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We consider a fermionic system for which there exist a single-reference configuration-interaction (CI)
expansion of the ground-state wave function that converges, albeit not necessarily rapidly, with the increasing
number of particle-hole excitations. For such systems, we show that, whenever the coefficients of Slater
determinants (SD) with l � k excitations can be defined with a number of free parameters N�k bounded
polynomially in k, the ground-state energy E only depends on a small fraction of all the wave function parameters
and is the solution of equations of the coupled-cluster (CC) form. This generalizes the standard CC method, for
which N�k is bounded by a constant. Based on that result and low-rank tensor decompositions (LRTD), we
discuss two possible extensions of the CC approach for wave functions with general polynomial bound for
N�k . The most straightforward of those extensions uses the LRTD to represent the amplitudes of the CC cluster
operator T which, unlike in the CC case, is not truncated with respect to number of excitations, and the energy
and tensor parameters are given by a LRTD-adapted version of standard CC equations. The LRTD can also be
used to directly parametrize the wave function coefficients, which involves different equations of the CC form.
We derive those equations for the coefficients of SD’s with l � 4 excitations, using the CC exponential wave
function ansatz with a different type of excitation operator, and a representation of the Hamiltonian in terms of
excited particle and hole operators. To complete the proposed computational methods, we construct compact
tensor representations of coefficients, or T amplitudes, using superpositions of tree tensor networks which take
into account different possible types of entanglement between excited particles and holes. Finally, we discuss
why the proposed CC extensions are theoretically applicable at larger coupling strengths than those treatable by
the standard CC method.

DOI: 10.1103/PhysRevB.101.045109

I. INTRODUCTION

The accurate prediction of low-temperature properties of
many particles system is the main goal of theoretical con-
densed matter and quantum chemistry research. The quan-
tum nature of those systems however poses a seemingly
unsurmountable challenge because of the exponential growth
of the problem’s complexity with the number of particles.
For bosonic systems, quantum Monte Carlo (QMC) methods
allow to overcome the exponential complexity. At a fun-
damental level however, matter is made of fermions, and
the computation remains exponentially hard even with QMC
methods because of the well known fermionic sign problem
due to the anticommutation of fermion operators [1].

Although no general recipe exists to solve the many-
fermions problem, many different methods have been de-
veloped to successfully study specific types of molecules
or phases of matter using adapted approximations. Those
approximations typically become exact either in the weak- or
the strong-coupling (interaction) limits. One weak-coupling
approach that has been very successful in quantum chemistry
is the coupled-cluster (CC) method [2,3] (review in Ref. [4]),
which uses the wave function ansatz exp(T )|φ〉, where |φ〉

*dominic.bergeron@usherbrooke.ca

is a reference Slater determinant (SD) playing the role of
a vacuum, and T is an excitation operator creating states
with different numbers of particle-holes excitations on that
vacuum. Unlike the closely related configuration-interaction
(CI) method, the CC method is size-extensive, i.e., the energy
scales correctly with system size, which makes it suitable as
well for weakly correlated condensed matter systems [5]. Al-
though exact only in the weak-coupling limit, it can however
include a reasonable amount of quantum correlations, as com-
pared to density functional theory for instance, but it eventu-
ally fails dramatically at strong coupling [6]. There are also
several extensions of the CC method aimed at treating strong
correlations, among which are the multireference CC methods
(reviewed in Ref. [7]), and various single reference extensions
that use correlation or projection operators [6,8–12].

The ability to treat strong correlations in fermionic systems
is necessary to model some of the most interesting materi-
als, for instance, Mott insulators, heavy fermions systems,
and high-temperature cuprate superconductors. For spin sys-
tems, i.e., very strongly interacting half-filled systems, ten-
sor network (TN) states have proven very effective (reviews
in Refs. [13,14]). TN methods have also been applied to
fermionic systems [15–23]. The main idea behind a TN, which
is a type of low-rank tensor decomposition (LRTD), is to take
advantage of the small entanglement actually present in the
ground state of systems with local Hamiltonians to drastically
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reduce the number of free parameters required to represent
the ground state. TN design therefore relies on the locality
of the Hamiltonian (H). Other types of LRTD, which are
not TN and do not rely on the locality of H , have also been
used in quantum chemistry, and CC calculation in particular,
to reduce computational complexity [24–32]. In those cases
however, the LRTD were used as purely mathematical tools,
without reference to the system’s entanglement, and without
modifying the nature of the CC approximation.

In the present work, we explicitly assume a ground state
with low entanglement as in TN methods, but with a single-
reference wave function expansion, as in the CI and CC
methods, and a Hamiltonian assumed to be nonlocal. We
then discuss the use of LRTD not to reduce computational
complexity, but to construct different size-extensive approx-
imations than the standard CC ones, in order to treat stronger
correlations, without using projection or correlation operators.

More specifically, given a single-reference expansion of
the ground state of a fermionic system, we first show that the
energy of that state is the solution of generalized CC equations
whenever the coefficients of SD’s with l � k particle-hole
excitations can be defined with a total number of parameters
N�k bounded polynomially in k. This also implies that the
energy depends only on a small fraction of all the wave
function parameters and coefficients. We will see that the
standard CC approximation corresponds to the simplest of
this type of parametrization, where N�k is bounded by a
constant. We then discuss two other types of parametrization
with arbitrary polynomial bound for N�k based on LRTD:
one in which the LRTD parametrize the amplitudes in the CC
cluster operator T and allow to close the CC equations without
truncating T on the number of excitations axis, and another in
which the LRTD parametrize the wave function coefficients
directly. For the latter, we derive generalized CC equations
for coefficients of SD’s with up to four excitations. To do so,
we use a T operator such that T l |φ〉 is proportional to the
l excitation part of the wave function and exp(T )|φ〉 is the
formally exact full CI wave function, and a representation of
the Hamiltonian in terms of excited particle and hole operators
involving only standard second quantization, instead of the
usual CC particle-hole normal ordering notation. For the
two proposed approaches, we have to consider higher-order
tensors than in the tensor implementations of CC, and for
which more complex tensor representations are required to
obtain a globally compact low-entanglement representation
of the involved coefficients or T amplitudes. For that pur-
pose, we construct representations which can be described
as superpositions of tree tensor networks (STTN), and are
designed to maximize compactness by taking into account
the different possible types of entanglement between excited
particles and holes and by sharing tensors between different
sets of coefficient. The STTN also allow to estimate the
computational complexity of the proposed approaches. The
justification for the low-entanglement assumption, despite the
nonlocality of the Hamiltonian, and the conditions of validity
of the CC extensions are also discussed.

The paper is organized as follows. A brief review of the CI
and CC methods is given in Sec. II. Then, the ground-state
energy computation result is obtained in Sec. III. The two
types of LRTD parametrization and the choices of orbital basis

and reference are discussed in Sec. IV. Section V describes
the particle-hole representation of the Hamiltonian used to
derive the generalized CC equations for the CI coefficients.
Those equations are then presented in Sec. VI, with their
derivation provided in Appendix and Ref. [33]. Finally, the
STTN representation is described in Sec. VII, followed by a
discussion and conclusion in Secs. VIII and IX, respectively.

II. THE CONFIGURATION-INTERACTION AND
COUPLED-CLUSTER METHODS

Let us begin by briefly reviewing the basis of the
configuration-interaction and coupled-cluster methods to
which we will refer later. More details on those methods can
be found in Refs. [4,34,35]. First, we define

|φ〉 = a†
i1

a†
i2

. . . a†
iN

|0〉, (1)

where a†
i creates an electron on the spin orbital i. |φ〉 will

be called the reference Slater determinant (SD) for the N
electrons system and will be used as an approximate vacuum
state for the system. We also define∣∣φi1,i2,...,ik

j1, j2,..., jk

〉 = a†
ik

a jk a†
ik−1

a jk−1 . . . a†
i1

a j1 |φ〉, (2)

a SD with k particle-hole excitations with respect to |φ〉. Now,
let us write the system’s ground-state wave function in the
Born-Oppenheimer approximation as

|ψ〉 = |φ〉 +
∑
i, j

ci
j

∣∣φi
j

〉 + ∑
〈i1, i2〉
〈 j1, j2〉

ci1i2
j1 j2

∣∣φi1i2
j1 j2

〉

+ . . . +
∑

〈i1i2 . . . in〉,
〈 j1, j2 . . . jn〉

ci1i2...in
j1, j2... jn

∣∣φi1i2...in
j1, j2... jn

〉
, (3)

where the i and j indices refer to empty and occupied spin
orbitals in |φ〉, respectively, 〈i1i2 . . . in〉 is a combination of
distinct indices such that im < il for m > l , and n � nmax =
min(Ne, No), where Ne and No are the number of empty and
occupied spin orbitals, respectively, in |φ〉. Expression (3)
is the well known configuration-interaction (CI) form of the
wave function. In CI calculations, the coefficients are obtained
by minimizing the energy 〈ψ |H |ψ〉/〈ψ |ψ〉, where H is the
system’s Hamiltonian, which is usually done by diagonalizing
the matrix representation of H in the |φi1i2...ik

j1, j2... jk
〉 basis, where

0 � k � n. If n = nmax, the method is called full CI or exact
diagonalization. Usually n < nmax in the CI method because
the entire Hilbert space is too large for the full CI calculation
to be tractable.

The single particle orbitals in (1) are typically Hartree-
Fock spin orbitals. However, the optimal orbitals for CI are
called natural spin orbitals and are the orbitals that diagonal-
ize the single particle density matrix 〈ψFCI|a†

i a j |ψFCI〉, where
|ψFCI〉 is the full CI ground state. They are also the orbitals that
minimize the variance

∑
i (〈n̂2

i 〉 − 〈n̂i〉2) = ∑
i〈n̂i〉(1 − 〈n̂i〉)

(n̂2
i = n̂i for fermions), of the spin-orbital occupation number

n̂i = a†
i ai [34], which minimizes the size of the active space,

i.e., the number of partially filled spin orbitals, and therefore
reduces the size of the Hilbert space for the many-particle
problem. However, since |ψFCI〉 is unknown, an approximate
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|ψ〉 must necessarily be used in practice, which yields only
approximate natural orbitals.

The justification for expanding the wave function in num-
ber of excitations with respect to |φ〉 is that, because the
Hamiltonian has only one- and two-particle terms, it has
a block-band-matrix form in such a basis. It is therefore
expected that the coefficients of the ground state will decrease
rapidly as a function of the number of excitations if the
reference SD is well chosen.

The main flaw of the CI method is that it is not size-
extensive, i.e., the energy of the system does not behave
correctly as the system becomes large. For instance, for a
homogeneous system of size V , instead of being proportional
to V as V → ∞, the CI energy is proportional to

√
V [5]. This

is a consequence of the truncation of Hilbert space, which is
equivalent to the inclusion of unlinked diagrams from a per-
turbation theory perspective, while any size-extensive approx-
imation must only include linked diagrams [4,5,36,37]. The
CI method is however a practical method for small molecules
and impurity problems such a the Anderson model, one of the
cornerstone of dynamical mean-field theory [38,39].

