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Despite a large number of nonlocal kinetic energy density functionals (KEDFs) available for large-scale
calculations, most of those nonlocal KEDFs designed for the extended systems can not be directly applied to
isolated systems. In this paper we propose a generalized scheme to construct nonlocal KEDFs via the local
density approximation kernels and construct a family of KEDFs for simulations of isolated systems. We have
implemented these KEDFs into our developed ATLAS software for numerical calculations of isolated systems
within orbital-free density-functional theory. The performance of KEDFs has been demonstrated by several
clusters encompassing Mg, Si, and GaAs. The results show that our constructed KEDFs can achieve high
numerical accuracy and stability for random clusters, therefore, making orbital-free density-functional theory
accessible for practical simulations of isolated systems.
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I. INTRODUCTION

Ab initio calculation based on density-functional theory
(DFT) [1,2] as a prevalent tool for materials simulation has
provided important insights into a variety of materials. Par-
ticularly, orbital-free (OF) DFT has been recognized as a
practical means for large-scale simulations, as exemplified
by the calculations of simple metals containing millions of
atoms in simulated cell [3–5]. However, the accuracy of
OF-DFT heavily depends on the approximation of kinetic
energy density functional (KEDF) since the kinetic energy is
the same order of magnitude as the total energy. Therefore,
the main barrier to widespread use of OF-DFT is the lack
of reliable KEDFs with high transferability and numerical
stability.

In the past few decades, a large number of KEDFs includ-
ing local/semilocal and nonlocal KEDFs have been available.
The local/semilocal KEDFs such as Thomas-Fermi [6–8],
von Weizsäcker (vW) [9], generalized gradient approximation
[10–19], and meta generalized gradient approximation [20,21]
functionals are constructed using the local electron density or
its gradient and Laplacian. These functionals can be easily
applied to isolated systems [22–25]. However, local/semilocal
functionals cannot reproduce the quantum oscillation of elec-
tron density, such as atomic shell structure [20,26] and Friedel
oscillations [27,28]. In order to capture the quantum oscil-
lation of electron density, several nonlocal KEDFs such as
Wang-Teter (WT) [29], Smargiassi-Madden (SM) [30], Per-
rot [31], and Mi-Genova-Pavanello (MGP) [32], etc. [28,33]
have been proposed by employment of density-independent
kernels with a constant Fermi wave vector (FWV) of
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k0
F = (3π2ρ0)1/3. However, the constant FWV is usually re-

lated to the average density (ρ0) in the unit cell for extended
systems and is not well defined in isolated systems [21].

To avoid using the constant FWV, the density-dependent
weight function or kernel are employed in several nonlocal
KEDFs including Chacón-Alvarellos-Tarazona (CAT) [27],
Wang-Govind-Carter [34] and Huang-Carter [35]. However,
they suffer from poor transferability or numerical instability
problems for isolated systems [36]. Furthermore, the solution
of differential equations is required to make these KEDFs
recover the linear response of uniform electron gas, which is
inappropriate for modeling of isolated systems. A nonlocal
functional with propagatorlike kernel proposed by Wang and
Teter successfully reproduced the atomic shell structures [29].
However, this KEDF required artificial introduction of Gaus-
sian functions with fitting parameters. Later, the advanced
nonlocal KEDFs have been proposed and used to simulate the
isolated systems [37–42]. Particularly, a family of nonlocal
KEDFs named LX (X = WT, MGP0, MGP) were recently
constructed using the numerical local density approximated
approach. The LX KEDFs were proved to achieve close to
chemical accuracy and high transferability for clusters [36].
Unfortunately, these KEDFs still suffer from the numerical
instability in some cases.

In this paper, a generalized scheme has been proposed
to construct KEDFs for isolated systems by introduction of
the local density-dependent kernels and a variety of nonlocal
KEDFs have been constructed within the scheme. We have
implemented these KEDFs into ATLAS [43] for numerical
calculations of isolated systems within OF-DFT. The high
accuracy and numerical stability of these KEDFs have been
demonstrated by successful applications to several clusters.

