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First-order Néel to columnar valence bond solid transition in a model
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We study the Néel to fourfold columnar valence bond solid (cVBS) quantum phase transition in a sign-free
S = 1 square-lattice model. This is the same kind of transition that for § = 1/2 has been argued to realize the
prototypical deconfined critical point. Extensive numerical simulations of the square-lattice S = 1/2 Néel-VBS
transition have found consistency with the deconfined critical point scenario with no direct evidence for first-
order behavior. In contrast to the § = 1/2 case, in our quantum Monte Carlo simulations for the S = 1 model,
we present unambiguous evidence for a direct conventional first-order quantum phase transition. Classic signs of
a first-order transition demonstrating coexistence including double-peaked histograms and switching behavior
are observed. The sharp contrast from the S = 1/2 case is remarkable; we hypothesize that this is a striking
demonstration of the role of the size of the quantum spin in the phase diagram of two-dimensional lattice models.
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I. INTRODUCTION

The destruction of Néel order by quantum fluctuations is a
hotly studied issue in quantum magnetism inspired originally
by the parent compounds of cuprate high-temperature super-
conductors. In the cuprates, the Néel order appears for § =
1/2 moments on the square lattice. In this case, many theoret-
ical arguments and extensive unbiased numerical calculations
have put forth evidence for a fourfold-degenerate columnar
valence bond solid (cVBS) phase upon the destruction of
Néel order, possibly separated by the novel deconfined critical
point [1-5]. More recently, inspired by the iron pnictide
superconductors, a number of studies of the destruction of
Néel order in S =1 square-lattice systems have appeared
[6-9], building on previous studies of the phase diagram
of square-lattice S = 1 systems (see [10-14] and references
therein). It is thus interesting to extend the success of unbiased
quantum Monte Carlo (QMC) studies of the destruction of
Néel order in square-lattice S = 1/2 systems [15] tothe S = 1
case. In previous QMC studies the phase transitions in coupled
S = 1 chains [13] and the transition to the Haldane nematic
have been considered [16]. Here we will study the transition
between the Néel state and a cVBS. A cartoon wave function
for such a cVBS can be simply written down since two § = 1
spins can form a singlet from the elementary rules of the
addition of angular momentum; these singlets can then be
arranged in the standard columnar pattern.

The role of the microscopic value of spin on the phase dia-
grams of one-dimensional spin chains is now well established.
Most famously Heisenberg models with integer spins realize
a ground state with a gap to all excitations called the Haldane
gap, whereas half-integer spin chains realize an interesting
gapless ground state described at long distances by the SU(2),
Wess-Zumino-Witten field theory [17]. It is interesting to ask
what the role of the size of the spin is in two dimensions.
While the square-lattice Heisenberg model is Néel ordered for
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all spin-S, the nature of the accessible nonmagnetic phases
and the theory of critical phenomena at the destruction of
Néel order has been argued to depend sensitively on the value
of the spin [1]. Since the subtle quantum effects that arise
from Berry phase terms depend crucially on the microscopic
value of the spin [18], one can expect striking differences
between S = 1/2 and S = 1 even for phase transitions that
appear identical with respect to the Landau-Ginzburg-Wilson
criteria of dimensionality, symmetry, and order parameters.
We will study this interesting issue here by focusing on the
square-lattice Néel-cVBS phase transition in S = 1 magnets.
The identical phase transition for § = 1/2 is described by de-
confined criticality which has argued for a single continuous
phase transition.

‘We note that a field-theoretical study has taken up a related
issue previously [19]. Extending their results in a straightfor-
ward manner would suggest that a S = 1 Néel-cVBS transi-
tion could possibly be described by an anisotropic CP? field
theory with quadrupled monopoles. That this implies that a
continuous deconfined transition in our microscopic model
requires a litany of additional assumptions, including that
the field theory has an anisotropic fixed point, quadrupled
monopoles are irrelevant at this fixed point, and that our
microscopic model crosses the critical surface so we can
flow into the fixed point. As we shall see below in our
microscopic model we find a first-order transition, but it is
unclear yet which of these assumptions fails. Further work on
both microscopic models and field theory could shed light on
this subtle detail in the future.