Instead of truncating Hilbert space at a given number of
particle-hole excitations, one can also define a wave function
that spans the whole Hilbert space, by using “composite”
coefficients above a certain number of excitations. This is
what the CC method does by postulating a ground state of
the form

|ψ〉 = eT |φ〉, (4)

where T is called the cluster operator and is defined as

T = T1 + T2 + · · · + Tn, (5a)

where the Tl ’s are excitation operators defined as

Tl =
∑

〈i1i2 . . . il 〉,
〈 j1, j2 . . . jl 〉

di1i2...il
j1, j2... jl

a†
il
a jl a

†
il−1

a jl−1 . . . a†
i1

a j1 . (5b)

When the exponential is expended as a Maclaurin series,
the SD’s with any number of excitations are present, up to
nmax. In addition, while the l � n excitation coefficients have
an irreducible (connected) part, namely, an amplitude in T ,
the coefficients of higher-order SD’s are fully expressed as
combinations of products of lower order amplitudes generated
by the form eT , i.e., they are reducible. For instance, if n = 2,
the single-excitation SD’s are generated by T1 and double-
excitations SD’s are generated by T2 + T 2

1 /2, while the three
excitations SD’s are generated by T1T2 + T 3

1 /6. The series
(5) is also a type of cumulant expansion, but in excitation
operator space with respect to |φ〉, i.e., it is the connected
part of the operator relating |ψ〉 to |φ〉. For large systems, the
CC ansatz (4) produces much better results than discarding
completely the SD’s with more than n excitations as in the CI
method [4]. On the other hand, the CC method is exact only in
the weak-coupling limit and fails quite dramatically at strong
coupling [6], which implies that the decoupled expressions for
the high order coefficients are bad approximations for the true
coefficients in that regime.

If (4) is an eigenstate of the Hamiltonian H , we
have H |ψ〉 = E |ψ〉 = eT E |φ〉. Therefore, assuming |φ〉 is

normalized, since any state |φi1i2...il
j1, j2... jl

〉 is orthogonal to |φ〉 for

l �= 0, if we project H |ψ〉 on 〈φ|e−T or 〈φi1i2...il
j1, j2... jl

|e−T , we
obtain the equations

〈φ|e−T HeT |φ〉 = E ,〈
φ

i1i2...il
j1, j2... jl

∣∣e−T HeT |φ〉 = 0, 1 � l � n, (6)

which, after substitution of T by Eq. (5) and H by its second
quantization expression, yields a set of nonlinear equations
defining the T amplitudes di1i2...il

j1, j2... jl
for 1 � l � n.

By expanding the exponentials in the similarity-
transformed Hamiltonian e−T HeT , we obtain

e−T HeT = H + [H, T ] + 1

2
[[H, T ], T ] + 1

3!
[[[H, T ], T ], T ]

+ 1

4!
[[[[H, T ], T ], T ], T ] + · · · (7)

For T given by (5), this series ends after the five terms
included above. Very importantly, (7) shows that e−T HeT only
contains connected terms because the commutators cancel
any disconnected terms. Because of this connectedness of the
CC equations, the CC energy is size-extensive [4,5,36,37].
Note also that, because T contains only excitation terms, any
term in which it appears on the left of H is disconnected.
Consequently,

e−T HeT = (HeT )c (8)

where the subscript c indicates that only connected terms are
kept.

The size extensivity is a crucial aspect of the CC method,
which makes it suitable for large systems, and thus applicable
to condensed matter. However, because particle correlations
are directly accounted for in the CC wave function up to two
and sometimes three excitations in practice [4], while higher
order coefficients are decoupled, important strong-coupling
physics cannot be properly treated. For example, for a SD
with more than n excitations and two excited particles or
holes with opposite spins occupying an orbital where the
Coulomb repulsion is strong, the coefficient should be small
in order to minimize the energy, but in most terms defining
the l > n excitations coefficients of the CC wave function,
the strongly interacting particles or holes are decoupled, and
thus do not include the effect of that repulsion. If all the
higher order coefficients were to be negligibly small, this
effect would be small. However, on the contrary, the conver-
gence rate of the single-reference expansion (3) decreases as
the coupling strength increases because many different SD’s
become nearly degenerate, and thus have comparable contri-
butions in the ground state. At larger coupling, it therefore
becomes more important to control higher order coefficients.
Unfortunately, the computational complexity increases expo-
nentially with the truncation order n in the CC method. Other
strategies are thus required to treat more strongly correlated
systems.

III. ENERGY OF GROUND STATES WITH
LOW-ENTANGLEMENT CI EXPANSIONS

Let us consider a system of N = N↑ + N↓ fermions, for
which the CI form of the wave function, Eq. (3), converges,
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though not necessarily rapidly. In the following, we will show
that, when the l � k excitation coefficients can be defined
with a number of free parameters NTD

�k bounded above by
a polynomial in k, then the grounds state energy E is the
solution of a set of equations of the coupled-cluster form,
Eqs. (6), but where T is generally different from (5). Con-
sequently, E also depends only on a small fraction of all
the wave function parameters and wave function coefficients.
Note that the convergence condition only serves to ensure that
E is the true ground-state energy, hence the assumption that
the convergence can be slow. This is an important aspect of
that result that will be discussed further below.

Before we begin with the proof, let us give a few definitions
about tensors. First, the term “order” will be used to specify
the number of indices of a tensor. Then, the term “rank” will
be used in a similar sense as for matrices, where it is the
number of linearly independent columns, or rows, i.e., the
number of nonzero singular values of the matrix. However,
for tensors, there are more than one definition of rank. First,
if we define a simple tensor as the tensor product of vectors,
we can represent any tensor as a sum of simple tensors. Then,
the simplest definition of a tensor rank is the minimal number
of simple tensor in that representation. Another definition is
the multilinear rank, or multirank. For a tensor of order k, the
multirank is the vector (r1, r2, . . . , rk ) corresponding to the di-
mensions of the core tensor in the higher-order singular value
decomposition (HOSVD) [40]. In the following, we use the
expression “full rank” in the sense that a tensor does not have a
more compact representation than as a multidimensional array
of the same dimensions as the original, and “low rank” in the
general sense that it can be represented by a tensor product
involving less free parameters than the number of elements in
the tensor.

To prove the result stated in the first paragraph in the
most general case, we first define the following excitation
operator T :

T =
∑
i, j

a†
i a jD̂

i
j, (9a)

where D̂i
j is an operator defined as

D̂ik
jk

∣∣φi1i2...ik−1
j1 j2... jk−1

〉 = 1

k

ci1i2...ik
j1 j2... jk

ci1i2...ik−1
j1 j2... jk−1

∣∣φi1i2...ik−1
j1 j2... jk−1

〉
, (9b)

where the coefficients are assumed as those of the full CI
wave function, Eq. (3). We could write explicitly the operator
D̂i

j in terms of products of particle number operators, but the
definition (9b) is sufficient. With this definition of T , we have

T |φ〉 =
∑
i, j

a†
i a jD̂

i
j |φ〉 =

∑
i, j

ci
j

∣∣φi
j

〉
,

T 2|φ〉 =
∑
i2 j2

a†
i2

a j2 D̂i2
j2

∑
i1 j1

ci1
j1

∣∣φi1
j1

〉 = 1

2

∑
i1, i2
j1, j2

ci1i2
j1 j2

∣∣φi1i2
j1 j2

〉
,

...

T k|φ〉 = 1

k!

∑
i1, i2 . . . ik

j1, j2, . . . , jk

ci1,i2...ik
j1, j2,..., jk

∣∣φi1,i2...ik
j1, j2,..., jk

〉
. (10)

The definition (9) assumes that, if a coefficient ci1,i2...ik
j1, j2,..., jk

is
finite, all the coefficients which upper and lower indices are
subsets of {i1, i2 . . . ik} and { j1, j2, . . . , jk}, respectively, are
also finite. They can however be arbitrarily small.

Using (9) in the CC ansatz (4) yields

eT |φ〉 =
(

1 + T + T 2

2
+ T 3

3!
+ . . .

)
|φ〉

= |φ〉 +
∑
i, j

ci
j

∣∣φi
j

〉 + 1

4

∑
i1, i2
j1, j2

ci1i2
j1 j2

∣∣φi1i2
j1 j2

〉 + · · ·

+
(

1

nmax!

)2 ∑
i1i2 . . . inmax ,

j1, j2 . . . jnmax

ci1i2...inmax
j1, j2... jnmax

∣∣φi1i2...inmax
j1, j2... jnmax

〉

= |φ〉 +
∑
i, j

ci
j

∣∣φi
j

〉 + ∑
〈i1, i2〉
〈 j1, j2〉

ci1i2
j1 j2

∣∣φi1i2
j1 j2

〉

+ · · · +
∑

〈i1i2 . . . inmax 〉,
〈 j1, j2 . . . jnmax 〉

ci1i2...inmax
j1, j2... jnmax

∣∣φi1i2...inmax
j1, j2... jnmax

〉

= |ψFCI〉, (11)

where we have used the fact that ci1i2...in
j1, j2... jn

|φi1i2...in
j1, j2... jn

〉 is invariant
under the (n!)2 different permutations of the indices. The
operator (9) therefore allows to put the full CI form of the
wave function in the CC form. The bijective relation between
T k and the k excitations part of the wave function will also be
useful below.

Now, with T given by (9), the series (7) has nmax + 1 terms,
unlike the CC case for which the number of terms is 5. Thus,
if we expand the exponentials as Maclaurin series in the CC
equations (6), we obtain

Eδl0 = 〈
φ

i1i2...il
j1, j2... jl

∣∣e−T HeT |φ〉

= 〈
φ

i1i2...il
j1, j2... jl

∣∣(1 − T + T 2

2
− T 3

3!
+ · · · + (−1)l T l

l!

)

× H

(
1 + T + T 2

2
+ T 3

3!
+ · · · + T l+2

(l + 2)!

)
|φ〉,

0 � l � n, (12)

where δl0 is the Kronecker delta function and 〈φi1i2...i0
j1, j2... j0

| =
〈φ|. From Eq. (10), those equations depend on the coefficients
of the 1 � l � n + 2 excitation SD’s in (11). The maximum
power of T on the right-hand side of H is l + 2 because H can
annihilate two particle-hole pairs at most and the maximum
power of T on the left-hand side of H is l since the smallest
number of excitations is zero. Equations (12) are exact since
eT |φ〉 is the full CI wave function and thus HeT |φ〉 = EeT |φ〉
holds exactly.