The remainder of this paper is organized as follows.
Section II briefly gives the OF-DFT, followed by the detailed
scheme for construction of KEDFs and their implementation
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into ATLAS. The computational details are provided in Sec. III.
The accuracy and numerical stability of the proposed KEDFs
for simulations of isolated systems have been demonstrated in
Sec. IV. Finally, we give conclusions in Sec. V.

II. THEORY AND IMPLEMENTATION

A. Orbital-free density-functional theory

In OF-DFT, the ground-state energy EGS and electron
density ρGS are obtained by minimizing the total energy
functional E [ρ] of the Ne-electron system [44]

EGS[ρGS] = min
ρ

{
E [ρ] − μ

(∫
�

ρ(�r)d3r − Ne

)
; ρ � 0

}
,

(1)
where ρ is the electron density and μ denoting the Lagrange
multiplier is used to enforce the constraint of the total number
of electrons. The total energy density functional E [ρ] can be
written as

E [ρ] = Ts[ρ] + EH [ρ] + Eie[ρ] + Exc[ρ] + Eii(R), (2)

where Ts, EH , Eie, Exc, Eii, and R denote terms of nonin-
teracting kinetic energy, the Hartree energy, the ion-electron
interaction energy, the exchange-correlation energy, the ion-
ion repulsion energy, and the collection of ionic positions,
respectively. In contrast to Kohn-Sham (KS) DFT, where
the exact noninteracting kinetic energy term is evaluated by
single-particle orbitals, OF-DFT relies upon explicit function-
als of the electron density for all energy terms.

B. The nonlocal KEDFs for isolated systems

Most of nonlocal KEDFs can be written in the generic form

Ts[ρ] = TT F [ρ] + TvW [ρ] + T X
NL[ρ], (3)

where TT F [ρ] = 3
10 (3π2)2/3〈ρ5/3(�r)〉 and TvW [ρ] = 1

8

〈 |∇ρ(�r)|2
ρ(�r) 〉 are the Thomas-Fermi [6–8] and von Weizsäcker

[9] KEDFs, respectively. The last term in Eq. (3) is the
nonlocal part of KEDFs. A simplest form of the nonlocal
part of KEDFs is expressed as Eq. (4) and includes a
density-independent kernel wX

α,β ,

T X
NL[ρ] = 〈ρα (�r)|wX

α,β

[
k0

F , �r − �r′]|ρβ (�r′)〉, (4)

where α and β are positive parameters that define
X = WT [29], MGP, and MGP0 [32] for α = β = 5/6,
X = SM [30] for α = β = 1/2 and X = Perrot [31] for
α = β = 1.

In our scheme, we reformulate the nonlocal term of KEDFs
by introduction of the local density approximation kernels
(LDAK). Specifically, the constant k0

F in density-independent
kernel of KEDFs of Eq. (4) is directly substituted by local
FWV of kF (�r) = (3π2ρ(�r))1/3. In other words, a density-
dependent kernel related to the local electron density instead
of average electron density is employed in our scheme. Within
this scheme, the nonlocal terms of KEDFs in Eq. (4) are
reformulated as

T LDAK−X
NL [ρ] = 〈ρα (�r)|wX

α,β[kF (�r), �r − �r′]|ρβ (�r′)〉. (5)

The corresponding kinetic-energy potentials (KEPs) are
given by

V LDAK−X
T,NL [ρ] = αρα−1(�r)

∫
wX

α,β [kF (�r), �r − �r′]ρβ (�r′)d3r′

+ ρα (�r)
∫ dwX

α,β[kF (�r), �r − �r′]

dρ(�r)
ρβ (�r′)d3r′

+βρβ−1(�r)
∫

wX
α,β[kF (�r′), �r − �r′]ρα (�r′)d3r′.

(6)

C. The implementation of OF-DFT for isolated systems

The previous version of ATLAS code has been used for
numerical calculations of periodic systems within OF-DFT
[43]. The long-range electrostatic interactions (ion-ion, ion-
electron, and electron-electron interactions) under the peri-
odic boundary conditions are evaluated by introduction of
an artificial supercell with large vacuum for isolated systems
[45–47]. However, it usually leads to slow convergence of
the total energy with supercell size if there are the strong
multipole-multipole interactions between the periodic replicas
[48].