II. MODEL

Our first goal is to design a § = 1 sign-free model in which
the Néel-cVBS transition can be studied using Monte Carlo
simulations. We start with the square-lattice S = 1 Heisenberg
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model,

Hy=J)$-5. 1)

This model is well known to be Néel ordered. Because we
are working with S = 1, it is possible to square the bilinear
operator and obtain an independent “biquadratic operator,”
(§,- . 3,-)2, also amenable to QMC [20,21]. Using this term we
can construct a Sandvik-like four-spin interaction [4],

e =—0k Y IS S = 1SS =11 (2

ijkled

The sum is over all elementary plaquettes with the sites
ijkl being corners of the plaquettes and over both pairing
assignments of ij and kI, so that the interaction preserves
the square-lattice rotational symmetry, precisely as was done
in the original JO model, Ref. [4]. We note that Hyp, has a
higher staggered SU(3) symmetry because it is constructed
from the biquadratic interaction, of which the physical SU(2)
is a subgroup. However the model we study here, H;p, =
H; + Hp,, has only the generic SU(2) symmetry obtained by

rotating the S vector in the usual way. Previous numerical
studies have established that Hyp, on the square lattice has
fourfold columnar VBS order [22-24]. Thus the single tuning
parameter in H;o, gives us unbiased numerical access to the
Néel-VBS transition in a S = 1 system, as desired. We note
here that Hp, is not the straightforward S = 1 extension of
the JO model [4]. Such a direct generalization is defined by
Eq. (A12), and its study is presented in Appendix A 4: for § =
1 we find that the simple JO model is always Néel ordered,
no matter how large the four-spin interaction is. Therefore in
contrast to the § = 1/2 case, the S = 1 JQ model does not
allow us to access the quantum phase transition between Néel
and VBS phases. This is why we have considered the modified
interaction of Eq. (2).

Since our model is constructed to be Marshall sign positive,
it can be simulated without a sign problem using the stochastic
series expansion method (SSE) [25]. We have used two differ-
ent algorithms as described in Appendix A 1 which produce
the same results within errors. Our simulations are carried out
on L x L square lattices at an inverse temperature §; all the
data presented here have been checked to be in the 7 = 0 limit
as shown in Appendix A 3. We work in units in which J = 1,
and define the tuning parameter g = Qg /J to access the phase
transition. We study the Fourier transform of the Néel and
VBS correlatlon functions, Sf = 5 >, ¢*T(S%(r)S?(0)) and
Sy =53, % T(S(r) - S(r+%)S(0) - S(0 + R)). We define
the order parameters as Oy = Sfy, ) and O} =S o For
each of the order parameters we define ratios R = 1 — %
(with K the ordering momentum); R goes to 1 in a phase
with long-range order and O in a disordered phase. In the
SSE method we map the quantum partition function of our
model to a classical loop model in one higher dimension [25].
The winding number of these loops is also a useful quantity
to detect the magnetic phase. The spin stiffness defined as
Eq. (A9) is related to the square of the winding number of
these loops, (W?), as shown in Eq. (A10). The magnetic phase
is characterized by long loops with (W?) diverging linearly
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FIG. 1. Néel and VBS order parameter ratios Ry and Ry close
to the quantum phase transition showing clear evidence of a direct
transition. Inset shows the value of g. obtained by analyzing cross-
ings of L and 2L values for both ratios. Solid lines are a fit to the data
giving g. = 0.588(2).

from L while the VBS phase has short loops with (}?) going
to zero.

III. NUMERICAL RESULTS

Figure 1 shows the ratios R for the Néel and VBS order
parameters as a function of g for different L. The data (see
inset for finite-size scaling) provide strong evidence that the
Néel-VBS transition is direct with a g, = 0.588(2); we can
safely rule out coexistence or an intermediate phase. We note
that this study does not by itself indicate whether the transition
is first order or continuous.