The number of SD’s with l excitations increases nearly
exponentially with l . Therefore, since Eqs. (12) depend on
the 1 � l � n + 2 excitation coefficients, while the number
of equations is equal to the number of SD’s with 0 � l � n
excitations, the number of parameters is much larger than the
number of equations if the equations are truncated at a given
n < nmax and the coefficients have full rank. As described
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in Sec. II, the CC strategy to close the equations amounts
to expressing the coefficients of SD’s with l > n excitations
using only cluster operator amplitudes for l � n excitations.
However, this is only one of many possible ways of closing the
equations. Indeed, Eqs. (12) can be closed at a value n < nmax

if the number of free parameters defining the coefficients
increases at a slower rate with the number of excitations than
the number of SD’s itself. This might seem like a strange
assumption, but it is possible if there exist low-rank decom-
positions of each set of coefficients {ci1i2...il

j1, j2... jl
}, when the latter

is interpreted as a tensor. In practice, the increasing rate of
the number of free parameters with l must be slow enough
that the equations are closed at n small, so that the number of
equations and free parameters are computationally tractable.
This is the case if we assume an increasing rate smaller than
some low-order polynomial. Let us see this in more details.

If the number of up and down spin orbitals are both equal
to L, the number of coefficients of the form ci1i2...ik

j1, j2... jk
, assuming

that indices i1 to ip have spins up and indices ip+1 to ik have
spins down, is

NCI
k,p =

(
L − N↑

p

)(
L − N↓
k − p

)(
N↑
p

)(
N↓

k − p

)

= (L − N↑)!

p!(L − N↑ − p)!

(L − N↑)!

(k − p)!(L − N↑ − k + p)!

× N↑!

p!(N↑ − p)!

N↑!

(k − p)!(N↑ − k + p)!
. (13)

The number of coefficients with k excitations is

NCI
k =

min(k,N↑ )∑
p=max(0,k−N↓ )

NCI
k,p (14)

and the total number of coefficients, or CC equations, with up
to k excitations is

NCI
�k =

k∑
l=0

NCI
l . (15)

For k fixed, NCI
�k is polynomial in N = N↑ + N↓.

Now, using the fact that(
l

m

)
�

(
l

m

)m

, 1 � m � l, (16)

we have that

NCI
k,p �

(
L − N↑

p

)p(L − N↓
k − p

)k−p(N↑
p

)p( N↓
k − p

)k−p

.

(17)
If we consider only the cases p = k,

NCI
k,k �

(
(L − N↑)N↑

k2

)k

. (18)

Now, if the number of parameters NTD
�k defining the l � k

excitation coefficients is bounded above polynomially in k,
we have NTD

�k+2 � akr , where r ∈ N and a > 0. We then

have

NCI
�k

NTD
�k+2

>
NCI

k,k

NTD
�k+2

�

(
(L−N↑ )N↑

k2

)k

akr

NCI
�k

NTD
�k+2

>
1

a
ek ln

(L−N↑ )N↑
k2 −r ln k

. (19)

For k2 � (L − N↑)N↑, this ratio grows rapidly with k and
thus, for r small, there is a small value of k for which
NCI

�k > NTD
�k+2. Therefore, given the polynomially bounded

parametrization of the coefficients, Eqs. (12) are closed at a
small value of n and the ground-state energy E depends only
on the k � n + 2 excitation coefficients, a fraction of order
( n

N )r or smaller of the total number of free parameters defining
the wave function, and E can be computed in polynomial time
by solving a set of equations of the CC form, or generalized
CC equations. This concludes the proof of the result stated in
the first paragraph of the present section.

A corollary to that computation result is that equal-time
correlation functions at zero temperature can also be com-
puted if the ground-state energy can. This is the Hellmann-
Feynman theorem, which is proved in Appendix A. In partic-
ular, this fact can be used to determine an optimal spin-orbital
basis. This is discussed further in Sec. IV C.

The standard CC method corresponds to the simplest appli-
cation of the computation result we have just proved. Indeed,
since the l > n excitation coefficients depend only on low-
order amplitudes in CC, NCC

�k is constant for k � n, i.e., it is
the simplest possible polynomial.

The fact that there is no lower bound on the convergence
rate of the CI expansion in the above result implies that it also
applies to strongly correlated systems. Indeed, as discussed
at the end of Sec. II, at strong, but finite, coupling strength,
the ground state of such systems also possess a converging
single-reference CI expansion. The difference with the weak-
coupling regime is that the expansion converges only slowly
as the number of excitations increases, hence the failure of
approximations that truncate the cluster operator with respect
to that parameter. As discussed in Sec. IV that follows, the
above result allows to use CC equations with other types of
approximations much better suited to the strongly correlated
regime.

As mentioned above, a polynomially bounded parametriza-
tion of the sets of coefficients {ci1i2...il

j1, j2... jl
} for 1 � l � n + 2 can

be obtained using low-rank tensor decompositions, which are
based on the existence of basis transformations, in single and
multiple particle and hole spaces, such that a superposition
of l excitations SD’s can be written with a much smaller
number of components in the transformed basis. Since the
rank can be used as a measure of entanglement, this type of
parametrization is also a low-entanglement representation of
the coefficients. In Sec. IV that follows, we will discuss two
types of LRTD-based parametrization which are applications
of the ground-state energy computation result given above,
and are good candidates for strong-coupling extensions of the
CC method. Adapted LRTD-based representations applicable
in both cases will also be described in Sec. VII.

Note that equations (12) are also valid if T is the CC
cluster operator, Eq. (5), but without any truncation. Then,
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the maximum power of T is 4, as discussed in Sec. II, and
only the terms of T up to Tl contribute on the left-hand
side of H and up to Tl+2 on the right-hand side. However,
as shall be discussed in Sec. IV that follows that choice
produces a particular type of approximation when combined
with the LRTD-based representations. On the other hand,
thanks to the operator (9), we obtain a result applicable to any
converging single-reference expansion with a polynomially
bounded parametrization of the wave function coefficients,
which includes the CC approximation and the two types of
approximations discussed in the Sec. IV.

IV. EXTENDING THE COUPLED-CLUSTER METHOD
WITH LOW-RANK TENSOR DECOMPOSITIONS

In this section, we discuss two possible generalizations of
the CC method based the result of Sec. III. The first one is
a straightforward extension of CC and the second approach
uses a parametrization more directly connected to the CI form
of the wave function. We will also discuss the choice of spin-
orbital basis and reference SD.

A. Coupled-cluster approach without truncation
of the cluster operator

The simplest tensor-based extension of CC, or TCC
for “tensor-CC,” that uses a general polynomially bounded
parametrization of the wave function coefficients applies the
LRTD-based parametrization to the amplitudes di1i2...ik

j1, j2... jk
in the

CC cluster operator, Eq. (5), for all the terms with 1 � k �
n + 2 involved in Eqs. (12) with 0 � l � n. The explicit form
of those equations in terms of cluster operator amplitudes and
Hamilitonian parameters are the usual CC equations, except
that T is not truncated with respect to excitation number, or
equivalently, truncated at n + 2 excitations. Therefore, if n =
2, we use only the CC equations with l � 2 of the CC approx-
imation with truncation of T at four excitations (CCSDTQ).
To complete the equations, the LRTD-based representation
for sets of coefficients with 1 � k � 4 excitations provided
in Sec. VII, or other similar representations, can be used to
parametrize the amplitudes.

The most crucial aspect of that approximation, as com-
pared with standard CC, is the fact that there is no trunca-
tion of T with respect to excitation number. Indeed, if we
consider the wave function coefficients generated by the CC
exponential ansatz with such a T operator, the reducible parts
then have irreducible corrections at all orders, except that
those corrections are expressed with LRTD. For instance, this
type of parametrization of the T amplitudes can take into
account local correlations, which can have a similar effect as
a Gutzwiller operator [41] that modulates the coefficients of
SD’s with strongly correlated excited quasiparticles (i.e., par-
ticles or holes) occupying the same spatial orbital. This is only
the simplest possibility allowed by such a parametrization,
since nonlocal correlations can be treated as well. Therefore,
in principle, this type of tensor-based approximation yields
results valid at stronger coupling than standard CC. In fact,
while the CC approximation is exact in the weak-coupling
limit, corresponding to a fast converging cluster operator,
TCC would be exact in the low-entanglement limit of the

cluster operator T , which includes the weak-coupling limit,
but is more general. It would therefore be a very compact
approximation at weak coupling, but also at moderately strong
coupling, as long as the wave function coefficients can be rep-
resented by the reducible parts generated by the exponential
ansatz, corrected by irreducible LRTD-based terms. On the
other hand, as the coupling strength increases, the reducible
parts become worse approximations of the actual wave func-
tion coefficients, which requires larger and more complex
irreducible parts that can become difficult to represent using
LRTD. The type of approximation discussed in Sec. IV B that
follows could then become useful.

B. Computing CI coefficients using generalized CC equations

Another possible tensor-based extension of the CC method
uses the definition (9) for T and Eqs. (12). This produces
equations similar to the CC ones, though involving the CI
coefficients instead of cluster operator amplitudes, which are
closed by parametrizing the coefficients with LRTD. This ap-
proach could thus be called TCICC, for “tensor-CI using CC
equations.” In that case, unlike the approximation described
in Sec. IV A above, the wave function coefficients are com-
pletely defined using LRTD and do not have reducible parts.
Although such an approximation is probably not optimal at
weak coupling, it is in principle applicable at very strong
coupling, as long as there exist a single-reference CI represen-
tation of the wave function that converges at least slowly with
the number of particle-hole excitation, ensuring that a good
approximation to the actual ground-state energy can be found.
Such an approximation is exact in the low-entanglement limit
of the CI coefficients, which is very different from the limit
of validity of the CC approximation, and is more general than
the TCC approach, which is a special case of TCICC.

The explicit form of Eqs. (12) in terms of CI coefficients
and Hamiltonian parameters, obtained using the definition (9)
for T , are provided for the l � 4 excitation coefficients in
Sec. VI. To derive those equations, instead of the standard
approach of CC that use a special notation to express particle-
hole normal-ordered operators, we have used a representation
of H in terms of excited particles and holes operators which
is described in Sec. V. To parametrize the CI coefficients, the
same type of LRTD-based representation as proposed for the
cluster amplitudes, and described in Sec. VII, could be used.

C. Choice of spin-orbital basis and reference

When working with a single-reference expansion of
the wave function such as Eq. (11), the spin-orbital ba-
sis that maximizes convergence is the natural spin-orbital
basis. Since these orbitals diagonalize the single-particle
density matrix 〈ψFCI|a†

i a j |ψFCI〉, which does not have
any time dependance, they can be computed using the
source-field method described in Appendix A. This implies
that the exact wave function |ψFCI〉 is approximated by |ψ〉.
For instance, one can start the calculation using Hartree-Fock
spin orbitals, then, after a first approximation of the ground-
state energy and wave function parameters are computed,
a first approximation of the natural spin orbitals can be
computed with the source-field method, with which a new
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energy and wave function can be obtained below the scaling
of the number of SD’s. The procedure can then be repeated
until the energy converges. If the number of spin orbitals is
2L, one diagonalization of 〈ψ |a†

i a j |ψ〉 requires 2L2 different
solutions of the CC equations for a Hamiltonian perturbed
by a small source field. Although that number of different
CC calculations might seem daunting, each solution is only
slightly different from the unperturbed one and is therefore
much faster to compute.

