(ξ )t−1/3), (15)

which indeed yields an accurate and consistent description of
the numerical results, as can be seen from Fig. 7(c). We note
that the numerical data for ξ � 2, on the timescales shown
in Fig. 7(b), agree well with a KPZ scaling corresponding
to an effective value λ̃ ≈ 1.5. At even longer times this
effective scale λ̃ will eventually converge to λ proper. The
small deviation seen in Fig. 7(b) is not inconsistent with our
analysis, but rather a trivial consequence of the normalization
of �(x, t ).5

Alternative interpretations based on a subleading power
law with a different exponent y > 1

3 , as discussed in
Appendix C, are possible. On the other hand, it seems unlikely
that the corrections decay even slower than t−1/3. Therefore,
our estimate λ = 1.57 could be considered an upper bound
for the possible values of λ that are still consistent with the
numerics.

The authors of Ref. [21] conjectured that λ is exactly given
by 3

2 , based on their numerical results. This conjecture appears
inconsistent with our analysis. However, we suspect that the
employed bond dimensions are not chosen sufficiently large
in order to properly capture the transients. In fact, our results
indicate that smaller bond dimensions tend to underestimate
corrections to scaling (see Fig. 6). It is also interesting to
note that Ref. [37] reports a very similar value of λ ≈ 1.55
for the integrable classical analog of the XXX chain at high
temperatures.

C. Return probability

The “return probability” �(x=0, t ) is a probe of the central
peak. At zero magnetization m=0, this peak exhibits the

5A similar time dependence of λ has been observed in nu-
merical works demonstrating KPZ scaling in classical models
(see Refs. [46,47]).
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FIG. 8. Double-logarithmic plot of the return probability exhibit-
ing the long-time, crossover behavior. The horizontal axis is rescaled
in order to highlight the 1

ht behavior at long times. Black lines serve
as guides to the eye. Inset: difference between the return probability
�(x=0, t ) at finite m and m = 0 scaled by m2. The data (nearly)
collapse at short times t � 10; at larger times a plateau develops for
very small magnetizations m(h). The fluctuations (“noise”) seen in
the small-m data at larger times are expected to disappear in the limit
of large χ (χ = 800 was used here).

anomalous KPZ scaling. It is interesting to inquire to what
extent the anomalous scaling survives at finite m and how
the crossover m→0 occurs. This question has been addressed
in a recent work [25] by means of kinetic theory as well as
MPO numerics. In the following, we present an analysis of our
numerical data and thereby confirm some of the conclusions
of Ref. [25].

Short and intermediate times. As a measure for the impact
of finite m, we define

δm(t ) = �(0, t )|m − �(0, t )|m=0. (16)

At |m| relatively small, one expects a low impact only, as
long as times are not too large, so assuming analyticity:
δm(t ) ∝ m2. As shown in Fig. 8 (inset), this is consistent
with the simulation data in the window 0 < t � 10. The
interpretation is straightforward: outmoving magnon modes
carry spectral weight away from the center peak. At larger
times and at |m| small enough, we observe a plateau in δm(t ),
i.e., in this time window �(x = 0, t )|m = �(x = 0, t )|m=0 −
C × m2 with C ≈ 0.45. These findings underline that the
anomalous KPZ-type behavior appears on an intermediate
timescale once the magnetization |m| is small enough, as one
would expect.

Long times. The time dependence of �(x=0, t ) at longer
times is displayed in Fig. 8. The horizontal axis is rescaled in
order to highlight the expected ballistic behavior

�(x=0, t )|m ∼ 1

ht
, h = 2 arctanh(2m) (17)

which reflects that magnonic quasiparticles carry away a finite
magnetization at |m| > 0 [25]. The crossover from KPZ to
ballistic behavior is expected at times t−2/3 ∼ (ht )−1, so t∗ ∼
h−3, consistent with [25]. At small values h 	 1, the time
t∗ is well outside of our observation window. In this time

window, the data displayed in Fig. 8 are still consistent with an
anomalous power law �(x = 0, t )∼t−2/3. We do not actually
observe a proper crossover in our numerical results, which
would require long simulation times at a relatively small |m|
and, therefore, large bond dimensions χ . We interpret the
curvature of the data shown in Fig. 8 (on a doubly logarithmic
scale), e.g., for m≈ − 0.17, as an indication for the existence
of such a crossover.