The ratio data leave open the possibility of a direct contin-
uous transition. The first indication that this does not occur
is shown in Fig. 2. In this finite-size scaling plot of both
order parameters, we have reasonable evidence that at the
transition both order parameters are finite. We have carried out
extrapolations on system sizes up to L = 32. While it is not
fully reliable quantitatively to extrapolate the order parameter
data with such a limited system size range, there is little
doubt that both Néel and cVBS order parameters are finite
at g = 0.587. This would indicate a first-order transition or a
coexistence between Néel and cVBS phases. At a continuous
transition one would expect to see the order parameters to
vanish at the critical point.

Beyond system sizes of L & 32, it is very difficult to get
QMC data with small error bars close to the transition point.
As we now elaborate, the reason for this is that we are
encountering a first-order Néel-cVBS transition. Many of the
issues we encounter are similar to a previous study of a first-
order Néel-VBS transition, in which the difficulties obtaining
data on larger lattices are nicely explained [26]. Figure 3
shows histograms for the Néel and cVBS order parameter
estimators which show clear double-peaked behavior that gets
pronounced as the system size is increased. The stiffness,
which is finite in the Néel phase and goes to zero in the cVBS
phase, also shows clear double-peaked behavior close to the
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FIG. 2. Finite-size scaling of the order parameters Oy and Oy
close to the phase transition on system sizes up to L = 32. The ex-
trapolations to a finite value for both Néel and VBS order parameters
at a common coupling g = 0.587 point to that fact that both order
parameters are finite at the transition. The dashed lines are a guide
to the eye, connecting data at the same coupling value. We have
used the form Oy y (L) = Cy + CL—‘ for the extrapolation. While the
extrapolations are not expected to be quantitatively reliable, they
clearly suggest that both order parameters are finite at the phase
transition. Although this evidence is suggestive of coexistence and
first-order behavior, we present extensive evidence in Figs. 3-5 that
unequivocally confirms this interpretation.

transition as shown in Fig. 4. The double-peaked behavior
results from the system switching between Néel and cVBS
phases during the simulation. This is shown in Fig. 5 in which
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FIG. 3. Histograms of our Monte Carlo estimators m? and ¢? that
over the whole Monte Carlo run average O% and O2, respectively.
Close to the transition (at g &~ 0.588 and g = L/4) the probability
distributions of these quantities show two peaks: One of the peaks
that is close to O corresponds to disorder and the other one at a finite
value corresponds to the ordered phase. This double-peak feature
gets sharper as we increase system size, which is evidence in support
of a first-order transition between the two orders.
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FIG. 4. Histograms (left) and Monte Carlo histories (right) of
W? for L = 48 and B = 12. Two peaks in probability distribution of
W? near the transition point and switching of this quantity between
zero and a finite value as a function of Monte Carlo time both point
to first-order behavior.

we observe clearly that when the magnetic order is present, the
VBS order is absent and vice versa. This switching takes place
as a function of Monte Carlo time indicating metastability, co-
existence of the two orders, and hence a first-order transition.
The double-peaked histogram and the switching behavior are
absent in models of continuous transitions for large enough
system sizes. In contrast here, these behaviors are enhanced as
the system size is increased providing unequivocal evidence
for a first-order transition that persists in the thermodynamic
limit.

IV. CONCLUSIONS

We have introduced a model for the transition from
the Néel to the fourfold-degenerate columnar valence bond
solid state which is amenable to sign-free quantum Monte
Carlo simulations. Previous field-theoretic work extending the
S = 1/2 deconfined criticality scenario to S = 1 has argued
that this transition could be direct and continuous, and de-
scribed by an anisotropic CP? field theory. Instead, a detailed

g =0.5875
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FIG. 5. MC histories of WW? and ¢ for L = 48 at 8 = 12 show
clear switching behavior in both quantities at three different cou-
plings close to the transition point (the exact couplings are shown
above each of the three figures). Here ¥W? and ¢? are normalized
values of W? and ¢? such that the maximum is unity. It can be
clearly seen that one order is present when the other is absent. We
thus conclude that the system switches between the two orders at the
transition point, which is characteristic of a first-order transition.
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numerical study of our model shows that this phase transition
is direct but of first-order in our model. With no known model
that shows a continuous transition it is possible that one of the
assumptions of the field-theoretic scenario is itself incorrect,
e.g., the existence of an anisotropic SU(3) fixed point. Clearly
more field-theoretic work is needed to further our understand-
ing of these interesting issues. In future numerical work it will
be interesting to understand how our S = 1 model connects
to the special SU(3) point where a continuous transition has
been observed in QMC simulations. Also interesting would be
to understand whether the Néel-cVBS transition for S = 3/2
resembles the findings of the § = 1/2 case as expected from
field-theoretic scenarios.
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APPENDIX: NUMERICAL DETAILS
1. Algorithm