V. PARTICLE-HOLE REPRESENTATION OF THE
HAMILTONIAN FOR SINGLE REFERENCE-BASED

CALCULATIONS

To derive the CC equations, it is convenient to use a
representation of the Hamiltonian H where the operators are
normal-ordered for both particles and holes. The standard
method is to express the Hamiltonian operators using the
notation {a†

i a j} and {a†
i a†

j akal}, which puts the annihilation
operators for empty orbitals (in |φ〉) and the creation operators
for occupied orbitals at the rightmost positions ({. . .} is not an
anticommutator in that notation) [4,42]. Here, we will also
use such a normal-ordered Hamiltonian, but instead of using
the {. . .} notation, we will define excited particle and hole
operators p†

i , for the unoccupied spin orbitals, and h†
i , for the

occupied spin orbitals, respectively, and express H using those
operators. The resulting representation is less compact than
with the {. . .} notation, but it accomplishes a part of the work
that is otherwise required during the algebraic derivation of
the equations, and thus it actually simplifies it since that part is
done only once. In addition, it only uses second quantization
notation and is physically intuitive, as it explicitly takes the
form of a Hamiltonian acting on a vacuum and the particles
and antiparticles created from it, which is how the reference
|φ〉 is treated. Finally, no distinction has to be made between
empty and occupied spin orbitals indices during the derivation
with that representation because that information is included
in the definition of the excited particle and hole operators.

First, let us define

ti j = δσiσ j

∫
d3r η∗

i (r)

(−h̄2∇2

2me
+ V c

ei(r)

)
η j (r)

V c
i jkl = δσiσl δσ jσk

∫
d3r1d3r2 η∗

i (r1)η∗
j (r2)V c

ee(r1 − r2)

× ηk (r2)ηl (r1), (20)

where the indices are spin-orbital indices, me is the electron
mass, ηi(r) are spatial orbitals, σi =↑,↓ are spin indices,
V c

ei(r) is the static Coulomb potential experienced by an
electron due to ions treated in the Born-Oppenheimer approx-
imation, and V c

ee(r1 − r2) is the electron-electron Coulomb
potential. Then, the Hamiltonian in the second quantized
form is

Ĥ =
∑

i j

ti ja
†
i a j + 1

2

∑
i jkl

V c
i jkl a

†
i a†

j akal (21)

or, using the antisymmetrized Coulomb interaction Vi jkl =
V c

i jkl − V c
i jlk ,

Ĥ =
∑

i j

ti ja
†
i a j + 1

4

∑
i jkl

Vi jkl a
†
i a†

j akal

Ĥ = K̂ + V̂ , (22)

where K̂ is the one body term and V̂ , the two-body term. Note
that, from (20) and the hermicity of the potential energy term,
we have that V c

i jkl = V c
lk ji and from the inversion symmetry

of V c
ee(r1 − r2), V c

i jkl = V c
jilk , and thus V c

i jkl = V c
kli j . Therefore

Vi jkl also has all those symmetries, in addition to Vi jkl =
−Vi jlk = −Vjikl .

We now define excited particle and hole operators associ-
ated with the reference |φ〉:

p†
i = (

1 − nφ
i

)
a†

i , (23a)

h†
i = nφ

i ai, (23b)

where nφ
i = 〈φ|a†

i ai|φ〉 is the number of particles occupying
spin orbital i in |φ〉 and is thus constant. Therefore p†

i and pi

act only on empty spin orbitals of |φ〉, while h†
i and hi act

only on occupied spin orbitals of |φ〉. From those definitions,
we have

a†
i = p†

i + hi, (24)

and the anticommutation relations

{pi, p j} = 0,

{p†
i , p j} = δi j

(
1 − nφ

i

)
, (25)

{hi, h j} = 0,

{h†
i , h j} = δi jn

φ
i , (26)

{pi, h j} = 0,

{pi, h†
j} = 0. (27)

Using the definitions (23), the SD (2) is written∣∣φi1,i2,...,ik
j1, j2,..., jk

〉 = p†
ik

h†
jk

p†
ik−1

h†
jk−1

. . . p†
i1

h†
j1
|φ〉. (28)

If we substitute (24) in K̂ and put each term in the usual
normal order of second quantization, i.e., with all the annihi-
lation operators on the right, we obtain

K̂ =
∑

i j

ti j p†
i p j −

∑
i j

ti jh
†
i h j

+
∑

i j

ti j (p†
i h†

j + H.c.) +
∑

i

tiin
φ
i , (29)

where H.c. stands for Hermitian conjugate. We also have
assumed that ti j is real and thus ti j = t ji. Here the indices
can run over all spin orbitals because of the prefactors in the
definitions (23). Note how the energy of holes is formally the
negative of the particles’ and how the constant term 〈φ|K̂|φ〉
appears explicitly.
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Now, if we substitute (24) in V̂ , put the terms in normal
order and use the symmetries of Vi jkl , we obtain

V̂ =
∑
i jk

Vikk jn
φ

k p†
i p j −

∑
i jk

Vikk jn
φ

k h†
i h j

+
∑
i jk

Vikk jn
φ

k (p†
i h†

j + H.c.) + 1

2

∑
i j

Vi j jin
φ
i nφ

j

+ 1

4

∑
i jkl

Vi jkl p†
i p†

j pk pl + 1

4

∑
i jkl

Vi jkl h
†
i h†

j hkhl

+ 1

4

∑
i jkl

Vi jkl (p†
i p†

jh
†
kh†

l + H.c.)

+ 1

2

∑
i jkl

Vi jkl (p†
i p†

jh
†
k pl + H.c.)

+ 1

2

∑
i jkl

Vi jkl (h
†
i h†

j p†
khl + H.c.) −

∑
i jkl

Vik jl p†
i h†

j hk pl .

(30)
Here, it is interesting to consider only the two-body terms

involving particle and hole number operators np
i = p†

i pi and
nh

i = h†
i hi in (30), we then obtain

V̂np,nh = 1

2

∑
i j

Vi j jin
p
i np

j + 1

2

∑
i j

Vi j jin
h
i nh

j −
∑

i j

Vi j jin
p
i nh

j .

(31)

Therefore, assuming Vi j ji > 0, holes repel each other in the
same way as particles and particles and holes attract each
other. From that expression and the expression for K̂ , Eq. (29),
we see how particles and holes in an insulating condensed
matter system and electrons and positrons in the vacuum are
mathematically equivalent in the long-wavelength limit.

Now, if we define

tφ
i j = ti j +

∑
k

Vikk jn
φ

k , (32)

which is called the Fock matrix, we finally obtain the particle-
hole representation of the Hamiltonian:

Ĥφ = Ĥ − 〈φ|Ĥ |φ〉

= Ĥ −
∑

i

tiin
φ
i − 1

2

∑
i j

Vi j jin
φ
i nφ

j

=
∑

i j

tφ
i j p†

i p j −
∑

i j

tφ
i jh

†
i h j +

∑
i j

tφ
i j (p†

i h†
j + H.c.)

+ 1

4

∑
i jkl

Vi jkl p†
i p†

j pk pl + 1

4

∑
i jkl

Vi jkl h
†
i h†

j hkhl

+ 1

4

∑
i jkl

Vi jkl (p†
i p†

jh
†
kh†

l + H.c.)

+ 1

2

∑
i jkl

Vi jkl (p†
i p†

jh
†
k pl + H.c.)

+ 1

2

∑
i jkl

Vi jkl (h
†
i h†

j p†
khl + H.c.) −

∑
i jkl

Vik jl p†
i h†

j hk pl .

(33)

Although this representation is lengthier than (22), it is conve-
nient when working with the expansion of the wave function
in numbers of particle-holes excitations, Eq. (3), either in CI
or CC calculations, as illustrated in Appendix B.

VI. GENERALIZED CC EQUATIONS FOR THE ENERGY
AND CI WAVE FUNCTION COEFFICIENTS

Let us now write Eqs. (12) for T given by (9), in terms
of the CI wave function coefficients and Hamiltonian pa-
rameters, and projection SD’s 〈φi1i2...il

j1, j2... jl
| with 0 � l � 2. To

derive the equations, we have used the excited particle and
hole operators, Eqs. (23), and the representation (33) of the
Hamiltonian. However, although that representation is con-
venient for that task, it remains a quite lengthy derivation.
We therefore only provide the equations here. The derivation
of the equations with projection on 〈φ| and 〈φi

j | are given
in Appendix B, while the derivation of the equations with
projection on 〈φi1i2

j1 j2
| is provided in Ref. [33].

Using the shifted Hamiltonian, (33), the CC equations
are

〈φ|e−T ĤφeT |φ〉 = �E ,〈
φ

i1i2...il
j1, j2... jl

∣∣e−T ĤφeT |φ〉 = 0, 1 � l � n, (34)

where �E = E − 〈φ|Ĥ |φ〉, and we will take n = 2.
First, because T , Eq. (9), is an excitation operator,

〈φ|e−T = 〈φ|. Then, taking into account the fact that Ĥφ can
destroy at most two particle-hole pairs and that 〈φ|Ĥφ|φ〉 = 0,
the equation for the energy is

�E = 〈φ|e−T ĤφeT |φ〉
= 〈φ|Ĥφ

(
1 + T + 1

2 T 2
)|φ〉,

�E = 〈φ|ĤφT |φ〉 + 1
2 〈φ|ĤφT 2|φ〉. (35)

which, in terms of CI coefficients and Hamiltonian parame-
ters, is

�E =
∑

i j

tφ
i jc

i
j − 1

4

∑
i jkl

ci j
klVi jkl . (36)

Then, the equations with projection on 〈φi
j | is

0 = 〈
φi

j

∣∣e−T ĤφeT |φ〉

= 〈
φi

j

∣∣(1 − T )Ĥφ

(
1 + T + 1

2
T 2 + 1

3!
T 3

)
|φ〉

0 = 〈
φi

j

∣∣Ĥφ|φ〉 + 〈
φi

j

∣∣ĤφT |φ〉 − 〈
φi

j

∣∣T ĤφT |φ〉

+ 1

2

〈
φi

j

∣∣ĤφT 2|φ〉 − 1

2

〈
φi

j

∣∣T ĤφT 2|φ〉

+ 1

3!