IV. SUMMARY AND OUTLOOK

We have presented a comprehensive discussion of the Sz

autocorrelation function �(x, t ) for the spin- 1
2 XXX Heisen-

berg chain at high temperature and fixed magnetization den-
sity m. For any finite |m| > 0, the correlator � exhibits left-
and right-moving peaks that we attributed to magnon-type
quasiparticles. The time dependence of the broadening asso-
ciated with those peaks exhibits different behavior depending
on |m|: Near maximum magnetization |m|� 1

2 , the broaden-
ing follows a subdiffusive t1/3 scaling within our window
of observation times, which we assign to (cubic terms of)
the bare quasiparticle dispersion. For weaker magnetization
|m| 	 1

2 a long-time regime emerges with t1/2 broadening that
we loosely interpret as a signature of quasiparticle scattering.
We interpret our results in terms of a transient behavior for
t < tc following a t1/3 law, which gives way to a t1/2 law at
long times t > tc. Our results are consistent with a crossover
timescale tc ∼ (1/4 − m2)−3.

At small |m|, a broad center peak dominates �(x, t ). The
return probability �(0, t ) characterizes the corresponding
dynamics. Also here, we find different behavior depending
on |m|: ballistic decay t−1 is observed for the larger values
of |m|, presumably reflecting the loss of amplitude due to the
outgoing quasiparticles. On the other hand, close to |m| = 0,
�(0, t ) decays in a sub-ballistic fashion following a t−2/3

behavior. Our results are consistent with a crossover time
t∗ ∼ h3 between the two regimes, in agreement with the
prediction of Ref. [25].

At zero magnetization m = 0, the propagating peaks are
absent. The width of the correlator can be described by �x ≈
at2/3(1 + bt−y), with a≈1.125, b≈ − 0.26, and y= 1

3 . Moti-
vated by the t2/3 phenomenology, recent numerical work has
tested �(x, t ) against KPZ scaling and indeed demonstrates
matching with the KPZ scaling function [21]. We confirm
this result after including finite-time corrections. At this point,
it seems that a deeper understanding of why KPZ scaling
emerges in this model still needs to be developed in future
research. Such understanding appears even more relevant as
recent works suggest that the KPZ behavior does not only
occur in the spin- 1

2 chain but in a large class of integrable
systems [20,37,38].
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APPENDIX A: MATRIX PRODUCT STATE TECHNIQUES

In this section, we briefly review the techniques employed
to compute the time evolution of the initial state (4) and
present an additional discussion of convergence properties.
For details, we refer to reviews of the topic, e.g., Refs. [39,40].

1. Mixed state representation

The matrix product representation of any operator [a so-
called matrix product operator (MPO)] is equivalent to a ma-
trix product state (MPS) with an enlarged local Hilbert space
[41]. We choose the standard basis in operator space as a local
basis set: |0〉〉 = |↓〉〈↓|, |1〉〉 = |↓〉〈↑|, |2〉〉 = |↑〉〈↓|, |3〉〉 =
|↑〉〈↑|. Then, a generic MPS representation (in operator
space) of an operator Â reads as

Â =̂ |Â〉〉 =
∑
{�}

A[�1]
1 A[�2]

2 . . . A[�L]
L |{�}〉〉, (A1)

�i ∈ {0, 1, 2, 3}

where A[�]
i denote matrices of dimensions χi × χi+1, χi �

χmax, and χ1,L = 1. χmax denotes the maximum bond di-
mension of the MPS. In practice, we do not represent the
density matrix in MPS form but its square root. This enforces
positivity of the physical density operator and it allows to
write the expectation values of observables in the same form
as for pure states:

Tr(ρ̂Ô) = Tr(
√

ρ̂ Ô
√

ρ̂) = 〈〈
√

ρ̂|O|
√

ρ̂〉〉. (A2)

Here, O denotes a superoperator extension of Ô and the natu-
ral scalar product in operator space is given by the Frobenius
product 〈〈Â|B̂〉〉 = Tr(Â†B̂).