The numerical results presented in this work have been
obtained using two different methods, both of which are some
adaptation of the standard stochastic series expansion (SSE)
[25] algorithm:

(1) In the first method we work in the S, = —1, 0, 1 basis
for our S = 1 problem. To update the SSE configurations we
use both local diagonal updates and the nonlocal directed loop
algorithm [27] that allows us to switch between the allowed
vertices while respecting the S, conservation.

(2) In the second method we use the split-spin represen-

tation [28,29] where each S = 1 is replaced by two § = %’s.
We then simulate a S = % model instead of a S = 1 model and
project out states that only belong to the S = 1 subspace [16].

2. Measurements and QMC-ED comparison

We have tested our code by performing comparisons
against exact diagonalization. For future reference, Tables I
and II provide test comparisons between measurements ob-
tained from a SSE study and exact diagonalization (ED) on
a lattice of size (L, Ly) = (4, 4), for various combinations

of the bond and plaquette interactions J and Qg for the
J-Qk model under investigation in this work and for various
combinations of the bond and plaquette interactions J and Q;
for the spin-1 version of Sandvik’s J-Q; model (described in
Appendix A 4). Due to the very large Hilbert space for this
spin-1 model on a 4 x 4 lattice, we project out the ground state
from a random state in the S = 0 subspace, thus avoiding
the need to diagonalize the sparse Hamiltonian matrix. We
list values for the extensive ground state energy, the Néel
order parameter O3, as well as the VBS order parameter
(’)‘2,. Also shown are the so-called ratios Ry and Ry . These
quantities measured using both the algorithms described in
Appendix A 1 have been checked to match. All observables
are defined below.

Measurements. In order to simplify the QMC loop algo-
rithm, we have shifted our J bond operators by the identity
J(S; - S; — 1). The extensive energy quoted in the tables in-
cludes this shift. In order to characterize the Néel and the VBS
phases, we measure the equal-time bond-bond correlation
function (S7 - S74+4S7 - S#744). Here a bond is identified by its
location on the lattice 7 and its orientation o with & = x,y
in two dimensions. In the VBS phase, lattice translational
symmetry is broken. This gives rise to a Bragg peak in the
Fourier transform of the bond-bond correlator defined as

Ao = ! i(F—F)-G
C'G) = — > TS SpsSp - Spia). (AD)

N=
site P

For a columnar VBS patterns, peaks appear at the momenta
(r,0) and (0, ) for x- and y-oriented bonds, respectively.
Thus, the VBS order parameter is given by

C*(m,0)+C(0, )
5 .

Another useful quantity to locate a possible phase transi-
tion is the above-mentioned VBS ratio Ry. We first distin-
guish between x- and y-oriented bonds:

O\/BS = (AZ)

v =1-Cx,2n/L)/C*(x,0),

Ry =1—-C"Q2r /L, 7)/CY(0, 7). (A3)
Subsequently, we average over x and y orientations:
Ry + Ry
Ry = % (A4)

This quantity goes to 1 in a phase with long-range VBS order
and it approaches 0 in a phase without VBS order present.

TABLE 1. The table shows the extensive energy (E), the Néel order parameter O3, and the VBS order parameter O obtained by exact
diagonalization (ED) and by stochastic series expansion Monte Carlo (SSE) for the spin-1 J-Qx model. Additionally shown are the ratios Ry
and Ry . For the SSE, errors are also shown. The MC data are computed with 8 = 40.