〈
φi

j

∣∣ĤφT 3|φ〉, (37)

045109-8



ENERGY OF FERMIONIC GROUND STATES WITH … PHYSICAL REVIEW B 101, 045109 (2020)

which yields

0 = tφ
i j +

∑
l

tφ

il cl
j −

∑
l

tφ

jl c
i
l −

∑
mn

Vim jncn
m +

∑
kl

tφ

kl

(
cik

jl − ci
jc

k
l

)

+ 1

4

∑
klm

Vklmic
kl
jm − 1

4

∑
klm

Vklm jc
im
kl − 1

4

∑
klmn

Vklmn
(
ckli

mn j − ci
jc

kl
mn

)
. (38)

Finally, the equations with projection on 〈φi1i2
j1 j2

| are

0 = 〈
φ

i1i2
j1 j2

∣∣e−T ĤφeT |φ〉

= 〈
φ

i1i2
j1 j2

∣∣(1 − T + 1

2
T 2

)
Ĥφ

(
1 + T + 1

2
T 2 + 1

3!
T 3 + 1

4!
T 4

)
|φ〉

= 〈
φ

i1i2
j1 j2

∣∣Ĥφ|φ〉 + 〈
φ

i1i2
j1 j2

∣∣ĤφT |φ〉 − 〈
φ

i1i2
j1 j2

∣∣T Ĥφ|φ〉 + 1

2

〈
φ

i1i2
j1 j2

∣∣ĤφT 2|φ〉 − 〈
φ

i1i2
j1 j2

∣∣T ĤφT |φ〉 + 1

3!

〈
φ

i1i2
j1 j2

∣∣ĤφT 3|φ〉

− 1

2

〈
φ

i1i2
j1 j2

∣∣T ĤφT 2|φ〉 + 1

2

〈
φ

i1i2
j1 j2

∣∣T 2ĤφT |φ〉 + 1

4!

〈
φ

i1i2
j1 j2

∣∣ĤφT 4|φ〉 − 1

3!

〈
φ

i1i2
j1 j2

∣∣T ĤφT 3|φ〉 + 1

4

〈
φ

i1i2
j1 j2

∣∣T 2ĤφT 2|φ〉, (39)

which yields [33]

0 = −Vi1i2 j1 j2 + tφ
i1 j1

ci2
j2

− tφ
i1 j2

ci2
j1

− tφ
i2 j1

ci1
j2

+ tφ
i2 j2

ci1
j1

−
∑

k

(
Vi1i2 j1kck

j2 − Vi1i2 j2kck
j1

) +
∑

k

(
Vj1 j2i1kci2

k − Vj1 j2i2kci1
k

)

+
∑

k

(
tφ

i1kcki2
j1 j2

+ tφ

i2kci1k
j1 j2

) −
∑

k

(
tφ

j1kci1i2
k j2

+ tφ

j2kci1i2
j1k

) − 1

2

∑
kl

Vi1i2kl c
kl
j1 j2 − 1

2

∑
kl

Vj1 j2kl c
i1i2
kl

−
∑

kl

(
Vi1k j1l c

li2
k j2

+ Vi2k j1l c
i1l
k j2

+ Vi1k j2l c
li2
j1k + Vi2k j2l c

i1l
j1k

) +
∑

kl

tφ

kl c
ki1i2
l j1 j2

− 1

2

∑
klm

(
Vklmi1 ckli2

m j1 j2
− Vklmi2 ckli1

m j1 j2

)

+ 1

2

∑
klm

(
Vklm j1 cmi1i2

kl j2
− Vklm j2 cmi1i2

kl j1

) + ci1i2
j1 j2

∑
kl

tφ

kl c
k
l − 1

4

∑
klmn

Vklmnckli1i2
mn j1 j2

− 1

4
ci1i2

j1 j2

∑
klmn

Vklmnckl
mn

+ ci1i2
j1 j2

[
−1

2

(
tφ
i2 j2

ci2
j2

+ tφ
i1 j2

ci1
j2

+ tφ
i2 j1

ci2
j1

+ tφ
i1 j1

ci1
j1

)
− 1

2

∑
k

(
tφ

i2kck
j2

ci2
j2

+ tφ

i1kck
j2

ci1
j2

+ tφ

i2kck
j1

ci2
j1

+ tφ

i1kck
j1

ci1
j1

)

+ 1

2

∑
k

(
tφ

j2kci2
k

ci2
j2

+ tφ

j2kci1
k

ci1
j2

+ tφ

j1kci2
k

ci2
j1

+ tφ

j1kci1
k

ci1
j1

)
+ 1

2

∑
kl

(
Vi2l j2kck

l

ci2
j2

+ Vi1l j2kck
l

ci1
j2

+ Vi2l j1kck
l

ci2
j1

+ Vi1l j1kck
l

ci1
j1

)

−
∑

kl

tφ

kl

(
cki2

l j2

ci2
j2

+ cki1
l j2

ci1
j2

+ cki2
l j1

ci2
j1

+ cki1
l j1

ci1
j1

)
+ 1

2

∑
klm

(
Vklmi2 ckl

m j2

ci2
j2

+ Vklmi1 ckl
m j2

ci1
j2

+ Vklmi2 ckl
m j1

ci2
j1

+ Vklmi1 ckl
m j1

ci1
j1

)

−1

2

∑
klm

(
Vklm j2 cmi2

kl

ci2
j2

+ Vklm j2 cmi1
kl

ci1
j2

+ Vklm j1 cmi2
kl

ci2
j1

+ Vklm j1 cmi1
kl

ci1
j1

)
+ 1

8

∑
klmn

Vklmn

(
ckli2

mn j2

ci2
l2

+ ckli2
mn j1

ci2
j1

+ ckli1
mn j2

ci1
j2

+ ckli1
mn j1

ci1
j1

)]
. (40)

In Eqs. (36), (38), and (40), the upper indices in the
coefficients are summed over unoccupied spin orbitals of the
reference SD |φ〉 and the lower indices are summed over
occupied spin orbitals.

Since the form (4) with T given by (9) can represent the
exact wave function, Eq. (11), the equations above apply to
the exact wave function. However, because they depend on the
triple- and quadruple-excitation coefficients, while the num-
ber of equations is NCI

�2, they form an underdetermined system
of equations if the coefficients have full rank. As mentioned
in the previous sections, the equations can be closed by using
LRTD to parametrize the coefficients in Eqs. (36), (38), and
(40), such that the number of parameters grows polynomially
with the number of excitations. In particular, we suggest to use

the representations described in Sec. VII that follows, which
are designed to parametrize all the involved coefficients in a
globally compact way.

While Eqs. (36) and (38) are very similar to CC equations,
the difference with CC is clear in Eq. (40) because of the
coefficients appearing as denominators. The degree of the
system is therefore higher than in standard CC equations. In
practice, one could either use Eq. (40) as given here, or the
version without coefficients at denominators, obtained after
multiplication by ci1

j1
ci1

j2
ci2

j1
ci2

j2
.

Note also that, for a given number of free parameters
NCI

�n−1 < NTD
�n < NCI

�n, not all the equations with projections
on 〈φi1i2...in

j1 j2... jn
| have to be used, but only a number NCC

n �
NTD

�n . However, if NCC
n < NCI

�n, the projection states should
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be chosen carefully to take into account all the nonvanishing
terms of H .

Finally, because Eq. (7) still applies when the operator T
in the CC ansatz is given by (9), the energy remains linked
and is thus size-extensive, as in standard CC. Note however
that Eq. (8) does not apply anymore, which is clear from the
presence of coefficients at denominators in Eq. (40), which do
not appear in HeT .

VII. TENSOR REPRESENTATIONS FOR CLUSTER
OPERATOR AMPLITUDES OR CI COEFFICIENTS

To implement the tensor extensions of CC discussed in
Sec. IV, practical LRTD-based representations are required
for either the CI coefficients or the cluster operator ampli-
tudes. In this section, we describe representations designed
to be compact specifically in the context of the proposed
CC extensions, which will also allow us to estimate their
computational complexity. Note however that those tensor-
based representations are provided to complete the discussed
CC extensions and are not tested. Other types of polyno-
mially bounded parametrization are possible, and the results
provided in the previous sections are valid for any such
parametrization.

Let us assume that we use CC equations without truncation
of T with respect to excitation number, or the generalized
CC equations of Sec. VI, where the projection SD’s have two
excitations at most, namely n = 2 in Eq. (34). According to
Eq. (40), we need low-rank tensor decompositions for the l �
4 excitation coefficients to close the equations. The simplest
approach would be to use generic types of LRTD such as sin-
gular value decompositions (SVD), polyadic decompositions
and higher-order SVD (HOSVD) [40], to decompose the sets
of coefficients, or T amplitudes, at each number of excitations
independently. However, because we have many tensors to
decompose, of orders up to eight, we can quickly loose control
over the number of parameters with such an approach. On
way to reduce the number of free parameters would be to
use a tensor network (TN) instead. In that case, however, it
is not clear how to express the different sets of coefficients
{ci1i2...il

j1, j2... jl
} using a single TN, or even how to construct the TN

for a nonlocal Hamiltonian. In the following, we describe one
possible solution to those problems, which involves multiple
binary tree tensor networks (TTN) constructed from the same
smaller TTN’s, and then a representation of a given set of co-
efficients by a superposition of TTN’s (STTN). This produces
a globally compact structure that relies, on one hand, on the
low order of the tensors, as compared to usual TN approaches,
and, on the other hand, on some basic assumptions about the
dominant correlations in the system, though not on the specific
connections between spin orbitals in the Hamiltonian. More
specifically, the STTN primarily take into account all types
of pairwise entanglement based on the charge and the spin of
the excited quasiparticles involved, and only some types of
entanglement between pairs and larger groups of excitations.
In addition to the fact that the same tensors are shared by dif-
ferent decompositions, the tensors are of third order or less, so
that the total number of free parameters is kept under control.

In the following examples, we will use a variant of the
ci1i2...

j1 j2...
notation of Eq. (3), as if the decomposition were used

(a)

(b)

(c)

FIG. 1. Graphical representation of the STTN for single- and
double-excitation coefficients. The blue and green arrows represent
particles and holes, respectively, and their spin orientations. (a) is a
representation of Eq. (41), (b) corresponds to Eq. (45), and (c) to
Eq. (48). The circles represent the u and v matrices, the squares
with two arrows correspond to the κ tensors and the diamonds
with four arrows, the λ tensors. The brackets with subscript “AS”
in (c) indicates that the decompositions are antisymmetrized with
respect to exchange of identical particle or hole indices.

to represent CI coefficients, but they can also be applied to
cluster operator amplitudes. The spin indices will be labeled
explicitly because different combinations of spins require
different types of decompositions in order to take the Pauli
exclusion principle into account.

For the single-excitation coefficients, the most compact
decomposition is a truncated singular value decomposition
(SVD):

ci↑
j↓ =

s1∑
k=1

κ
ph̄
kk1u↑

ikv
↓
jk, (41)

where the columns of u↑ and v↓ are orthogonal unit vectors
and s1 � min(L − Nσ , Nσ ). Note that the spins are opposite
since the spin carried by a hole is opposite to the spin of the
particle in a pair created from a single occupied spin orbital in
|φ〉. In the absence of spin-rotational symmetry, ci↓

j↑ is defined
similarly, using the matrices u↓ and v↑ and the singular values
κ

p̄h
kk1. Expression (41) is represented graphically in Fig. 1(a).

In the following, we will label tensors using combination
of p, p̄, h, and h̄ as superscripts, corresponding respectively to
spin up and spin down particle and spin up and spin down
hole. The order in which they appear will determine how
they are entangled, assuming a binary tree structure, with an
additional coma for odd numbers of excitations, as will be
seen below.