2. Time evolution

The initial state (4) corresponds to a trivial MPO, i.e., it
is a product state in operator space. As a close system is
considered, its time evolution is governed by von Neumann
equation i∂t ρ̂(t ) = [Ĥ, ρ̂] =̂ L|ρ̂(t )〉〉, where L denotes the
superoperator LÔ = [Ĥ, Ô]. Using this notation, we can in-
troduce the analog of the time-evolution operator

|ρ̂(t )〉〉 = U (t )|ρ̂(0)〉〉 = exp (−iLt )|ρ̂(0)〉〉. (A3)

For models with nearest-neighbor terms only (as considered
here), L can be written as

L =
L−1∑
x=1

Lx,x+1, (A4)

FIG. 10. Temporal derivative of �x2(t ) for various values of
the maximum bond dimension at anisotropy �=2. The dashed
line corresponds to an extrapolation assuming that ∂t�x2 = D +
const × t−1/2. The extrapolated value D ≈ 0.74 is consistent with the
result of Ref. [8].
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FIG. 11. (a) Numerical results for �x(t ) divided by the leading power law t2/3. Different scenarios for the correction term are shown: t−1/2

(left) and t−1/3 [right, Fig. 6(c) is duplicated here for easier comparison]. (b) Same data as in Fig. 7(a) with a different extrapolation (red line),
which is consistent with the t−1/2 correction.

where Lx,x+1 acts on sites x, x + 1 only. Then, U (�t ) can be
subjected to a Suzuki-Trotter decomposition, e.g., of second
order

U (�t ) = e−iL1,2�t/2 . . . e−iLL−1,L�t/2e−iLL−1,L�t/2

. . . e−iL1,2�t/2 + O(�t3) (A5)

as used in this work. Truncation (in terms of singular val-
ues) is carried out simultaneously after each bond update
in order to keep the bond dimensions below χmax (simply
denoted by χ throughout this work). The corresponding error
is referred to as “truncation error.” Throughout this work,
we choose a very small cutoff for the singular values in the
truncation procedure. Therefore, the maximum bond dimen-
sion alone controls the matrix product approximation in our
simulations.

3. Convergence

In Fig. 9 we show additional data illustrating the depen-
dence of the numerical results on χ as well as the Trotter
time increment �t . Choosing a smaller �t will decrease the
error due to the Trotter decomposition of the time-evolution
operator. On the other hand, choosing a smaller value of �t
requires a larger number of truncations to be carried out within
a given window of time. Therefore, data obtained using a
smaller �t are not necessarily more accurate. Furthermore,
as soon as the results are not strictly converged with re-
spect to χ [as is the case for the longest times shown in,
e.g., Fig. 6(b)], a dependence on the precise value of �t
is also expected. However, we demonstrate in Fig. 9 that a
certain degree of stability with respect to varying �t can be
observed.

In accordance with previous works [21,25], we observe
that truncation errors generally introduce unphysical fluctua-
tions in �(x, t ). Those are most pronounced near x = 0 while
the fluctuations in the tails appear only at longer times in the
form of more regular oscillations [see Fig. 9(b)].

APPENDIX B: DIFFUSION CONSTANT AT � = 2

For anisotropy � > 1, the spin dynamics at vanishing
magnetization m = 0 is known to be normal diffusive [8]. In
the long-time limit, it is therefore expected that ∂t �x2(t )

t→∞=
2Dt with D denoting the diffusion constant. The results shown
in Fig. 10 demonstrate that this long-time limit cannot be
reached reliably with bond dimensions χ < 2000. A naive
lower bound D � 0.63 is obtained from these data by taking
the maximum value reached for the largest bond dimension
χ = 1600 available. This value should be contrasted with
the value D ≈ 0.4 shown in Ref. [17] [cf. Fig. 2(b), inset,
of that reference], which employed the same protocol for
simulating spin dynamics albeit with a much smaller bond
dimension of χ = 200. Our result is consistent with earlier
works evaluating the diffusion constant by means of a direct
evaluation of the current-current correlator at high temper-
ature. In particular, for � = 2, a lower bound of D � 0.56
was given in Ref. [42], based on numerical data for t � 17.
Recently, Ref. [8] obtained an analytic result of D ≈ 0.77
and they give a numerical estimate of D ≈ 0.73, which was
obtained by an extrapolation scheme with respect to time.
It is shown in Fig. 10 that, applying the same extrapola-
tion scheme, our data appear consistent with a very similar
value of D.

APPENDIX C: CORRECTIONS TO SCALING: FURTHER
DISCUSSION AND ALTERNATIVE SCENARIO

In Sec. III B 2, we found that the numerical data for
the spin correlation function can be described by �(x, t ) =
�λ

KPZ(ξ )[1 + g(ξ )t−y]) with y = 1
3 and λ = 1.57. For compar-

ison, we show an alternative scenario in Fig. 11 corresponding
to y = 1

2 and λ = 1.53, which also allows for consistent long-
time extrapolations of �x(t ) and �(x, t ). However, the t−1/3

correction appears to describe the time dependence of �x(t )
more accurately down to very short times.
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