Herein, a capability for simulations of isolated clusters
has been implemented in ATLAS code, where the long-range
electrostatic interactions are calculated under the Dirichlet
boundary condition (DBC). In general, all the electrostatic
energy terms can be calculated with a linear scaling under
DBC except for the ion-ion interaction term. The ion-ion
interaction energy in Eq. (2) is defined as

Eii(R) =
Na∑

I=1

Na∑
J>I

ZI ZJ

RIJ
, (7)

where Na is the number of atoms, RIJ = | �RI − �RJ |. { �RI} and
{ZI} denote the ionic positions and charges, respectively.
Obviously, a direct calculation of ion-ion interaction shows
an intrinsic square scaling with respect to the number of ions.
In fact, Eq. (2) can also be reformulated as [49,50]

E [ρ] = Ts[ρ] + Exc[ρ] + Eele[ρ, R], (8)

where Eele denoting the electrostatic interaction energy con-
tains the ion-ion, ion-electron, and electron-electron interac-
tions. The electrostatics can be expressed by [49,51,52]

Eele[ρ, R] = sup
Vele

{
− 1

8π

∫
|∇Vele(�r)|2d3r

+
∫

(ρ(�r) + b(�r))Vele(�r)d3r

}

− Eself (R) + Ec(R), (9)

where Vele is referred as the electrostatic potential, b is the
total pseudo-charge density of the nuclei, Eself is the self-
energy of nuclei, Ec is used to correct the error of ion-ion
repulsive energy due to overlap of pseudo-charge density. The
electrostatic potential Vele in Eq. (9) is calculated by solving
the Poisson equation:

∇2Vele[n](�r) = −4πn(�r). (10)
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FIG. 1. Schematic illustrations of ATLAS implementation. (a)
Electron density distribution in cubic cell. (b) Two-dimensional
diagram showing the different types of discretized grid points.

The total density of n is defined as the sum of pseudo-charge
density and electron density,

n(�r) = ρ(�r) + b(�r). (11)

The detailed calculations of b, Eself , and Ec can be found in
Ref. [49].

In this work, the electron density distribution and the
corresponding electrostatic potentials are represented on
real-space discrete Cartesian grid points. Just as shown in
Fig. 1(a), the radius Rmax of a spherical region is used to
truncate the tail of electron density, whose value should
be zero beyond the spherical region. The electrostatic
potentials are directly represented on discretized grid
points in cubic cell. Note that the unit-cell length edge is
defined as L = 2Rmax. There are two types of grid points
in our implementation as illustrated in Fig. 1(b). The
electrostatic potentials on boundary points are calculated
by the multipoles expansion method [53], whereas the
electrostatic potentials on the internal points can be solved by
conjugate gradient iteration with multigrid in real space [54].
The number of boundary layers is determined by the order
of finite difference. For efficient linear-scaling calculations of
T LDAK−X

NL [ρ] and the corresponding potentials V LDAK−X
T,NL [ρ],

the integrals of P(�r) = ∫
w[kF (�r), |�r − �r′|] f (�r′)d3r′ and

Q(�r) = ∫
w[kF (�r′), |�r − �r′|] f (�r′)d3r′ in Eqs. (5) and (6) are

calculated by cubic Hermite spline interpolation technique
and fast Fourier transform (FFT) [35]. It is important to

note that the computational cost of Eqs. (5) and (6) becomes
intrinsic quasilinear scaling O[mN log N]. Note that m and
N are the number of uniform interpolation nodes of FVWs
and FFT grids, respectively. The details of these techniques
are provided in Ref. [35].The ground-state electron density is
obtained by minimizing the total energy using the truncated
Newton method [55] and more details can be found in
Ref. [43].