For two particle-hole excitations with opposite spins, there
are three different possible decompositions based on pairwise
entanglement: singlet particle-particle and hole-hole pairing:

(
ci1↑i2↓

j1↓ j2↑
)

pp̄h̄h
=

spp̄∑
k=1

shh̄∑
l=1

sp∑
m,n=1

sh∑
q,r=1

λ
pp̄h̄h
kl1 κ

pp̄
mnkκ

h̄h
qrlu

↑
i1mu↓

i2nv
↓
j1qv

↑
j2r,

(42)
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singlet particle-hole pairing:

(
ci1↑i2↓

j1↓ j2↑
)

ph̄p̄h
=

sph̄∑
k,l=1

sp∑
m,q=1

sh∑
n,r=1

λ
ph̄p̄h
kl1 κ

ph̄
mnkκ

p̄h
qrlu

↑
i1mv

↓
j1nu↓

i2qv
↑
j2r,

(43)
and triplet particle-hole pairing:

(
ci1↑i2↓

j1↓ j2↑
)

php̄h̄ =
sph∑

k,l=1

sp∑
m,q=1

sh∑
n,r=1

λ
php̄h̄
kl1 κ

ph
mnkκ

p̄h̄
qrlu

↑
i1mv

↑
j2nu↓

i2qv
↓
j1r,

(44)
where the first s1 columns of uσ and vσ and the first matrix
slice of κ ph̄ and κ p̄h are the same as in (41), and the similar
decomposition for ci↓

j↑, where s1 = min(sp, sh), and we have
assumed sp̄h = sph̄ and sp̄h̄ = sph. As shown in Appendix D,
the decompositions (42)–(44) are related to combinations of
SVD’s by internal rotations and all become exact when the
tensor dimensions are large. They are therefore not orthogonal
in general. However, at small tensor dimensions they occupy
different regions of Hilbert space since they are based on dif-
ferent composite excitations, and thus each of those decompo-
sitions allows a compact representation for its particular type
of entanglement, but not for the two other types. Therefore,
to obtain a compact representation allowing all those types
of entanglement to coexist, we can combine (42)–(44) and
express the coefficients as

ci1↑i2↓
j1↓ j2↑ = (

ci1↑i2↓
j1↓ j2↑

)
pp̄h̄h + (

ci1↑i2↓
j1↓ j2↑

)
ph̄p̄h + (

ci1↑i2↓
j1↓ j2↑

)
php̄h̄, (45)

where the dimensions of the u, v and κ tensors must be
large enough to include most of the entanglement in the
set of coefficients {ci1↑i2↓

j1↓ j2↑} while the overlap between the
terms must remain small to avoid redundancy. The graphical
representation of Eq. (45) is shown in Fig. 1(b).

Now, let us assume sp = sh = s1 so that the number of
additional parameters in (45), with respect to the single-
excitation representations, depends only on spp̄, shh̄, sph̄ and
sph. In addition, let us assume that the total number of ma-
trix slices in the κ tensors, Sκ = spp̄ + shh̄ + 2sph̄ + 2sph, is
constant, and thus the total number of parameters for the κ

tensors is constant. Then, the total number of parameters in
(45) is determined only by the total numbers of elements
in the λ matrices, Nλ = spp̄shh̄ + s2

ph̄
+ s2

ph. The minimum of
Nλ under the constraint that Sκ is constant is at spp̄ = shh̄ =
sph̄ = sph = Sκ/6. Therefore, for sp = sh = s1, if the optimal
representation depended only on the value of Sκ , the most
compact representation would be the one in which all the
terms have the same number of parameters in (45). In practice,
the optimal values of sp and sh are different and so are the op-
timal spp̄, shh̄, sph̄, and sph. It is clear however that the inclusion
of different terms tends to reduce the number of parameters.
In addition, including the decompositions associated with the
types of correlations actually present in the set of coefficients
also minimizes Sκ because each type is represented in the
most compact way possible. Therefore combining the relevant
decompositions in (45) tends to minimize the numbers of
parameters in both the λ and the κ tensors and produces a very
compact representation. As will become more clear below,
the compactness of the STTN structure also results from the
sharing of tensors amongst different decompositions.

For spin orbital with same spin, the decompositions must
respect the Pauli exclusion principle. The decompositions
based on the two possible types of pairing are

(
ci1↑i2↑

j1↓ j2↓
)

pph̄h̄ =
spp∑

k=1

shh∑
l=1

sp∑
n>m=1

sh∑
r>q=1

λ
pph̄h̄
kl1 κ

pp
mnkκ

h̄h̄
qrl

×
∣∣∣∣∣u

↑
i1m u↑

i1n

u↑
i2m u↑

i2n

∣∣∣∣∣
∣∣∣∣∣v

↓
j1q v

↓
j1r

v
↓
j2q v

↓
j2r

∣∣∣∣∣, (46)

(
ci1↑i2↑

j1↓ j2↓
)

ph̄ph̄ =
sph̄∑

k,l=1

sp∑
m,q=1

sh∑
n,r=1

λ
ph̄ph̄
kl1 κ

ph̄
mnkκ

ph̄
qrl

× u↑
i1mu↑

i2q

∣∣∣∣∣v
↓
j1n v

↓
j1r

v
↓
j2n v

↓
j2r

∣∣∣∣∣, (47)

where λ
ph̄ph̄
kl is symmetric, and

ci1↑i2↑
j1↓ j2↓ = (

ci1↑i2↑
j1↓ j2↓

)
pph̄h̄ + (

ci1↑i2↑
j1↓ j2↓

)
ph̄ph̄. (48)

In the absence of spin-rotational symmetry, the similar decom-
positions for ci1↓i2↓

j1↑ j2↑ involve the different tensors u↓, v↑, κ p̄p̄,
κhh, λ p̄p̄hh, κ p̄h, and λ p̄hp̄h. In (47), the exchange of i1 and i2 is
equivalent to exchanging the columns in the determinant, so
that (ci1↑i2↑

j1↓ j2↓)
ph̄ph̄

is also antisymmetric with respect to those

indices. Here, because κ ph̄ in (47) is the same as in (43), if
we assumed that only spp and shh can be optimized in (48),
the presence of the term (ci1↑i2↑

j1↓ j2↓)
ph̄ph̄

would allow spp and

shh to be as small as possible. Expression (48) is depicted in
Fig. 1(c), where the antisymmetrization is indicated by brack-
ets, instead of displaying explicitly the similar decompositions
corresponding to all combinations of permutations of identical
particle or hole lines.

At two excitations, we can easily include all the types
of entanglement between the different pairs. In addition, all
the κ tensors connecting the pairs are also involved in the
higher-order decompositions described below, and are there-
fore required. Furthermore, if the LRTD are used to represent
sets of cluster operator amplitudes, it is particularly important
for the double-excitation ones to be well represented since
higher order coefficients depend on them. When the number
of particle-hole excitations l increases, since the number of
possible binary TTN increases exponentially with l , only an
exponentially small fraction of them can be included. This
is not a problem however when assuming a polynomially
bounded parametrization, since it means that there necessarily
exists subsets with a polynomially bounded number of de-
compositions that can produce accurate representations. To
ensure that the strongest correlations are taken into account
while keeping the number of parameters as small as possible,
it is however important to include all the types of pairing in
which the two quasiparticles in a pair can occupy the same
spatial orbital. Those are the triplet particle-hole pairing and
singlet particle-particle and hole-hole pairing. This is another
reason to use superpositions of TTN instead of a single TTN
representation, which is insufficient to satisfy that condition in
the present context. In the following, we will keep including
decompositions based on all possible types of pairing in the
representations, which satisfy that condition, but also accounts
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for other, strictly nonlocal (in the space of the chosen orbital
basis), correlations as well.

At three excitations, with particle-hole entanglement only
at the lowest level of the tree, we have

(
ci1↑i2↑i3↑

j1↓ j2↓ j3↓
)

ph̄ph̄ph̄ =
sph̄ph̄∑
m=1

sph̄∑
l1,l2,l3=1

sp∑
k1,k3,k5=1

sh∑
k2,k4,k6=1

∑
π∈S3

(
μ

ph̄ph̄ph̄
l1m λ

ph̄ph̄
l2l3m + μ

ph̄ph̄ph̄
l2m λ

ph̄ph̄
l1l3m + μ

ph̄ph̄ph̄
l3m λ

ph̄ph̄
l1l2m

)

× κ
ph̄
k1k2l1

κ
ph̄
k3k4l2

κ
ph̄
k5k6l3

επ1π2π3 u↑
i1k1

u↑
i2k3

u↑
i3k5

v
↓
jπ1 k2

v
↓
jπ2 k4

v
↓
jπ3 k6

, (49)

where επ1π2π3 is the Levi-Civita symbol, S3 is the permutation group for the set {1, 2, 3}, and the symmetrization of the
product μλ ensures the antisymmetry of the coefficient with respect to exchange of the particle (i) indices. Then, we can also
have

(
ci1↑i2↑i3↑

j1↓ j2↓ j3↓
)

ph̄,pph̄h̄ =
spph̄h̄∑
m=1

sph̄∑
l1=1

spp∑
l2=1

shh∑
l3=1

sp∑
k1,k3,k4=1

sh∑
k2,k5,k6=1

∑
π,χ∈S3

μ
ph̄,pph̄h̄
l1m λ

pph̄h̄
l2l3mκ

ph̄
k1k2l1

κ
pp
k3k4l2

κ h̄h̄
k5k6l3επ1π2π3εχ1χ2χ3

× u↑
iπ1 k1

u↑
iπ2 k3

u↑
iπ1 k4

v
↓
jχ1 k2

v
↓
jχ2 k5

v
↓
jχ3 k6

. (50)

Here, we could also have entangled first the particle-hole pair with either of the two other pairs. However, to limit the number of
terms, we choose only one of those three possibilities, namely, the only one that respect the symmetry (p, p̄) ↔ (h̄, h). We can
then use the representation

ci1↑i2↑i3↑
j1↓ j2↓ j3↓ = (

ci1↑i2↑i3↑
j1↓ j2↓ j3↓

)
ph̄ph̄ph̄ + (

ci1↑i2↑i3↑
j1↓ j2↓ j3↓

)
ph̄,pph̄h̄, (51)

which is represented graphically in Fig. 2(a).
In the other representations described below, we will also use only decompositions that respect the (p, p̄) ↔ (h̄, h) symmetry

to simplify the representations. Otherwise, the decompositions that do not respect that symmetry would have to be included in
pairs to avoid artificially breaking particle-hole symmetry. On the other hand, including only the decompositions satisfying that
symmetry does not constrain the resulting wave function to be particle-hole symmetric, since that would also require that the
reference and all the tensors themselves be particle-hole symmetric.