L. L, J Ox E(ED) E(MC) O%(ED) 0% (MC) O (ED) O>(MC) Ry (ED) Ry (MC) Ry (ED) Ry (MC)
4 4 02 09 —96.15381 —96.147(8) 0.13590 0.13592(2) 0.50414 0.5044(5) 0.49940 0.4993(1) 0.75713 0.7570(7)
4 4 05 02 —49.02200 —49.024(4) 0.25596 0.25594(9) 0.28370 0.2838(2) 0.78679 0.7868(1) 0.59012 0.5907(7)
4 4 07 03 —7029052 —70.288(5) 0.24879 0.24867(8) 0.29726 0.2971(2) 0.77611 0.7760(1) 0.60493 0.6054(6)
4 4 08 04 —85.17819 —85.180(6) 0.23283 0.23291(6) 0.32728 0.3269(2) 0.75040 0.7503(1) 0.63436 0.6346(5)
4 4 09 06 —109.00470 —109.001(7) 0.20556 0.20562(3) 0.37805 0.3777(2) 0.69897 0.6989(1) 0.67619 0.6761(4)
4 4 10 059 —11431021 —114.305(2) 0.21657 0.2168(1) 035766 0.35766(9) 0.72101 0.7215(3) 0.66038 0.6604(1)
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TABLE II. The table shows the extensive energy (E), the Néel order parameter (3, and the VBS order parameter O obtained by exact
diagonalization (ED) and by stochastic series expansion Monte Carlo (SSE) for the spin-1 J-Q; (Sandvik’s) model. Also shown are the ratios
Ry and Ry . For the MC, errors are also shown. The MC data are again computed with 8 = 40.

L. L, J Q5  E(ED) E(MC) O (ED) 0% (MC) O (ED) O (MC) Ry (ED) Ry(MC) Ry (ED) Ry, (MC)
4 4 02 09 —157.24324 —157.251(8) 0.33323 0.3330(1) 0.12077 0.121(1) 0.87616 0.87610(8) 0.29722  0.295(9)
4 4 05 02 —6686936 —66.861(3) 034103 0.34092) 0.10760 0.1073(3) 0.88539 0.8854(1)  0.21940 0.215(3)
4 4 07 03 —96.79576 —96.790(5) 0.34071 0.3406(2) 0.10814 0.1079(3) 0.88501 0.8850(1)  0.22295 0.225(3)
4 4 08 04 —119.70732 —119.707(4) 034001 0.3402(1) 0.10935 0.1090(2) 0.88417 0.8843(1) 0.23071 0.226(3)
4 4 09 06 —15852300 —158.520(6) 0.33873 0.3388(1) 0.11153 0.1113(3) 0.88264 0.88268(9) 0.24436 0.241(3)

The Néel structure factor is

1 IR,
m?(@) =N Z T )'q(SﬁS;a>.

site N

(AS5)

The Bragg peak appears at momentum (7, ) and thus the
Néel order parameter is given by
Oy = mi(w, 7). (A6)

To additionally provide a quantity that goes to 1 in a Néel-
ordered phase and vanishes in a phase without, we study the
the Néel ratio:

N =1—mi(n +2n /L, n)/mi(x, 7),

Ry =1 —mi(mw, 7w +2n/L)/m’(n, 7). (A7)
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FIG. 6. Plot of observables (p,, O%, O2) as a function of inverse
temperature (8) shows that all observables “saturate” (changes by
lowering temperature are within error bars that are on the order
of 1% or smaller of quantity) as a function of 8 before 8 = 8 at
g = 0.59. To make this more quantitative we provide the values of
these observables for the biggest size presented (L = 32): p,(8 =
6) = 0.126(3) and p,(8 = 8) = 0.122(3), O}(B = 6) = 0.0246(5)
and O%(B = 8) = 0.0241(4), O2(B = 6) = 0.082(3) and 0% (B =
8) = 0.083(3).

0.0

We can now average over both quantities:

_ Ry ARy

Rn >

(A8)

The spin stiffness, p;, is another quantity we use to detect
the magnetic phase. It is defined as

_ PE)
=55

. (A9)
$=0

Here E(¢) is the energy of the system when you add a twist of
¢ in the boundary condition in either the x or the y direction.
In the QMC, this quantity is related to the winding number of
loops in the direction that the twist has been added:

o
=g

: (A10)

where f is the inverse temperature. In the magnetic phase the
stiffness extrapolates to a finite value in the thermodynamic
limit, but goes to zero in the nonmagnetic phase.