III. COMPUTATIONAL DETAILS

The OF-DFT calculations with LDAK-X and LX func-
tionals were carried out by ATLAS. A grid spacing of 0.2 Å
and eighth finite-difference order gave well convergence of
total energies less than 1 meV/atom. The parameter A =
0.2 of MGP [36] was kept fixed for both LDAK-MGP and
LMGP. The number of interpolation nodes of 40 and 100 in
LDAK-X for clusters of Mg and Si/GaAs gave total energies
convergence within 5 meV/atom. Calculations involving the
CAT KEDF, in which kinetic energy cutoff of 1600 eV, ρ∗ =
0.20 Å−3 and γ = 1.4, are performed with PROFESS 3.03. The
KS-DFT calculations were performed by in-house developed
ARES software package [56] and double checked using CASTEP

[57]. A grid spacing of 0.2 Å and 16th finite-difference order
in ARES and kinetic energy cutoff of 940 eV for CASTEP were
sufficient for a well-converged total energy (1 meV/atom).
The bulk-derived local pseudopotentials [58] and local density
approximate exchange and correlation as parametrized by
Perdew and Zunger [59] were employed to estimate the ion-
electron and the exchange-correlation interactions for all the
considered systems. The structures of Mg8, Mg50, Ga4As4,
Ga25As25, and Si50 were randomly generated by CALYPSO

[60,61]. The settings of Rmax = 9.5 Å for Mg8 and Ga4As4

and Rmax = 13.0 Å for Mg50, Ga25As25, Si50, and Si60 yielded
good convergence of total energy.

IV. RESULTS AND DISCUSSION

To assess the performance of our LDAK-X scheme, we
firstly construct a family of KEDFs and perform the energy
minimization of Mg8 using OF-DFT with these KEDFs. For
comparison, we also include the results of LX (X = WT,
MGP0, and MGP). Just as shown in Fig. 2, our LDAK-X
KEDFs show a significant improvement of numerical stability

FIG. 2. Comparison of total energy convergence for Mg8 between LDAK-X and LX, where X denotes (a) WT, (b) MGP0, and (c) MGP,
respectively.
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FIG. 3. Total energies of 100 random clusters calculated by OF-DFT with a variety of KEDFs in comparison with the reference KS-DFT
results for (a), (b) Mg8, (c), (d) Ga4As4, and (e), (f) Si50, respectively.

in comparison with LX KEDFs. For example, it only requires
seven iterations to give total energy convergence less than 1
meV/atom for a random structure of Mg8 using LDAK-MGP
in Fig. 2(c), whereas it fails to converge using LMGP [36].

The different converged behaviors of LDAK-X and LX
KEDFs originate from their different mathematical frame-
works. Just as presented in Eqs. (6) and (12), the formulas
of KEPs for LDAK-X and LX schemes are remarkably dif-
ferent. In the LX scheme, the KEPs are calculated by spline
interpolation [36]

V LX
T,NL[ρ](�r) = 5

3
ρ−1/6(�r)

∫
wX [kF (�r), |�r − �r′|]ρ5/6(�r′)d3r

= 5

3
ρ−1/6(�r)

m∑
i=1

ci[ρ(�r), �r]

×
∫

wX [ki, |�r − �r′|]ρ5/6(�r′)d3r, (12)

where {ci} denotes the spline interpolation coefficients and
{ki} is the set of interpolation nodes. Note that those coef-
ficients depend on the local density ρ(�r). In general, KEDF
can be obtained by direct integration of KEP. However, it
suffers from high computational costs due to involving the
extremely complicated integrations. A simple approximation,
which regards {ci} as density-independent parameters, was
employed in the LX scheme [36] to obtain the KEDF by line
integral from the KEP in Eq. (12). However, this approxima-
tion is so strong that the derivative relation between KEDF
and KEP cannot be strictly satisfied. Hence LX KEDFs suffer
from numerical instabilities during energy minimization for
some cases. In contrast, LDAK-X KEDFs are constructed by
direct introduction of local density dependent kernels and
the corresponding KEP is obtained by derivative of KEDF.
Therefore, the derivative relation between KEDF and KEP is
strict, making LDAK-X functionals numerically stable during
energy minimization.
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TABLE I. The mean unsigned error (MUE) of the total energies
(eV/atom) and the mean unsigned relative error (MURE) of electron
density in percentage points (in parentheses) with respect to the KS-
DFT results for 100 random structures of Mg8, Ga4As4, and Si50. The
underline highlights the results close to KS-DFT.