When one spin is different at three excitations, there are four combinations of pairs that respect the (p, p̄) ↔ (h̄, h) symmetry,
namely, two combinations of particle-hole pairs only and two combinations with particle-hole, particle-particle, and hole-hole
pairs. First there is a combination of singlet particle-hole pairs:

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

p̄h,ph̄ph̄ =
sph̄ph̄∑
m=1

sph̄∑
l1,l2,l3=1

sp∑
k1,k3,k5=1

sh∑
k2,k4,k6=1

μ
p̄h,ph̄ph̄
l1m λ

ph̄ph̄
l2l3mκ

p̄h
k1k2l1

κ
ph̄
k3k4l2

κ
ph̄
k5k6l3

u↓
i1k1

v
↑
j1k2

u↑
i2k3

u↑
i3k5

∣∣∣∣∣
v

↓
j2k4

v
↓
j2k6

v
↓
j3k4

v
↓
j3k6

∣∣∣∣∣, (52)

then a combination of singlet and triplet particle-hole pairs:

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

ph̄,p̄h̄ph
=

sp̄h̄ph∑
m=1

sph̄∑
l1=1

sph∑
l2,l3=1

sp∑
k1,k3,k5=1

sh∑
k2,k4,k6=1

μ
ph̄,p̄h̄ph
l1m λ

p̄h̄ph
l2l3mκ

ph̄
k1k2l1

κ
p̄h̄
k3k4l2

κ
ph
k5k6l3

u↓
i1k3

v
↑
j1k6

∣∣∣∣∣u
↑
i2k5

u↑
i2k1

u↑
i3k5

u↑
i3k1

∣∣∣∣∣
∣∣∣∣∣
v

↓
j2k4

v
↓
j2k2

v
↓
j3k4

v
↓
j3k2

∣∣∣∣∣, (53)

a combination with triplet particle-particle and hole-hole pairs:

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

p̄h,pph̄h̄ =
spph̄h̄∑
m=1

sph̄∑
l1=1

spp∑
l2=1

shh∑
l3=1

sp∑
k1,k3,k4=1

sh∑
k2,k5,k6=1

μ
p̄h,pph̄h̄
l1m λ

pph̄h̄
l2l3mκ

p̄h
k1k2l1

κ
pp
k3k4l2

κ h̄h̄
k5k6l3 u↓

i1k1
v

↑
j1k2

∣∣∣∣∣u
↑
i2k3

u↑
i2k4

u↑
i3k3

u↑
i3k4

∣∣∣∣∣
∣∣∣∣∣
v

↓
j2k5

v
↓
j2k6

v
↓
j3k5

v
↓
j3k6

∣∣∣∣∣, (54)

and finally, a combination with singlet particle-particle and hole-hole pairs:

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

ph̄,p̄phh̄ =
sp̄phh̄∑
m=1

sph̄∑
l1=1

spp̄∑
l2=1

shh̄∑
l3=1

sp∑
k1,k3,k4=1

sh∑
k2,k5,k6=1

μ
ph̄,p̄phh̄
l1m λ

p̄phh̄
l2l3mκ

ph̄
k1k2l1

κ
p̄p
k3k4l2

κhh̄
k5k6l3 u↓

i1k3
v

↑
j1k5

∣∣∣∣∣u
↑
i2k4

u↑
i2k1

u↑
i3k4

u↑
i3k1

∣∣∣∣∣
∣∣∣∣∣
v

↓
j2k6

v
↓
j2k2

v
↓
j3k6

v
↓
j3k2

∣∣∣∣∣, (55)

where κ
p̄p
k3k4l2

= κ
pp̄
k4k3l2

and κhh̄
k5k6l3

= κ h̄h
k6k5l3

. We then use

ci1↓i2↑i3↑
j1↑ j2↓ j3↓ =

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

p̄h,ph̄ph̄
+

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

ph̄,p̄h̄ph
+

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

p̄h,pph̄h̄
+

(
ci1↓i2↑i3↑

j1↑ j2↓ j3↓
)

ph̄,p̄phh̄
(56)

which is depicted in Fig. 2(b).
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(a)

(b)

FIG. 2. Graphical representation of the STTN for triple-
excitation coefficients. (a) is a representation of Eq. (51) and (b) cor-
responds to Eq. (56). Here, the triangles represent the μ matrices.
See Fig. 1 for other details on the notation. Note that, to avoid line
crossings, the relative position of the circles representing the u and
v matrices is different for different decompositions, unlike in Fig. 1,
which is of no consequence since the antisymmetrization indicated
by the brackets implies a summation with permutation of identical
quasiparticle indices.

By comparing Fig. 2 with Fig. 1, it is clear how the
decompositions for the triple-excitation coefficients are con-
structed from the decompositions defining single- and double-
excitations coefficients, using the other matrix slices of the λ

tensors. Note that other λ tensors, not present in the represen-
tations above, are also used below in the quadruple-excitation
coefficients.

For quadruple excitations, we will only provide here the
short STTN expressions and the graphical representation for
the coefficients. The algebraic expressions are provided in
Appendix C. As for triple-excitation coefficients, we will
include decompositions with all types of pairings in the STTN
representations and use only decompositions respecting the
(p, p̄) ↔ (h̄, h) symmetry.

First when all the spins are equal, we can use

ci1↑i2↑i3↑i4↑
j1↓ j2↓ j3↓ j4↓ = (

ci1↑i2↑i3↑i4↑
j1↓ j2↓ j3↓ j4↓

)
ph̄ph̄ph̄ph̄

+ (
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

ppph̄h̄h̄ph̄

+ (
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

pppph̄h̄h̄h̄, (57)

depicted in Fig. 3(a). Then, when one spin is different, we use

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

= (
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄ph̄ph̄p̄h + (
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄phph̄p̄h̄

+ (
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄pp̄ph̄h̄h
+ (

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

)
ppphp̄h̄h̄h̄

, (58)

(a)

(b)

FIG. 3. Graphical representation of the quadruple-excitation co-
efficients (57) in (a) and (58) in (b). See Fig. 1 for details on the
notation.

shown in Fig. 3(b). Finally, for two up spins and two down
spins, we can use

ci1↑i2↑i3↓i4↓
j1↓ j2↓ j3↑ j4↑

= (
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pp̄h̄hphp̄h̄ + (
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

ph̄ph̄p̄hp̄h

+ (
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pphhp̄p̄h̄h̄
+ (

ci1↑i2↑i3↓i4↓
j1↓ j2↓ j3↑ j4↑

)
pp̄pp̄h̄hh̄h

,

(59)

which is depicted in Fig. 4.
Note that, in expressions (57)–(59), depicted in Figs. 3

and 4, the combinations of particles and holes in the two
mains branches of the trees are different between different
decompositions. In other words, in the representation of a
given set of coefficients, say in (58) depicted in Fig. 3(b),
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FIG. 4. Graphical representation of (59). See Fig. 1 for details on
the notation.

one cannot obtain a decomposition from another by applying
permutations of quasiparticle matrices (circles) within the
main branches. One instead has to apply permutations be-
tween the two main branches. The purpose of this choice is to
reduce the possible overlap between the decompositions in the
STTN.

The above representations of coefficients are provided as
examples to illustrate the STTN structure and as suggestions
of representation for the sets of coefficients, or T ampli-
tudes, involved in the (generalized) CC equations. However,
terms representing other types of entanglement can easily be
added, or some included terms removed. There is in principle
an optimal combination of TTN’s that minimizes the total
number of free parameters required to obtain an accurate
representation of all the sets of coefficients. Given that the
total number of free parameters is also controlled by the
adjustable tensor dimensions, there is plenty of degrees of
freedom for optimization, and any scaling with the number
of particle-hole excitations can be obtained below the scaling
of the number of SD’s. Since the number of different sets of
coefficients grows linearly with the number of excitations, if
the number of terms for each set remains constant or grows
only slowly, the total number of different decompositions
and tensors remain bounded by low-order polynomials and
are thus computationally tractable, while the total number of
free parameters should be reduced if the included terms are
relevant.

Since the tensors always have even order, using decom-
positions based on pairwise entanglement is quite natural.
However, from the point of view of collective excitations,
this type of decomposition is based only on bosonic ones,
while there can also be fermionic collective excitations in the
system. For instance, the quasiparticles in a Fermi liquid are in
fact collective fermionic excitations and can be approximated

as single particle excitations only in an effective low-energy
model. Although the representations used can also account
for such collective excitations since they become exact at large
tensor dimensions, to allow for a more compact representation
of this kind of excitation, one could also add decompositions
in which the u and v matrices are entangled with pairs already
included. Then, for instance, those three-particles groups can
be entangled with u or v in the double-excitation case, or
together in the triple-excitation case, and so on.

The large number of adjustable tensor dimensions could
be seen as a disadvantage of the STTN structure, as they
requires additional optimization algorithms. However, it also
offers the possibility to explore different combinations of
decompositions in the STTN representation of a given set
of coefficients and, assuming that the accuracy of the results
can be assessed, the types of decomposition yielding the
best results and the relative norms of the different terms
can provide useful information about the correlations in the
system.

Let us end this section by discussing the computational
complexity of the proposed CC extensions, as we must also
ensure that they are worth the efforts required for their imple-
mentation. The complexity in the evaluation of the generalized
CC equations of Sec. VI depends on the term∑

klmn

Vklmnckli1i2
mn j1 j2

(60)

of Eq. (40). To simplify the complexity analysis if we use the
quadruple-excitation decompositions provided in Appendix C
in that term, let us set sp = sh = s1, all the third dimensions
of the κ tensors to s2 and all the third dimensions of the λ

tensors to s4. Starting with the sum over the indices of Vklmn,
it requires O(N4s1) operations, then the sum over the first two
indices of the κ tensors has O(N4s1s4

2) complexity, the sums
over the first two indices of the λ tensors have O(N4s4

2s4) or
O(N4s2

2s2
4) complexity, and finally, the sum over the μ tensor

indices have O(N4s2
4) complexity. The overall complexity

is therefore either O(N4s1s4
2), O(N4s4

2s4), or O(N4s2
2s2

4), de-
pending on the scaling of s1, s2 and s4 with N . The more
detailed complexity analysis is provided in Appendix E. For
the corresponding CC equations with no truncation of T with
respect to the number of excitations, the limiting term has the
same form, with the wave function coefficients replaced by
the T -amplitudes, and thus the complexity is the same. The
two proposed approaches are therefore tractable if the tensor
dimensions are small and only weakly dependant on N , and
can be comparable to CCSD (O(N6)) [4], or better, in a certain
range of tensor dimensions.