L =32 L =48

1.00
<0.75 8 =6.0
% — B=120
= — B=240
A 0.50 B

0.25

0.8 0.0 0.1

FIG. 7. Magnetization histograms for L = 32 (left) and L = 48
(right) show two peaks near the transition. The double-peak feature
is not significantly weakened upon decreasing the temperature. For
L = 32, the system shows saturation as a function of temperature;
therefore the shape of the histograms does not change very much
upon decreasing temperature. However, this saturation as a function
of temperature is harder to see when we increase the system size
to L =48. This is because upon increasing the system size the
tunneling barriers between the two peaks increase, making it hard
to equilibrate at the transition point.
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FIG. 8. Shown is the ratio Ry of the Néel order parameter of
various values of the plaquette interaction coupling Q; with J> +
Qf =1 for systems of size (L, L) with L up to 32 lattice sites. Ry
appears to be independent of Q; and approaches 1 for increasingly

large system sizes indicating a phase diagram consisting entirely of
Néel order. The inset shows the Néel order parameter O3,.

3. Ground state convergence

We investigate the behavior of the observables described
above in Appendix A2 (OZ, 02, p,) when the SSE is carried
out at different inverse temperatures S. Figure 6 shows that
these quantities saturate as a function of inverse temperature
B before B = 6. However, close to the transition, one needs
to go lower in temperature for saturation. Therefore we do
finite-size scaling of histograms near the transition point for
B = L/4 in order to probe the first-order behavior. One can see
from Fig. 7 that decreasing the temperature to 8 > L/4 does
not significantly weaken the first-order transition, so we can
conclude that first-order behavior persists at zero temperature.

4. J-Q; model for S =1

We now briefly discuss another designer model Hamilto-
nian and compare the phase diagram for the two cases of a
spin-1/2 system and a spin-1 system.

The so-called J-Q model was introduced by Sandvik in
2007 [4]. The model consists of a Heisenberg interaction
between nearest-neighbor sites [see Eq. (1) in the main article]
on the square lattice and an additional plaquette term:

o o N/ = 1
Hy=-0Q Z (Si'Sj_Z)<k'S1_Z)~ (A1D)
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FIG. 9. Shown is the ratio Ry of the VBS order parameter of
various values of the plaquette interaction coupling Q; with J? +
Q§ =1 for systems of size (L,L) with L up to 32 lattice sites.
Confirming the findings from Fig. 8, we see that Ry approaches zero
for sufficiently large lattice sizes independently of the coupling Q,

providing evidence for the absence of VBS order in the J-Q; model
for spin-1.

The spin-1/2 case of this model H = H; + Hp was shown
to have a phase transition from Néel order to VBS order at a
critical point J/Q = 0.04 [4].

We now subject the same term structure to a SSE-MC
simulation in order to determine the phase diagram. We note
that for the spin-1 case the constant % is replaced by 1 in order
by make the plaquette term amenable to the SSE-MC study:

Hp, =—=Q; Y (5i-8;— DG 5 —1).
ijkled

(A12)

The J-Q; model spin-1 Hamiltonian is then H;o, = H; +
Hp,. We analyzed the phase diagram for various couplings
J and Q; with the condition J? + Q; = 1 and found that the
phase diagram consists entirely of Néel order independently
of the ratio of the two coupling strengths J and Q;. Figure 8
shows the ratio of the Néel order parameter. The ratio appears
to be independent of Q; (with J fixed by J? + Q; = 1). Fur-
ther the ratio Ry approaches 1 for increasingly large system
sizes. This is a clear indicator that the entire phase diagram
consists of Néel order. For completeness we also give the ratio
Ry of the VBS order parameter O . In compliance with our
findings from Fig. 9, we see that the ratio Ry approaches zero
for sufficiently large lattice sizes independently of the cou-
pling Q; (again with J fixed by J> + Q3 = 1). This provides
evidence for the absence of VBS order that was present in the
spin-1/2 flavor of the model.
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