MUE of energy (MURE of density)

KEDF Mg8 Ga4As4 Si50

LWT 1.444 (7.8) 7.281 (8.1) 3.744 (4.4)
LMGP0 0.501 (8.8) 1.054 (10.3) 0.512 (8.3)
LMGP 0.313 (7.7) 1.528 (10.0) 0.457 (8.6)
LDAK-SM 2.406 (31.2) 10.444 (30.6) 8.547 (29.8)
LDAK-Perrot 1.969 (9.9) 9.649 (12.7) 5.535 (8.9)
LDAK-WT 1.295 (8.3) 6.719 (9.9) 3.701 (7.6)
LDAK-MGP0 0.650 (7.1) 1.818 (6.5) 0.931 (3.5)
LDAK-MGP 0.164 (6.9) 0.766 (6.3) 0.086 (3.5)
CAT 0.370 (9.7) 9.522 (17.5) -

To evaluate the accuracy of LDAK-X, total energies of 100
random structures of Mg8, Ga4As4, and Si50 clusters were
evaluated by OF-DFT with various KEDFs including LDAK-
WT, LDAK-MGP0, LDAK-MGP, LDAK-SM, LDAK-Perrot,
LWT, LMGP0, LMGP, and CAT functionals. The calculated
OF-DFT energies in comparison with that of KS-DFT are
shown in Fig. 3. OF-DFT calculations within LDAK-X and LX

KEDFs generally produce similar trends of total energies as
KS-DFT for all considered systems. Especially, LDAK-MGP
and LMGP show a significant improvement in computational
accuracy compared to other functionals. The performance
of the CAT functional is quite modest for Mg8 clusters
[Fig. 3(a)], while the total energies obtained by the CAT func-
tional and KS-DFT show an apparent discrepancy for Ga4As4

clusters [Fig. 3(c)]. Particularly, the energy minimization of
random structures of Si50 clusters fails to converge using the
CAT functional.

In order to further quantify the accuracy of KEDFs, we
defined unsigned error of total energy �Ei = 1

Na
|EOF

i − EKS
i |

and unsigned-relative-error of electron density �ρi =
1

Ne

∫ |ρOF
i (�r) − ρKS

i (�r)|d3r for i-th cluster. The mean-

unsigned-error of total energies �E = 1
100

∑100
i=1 �Ei and

the mean-unsigned-relative-error of electron density �ρ =
1

100

∑100
i=1 �ρi for 100 random structures of Mg8, Ga4As4, and

Si50 are listed in Table I. It is apparent that LDAK-MGP
outperforms other KEDFs and yields the smallest �E and
�ρ in all considered cases. Furthermore, it should be stressed
that energy minimization using LDAK-MGP is able to obtain
high convergence rates approaching 100% for all the random
structures, which is superior to that of LX [36].

In addition, we also evaluated electron densities of Mg50,
Ga25As25, Si50, and Si60 using LDAK-MGP in comparison
with those estimated by LMGP, as well as KS-DFT. The de-

FIG. 4. The electron densities calculated by LMGP (blue dot), LDAK-MGP (red short dash), and KS-DFT (black solid line) for (a) Mg50,
(b) Ga25As25, (c) Si50, and (d) Si60 along the specific bond orientation.
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tailed structural information and the corresponding directions
for each structure are presented in the Supplemental Material
[62]. As shown in Fig. 4, the electron density distributions
predicted by LDAK-MGP share the similar general shapes
with KS-DFT in the all regions, while LMGP gives quite
different distributions for the bonding regions and near-core
regions. It is important to note that LDAK-MGP successfully
reproduces the tiny density oscillation obtained by KS-DFT
in the bonding region for Si50, as evidenced by the inset of
Fig. 4(c). These results reveal that LDAK-MGP gives more
accurate distributions of electron density for isolated systems
than those obtained by LMGP.

V. CONCLUSION

In summary, a LDAK-X scheme derived from the local
density approximation is proposed to construct a family of
nonlocal KEDFs for isolated systems. These KEDFs have
been implemented into the ATLAS package and showed supe-

rior performance to other KEDFs in both numerical accuracy
and stability for several clusters encompassing Mg, Si, and
GaAs. The LDAK-MGP with high accuracy and numerical
stability makes OF-DFT as the most promising approach for
simulations of isolated systems.
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