VIII. DISCUSSION

We have seen that only low-order coefficients are relevant
to the ground-state energy when there exist a converging low-
entanglement single-reference expansion of the wave func-
tion. A remarkable aspect of that result is that it applies even
if the convergence is slow, and thus the irrelevant coefficients
are not vanishingly small, but only smaller than the relevant
ones. This is unusual since, on one hand, most approximations
based on an expansion are valid only when that expansion
converges rapidly and, on the other hand, the energy of an
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eigenstate is usually assumed to depend on all the coefficients
larger than some small threshold magnitude. In the present
case, those common assumptions do not apply because of both
the low-entanglement property of the wave function and the
locality of H on the number of excitations axis. Computation-
ally, the fact that the number of relevant parameters is much
smaller than the total number of wave function parameters is
an interesting advantage of using equations of the CC form,
compared to a variational method that requires computing all
the parameters. In particular, because only low-order tensors
are involved, and the maximum order does not depend on
system size, one can also afford tensor product representations
which are not based on the specific connections between
spin orbitals in the Hamiltonian, which is very convenient
for nonlocal Hamiltonians. Consequently, if one suspects that
there exist a single-reference expansion of the wave function
that converges, even if the convergence is slow, namely at
strong coupling, not only the proposed CC extensions are
theoretically applicable, but they also possess important ad-
vantages compared to other tensor network methods.

If it turns out that the convergence of the CI form of the
wave function is fast, then the increasing rate of the number
of free parameters NTD

l with the number of excitations l is
necessarily slow since more components of the wave func-
tion can be neglected as l increases. The low-entanglement
assumption is thus always valid at weak coupling. On the
other hand, a slow increasing rate of NTD

l is also possible if the
convergence is slow. For instance, this is the case of a strongly
correlated system where many SD’s are nearly degenerate in
energy, hence the slow convergence of the CI coefficients
with l , while the correlations are only local, hence the low
entanglement and slow scaling of NTD

l with l . In fact, when
the Hamiltonian is local, the low-entanglement assumption is
essentially always valid. It has indeed been proven recently
that physically realizable ground states of such systems can
only occupy an exponentially small volume of Hilbert space
[43], which implies that such states have low entanglement.
Another exact result for local Hamiltonians is that correlations
are short range, and thus entanglement is low, if the ground
state is gapped [44]. From first principles, the Hamiltonian
is not local because of the long-range Coulomb interaction.
However, in metallic systems, screening effects yield effective
local Hamiltonians at low energy, i.e., in the active space.
Therefore, even though the original Hamiltonian is not local,
based on the result of Ref. [43], it remains quite reasonable to
use a low-entanglement approximation for the ground state of
strongly correlated itinerant systems. However, one difficulty
for such systems is to determine this effective low-energy
Hamiltonian, hence the usefulness of approaches that do not
depend on the locality of the Hamiltonian. More generally,
in large systems, another argument for assuming a low-
entanglement ground state is that the energy range spanned by
all the eigenstates grows linearly with the size of the system,
while the total number of eigenstates grows exponentially.
Many eigenstates therefore become nearly degenerate and
can be replaced in practice by a single effective average
eigenstate. Since averaging reduces correlations, this effective
eigenstate has only low entanglement. In systems in which

this near degeneracy is present at the ground-state energy,
the low-entanglement assumption is therefore valid. On the
other hand, in systems with a gapped ground state that breaks
the symmetry of the Hamiltonian, whether local or not, the
correlation length associated with the order parameter is finite,
and thus entanglement is finite as well. In summary, many
different types of system have a low-entanglement ground
state and can be modelled using tensor networks.

The first tensor extension of the CC method discussed in
Sec. IV A, TCC, in which the LRTD are used to represents sets
of amplitudes in the cluster operator T , is necessarily valid in
the weak-coupling limit since it includes the CC method as a
special case. However, because T is not truncated with respect
to particle-hole excitation, and there are irreducible low-rank
corrections to the reducible parts of the wave function coef-
ficients at all orders, TCC remains theoretically valid as long
as those corrections can be well represented using LRTD, as
the coupling strength increases. As discussed in Sec. VII, not
only the local correlations can be accounted for by the STTN
representation, but also nonlocal ones. On the other hand,
in the CC method, including its tensor implementations, the
wave function coefficients at higher order than the truncation
order are always completely expressed as a sum of decoupled
terms, a form badly suited for strong correlations, while at
the same time the importance of higher order terms increases
with the coupling strength. The catastrophic failure of CC
at strong coupling [6] is thus inevitable unless the nature of
approximation is modified. The TCC approach is a way to
do so using LRTD, without projection or correlation operator.
Between the two proposed approaches, TCC is the closest
one to the CC approach, which should make it the easiest to
implement.

The second proposed tensor extension of the CC method,
TCICC, is in principle valid in any situation where the wave
function has a converging low-entanglement CI expansion.
That includes both the weak and strong-coupling regimes.
In practice however, at weak coupling, the parametrization
would have to essentially reproduce the standard CC approx-
imation, requiring a rather complex parametrization from the
point of view of wave function coefficients instead of cluster
operator amplitudes, and thus TCC is better suited in that
regime. On the other hand, as discussed in Sec. IV B, at some
large coupling strength, TCICC could become more compact
than TCC, and thus better suited to even stronger couplings.
There are also well-known strongly correlated wave functions
that have a tensor network representation of the coefficients
and are good variational ground states of strongly correlated
systems [16,19,23], suggesting that the direct parametrization
of wave function coefficients in TCICC is well suited to
that regime. Finally, although TCICC can also be seen as a
low-entanglement version of the CI method, since Eqs. (36),
(38), and (40) involve the CI coefficients, it is in fact very
different from CI: First, Hilbert space is not truncated in the
number of particle-hole excitations, then, the coefficients are
not computed variationally or by matrix diagonalization, but
instead the tensors defining the coefficients are obtained by
solving nonlinear equations, and finally, the result is size-
extensive because the energy is linked.
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The implementation algorithms and numerical testing of
the proposed tensor extensions of the CC method require
much more work and are thus not included here. However, at
the end of Sec. VII, the obtained scaling of the calculation
with system size and tensor dimensions indicate that those
CC extensions are applicable in practice. In addition, their
complexity could possibly be further improved using a tensor-
product representation for the two-particle Coulomb integrals
as well [24–31,45].

IX. CONCLUSION

We have identified a class of fermionic wave functions
which ground-state energy can be computed in polynomial
time using generalized CC equations. It corresponds to the
subclass of the wave functions possessing a converging CI
expansion that also possess a low-entanglement representation
in which the number of free parameters N�k defining the
wave function coefficients with l � k particle-hole excitations
is bounded polynomially in k. The CC approximation is the
simplest approximation of the class, for which N�k is bounded
by a constant. The convergence condition only ensures that
the energy obtained from the equations is a good approxi-
mation to the true ground-state energy. There is therefore no
lower bound on the convergence rate, which implies that the
class contains wave functions of strongly correlated systems
which cannot be treated with the standard CC approximations.
Based on that result, we have proposed extensions of the CC
method to treat such systems using two types of polynomially
bounded parametrization different from standard CC, and
based on low-rank tensor decompositions (LRTD): a straight-
forward extension in which the LRTD are used to represent
sets of cluster operator (T ) amplitudes, which involves tensor-
adapted standard CC equations, and an extension of CC in
which the LRTD are used to represent the CI wave function
coefficients directly. For the latter case, we have derived
exact generalized CC equations involving the CI coefficients
with up to four particle-hole excitations. Finally, although
the discussed CC extensions are in principle applicable with
any type of polynomially bounded parametrization of the CI
coefficients or T amplitudes, to complete the proposals, we
have constructed representations of the CI coefficients or clus-
ter operator amplitudes in the form of superpositions of tree
tensor networks (STTN), which by design can parametrize all
the involved sets of coefficients or T amplitudes in a globally
compact way. If the tensor dimensions in the STTN are small
and only weakly dependant on system size, the proposed CC
extensions are computationally tractable.
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APPENDIX A: EQUAL-TIME CORRELATION FUNCTIONS

In this Appendix, we describe how to compute equal-
time correlation functions using the source-field method. The
derivation also corresponds to a proof of the Hellmann-
Feynman theorem.

If the equations on the second line of Eqs. (6), are satisfied,
we have

〈φ|eT †
ĤφeT |φ〉

〈φ|eT † eT |φ〉 = 〈φ|eT †
eT e−T ĤφeT |φ〉

〈φ|eT † eT |φ〉

=
∑

i

〈φ|eT †
eT |φi〉〈φi|e−T ĤφeT |φ〉

〈φ|eT † eT |φ〉

= 〈φ|eT †
eT |φ〉〈φ|e−T ĤφeT |φ〉
〈φ|eT † eT |φ〉

= 〈φ|e−T ĤφeT |φ〉
= �E . (A1)

Now, if we have a perturbed Hamiltonian

Hf = Ĥφ + f Ô, (A2)

where Ô is any time-independent operator, and

�E f = 〈φ|eT †
f Hf eTf |φ〉

〈φ|eT †
f eTf |φ〉

= 〈ψ f |Hf |ψ f 〉
〈ψ f |ψ f 〉

= 〈φ|e−Tf Hf eTf |φ〉 (A3)

then,

∂�E f

∂ f

= 〈ψ f |Hf |ψ f 〉
〈ψ f |ψ f 〉2

∂〈ψ f |ψ f 〉
∂ f

+ 1

〈ψ f |ψ f 〉
∂〈ψ f |Hf |ψ f 〉

∂ f

= �E f

〈ψ f |ψ f 〉
∂〈ψ f |ψ f 〉

∂ f
+ 1

〈ψ f |ψ f 〉
(

∂

∂ f
〈ψ f |

)
Hf |ψ f 〉

+ 1

〈ψ f |ψ f 〉 〈ψ f |Hf
∂

∂ f
|ψ f 〉+ 1

〈ψ f |ψ f 〉 〈ψ f |
(

∂Hf

∂ f

)
|ψ f 〉

= �E f

〈ψ f |ψ f 〉
∂〈ψ f |ψ f 〉

∂ f
+ �E f

〈ψ f |ψ f 〉
∂〈ψ f |ψ f 〉

∂ f

+ 1

〈ψ f |ψ f 〉 〈ψ f |
(

∂Hf

∂ f

)
|ψ f 〉

= 2�E f

〈ψ f |ψ f 〉
∂〈ψ f |ψ f 〉

∂ f
+ 1

〈ψ f |ψ f 〉 〈ψ f |
(

∂Hf

∂ f

)
|ψ f 〉.

(A4)

If f is small enough, according to perturbation theory,

|ψ f 〉 ≈ |ψ〉 + f |μ1〉 (A5)

where |μ1〉 is orthogonal to |ψ〉 and

〈ψ f |ψ f 〉 = 〈ψ |ψ〉 + f 2〈μ1|μ1〉. (A6)

Thus

∂〈ψ f |ψ f 〉
∂ f

= 2 f 〈μ1|μ1〉, (A7)

∂�E f

∂ f
= f

4�E f

〈ψ f |ψ f 〉 〈μ1|μ1〉 + 1

〈ψ f |ψ f 〉 〈ψ f |
(

∂Hf

∂ f

)
|ψ f 〉,

(A8)

lim
f →0

∂�E f

∂ f
= lim

f →0

1

〈ψ f |ψ f 〉 〈ψ f |
(

∂Hf

∂ f

)
|ψ f 〉, (A9)
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and finally,

〈ψ |Ô|ψ〉
〈ψ |ψ〉 = lim

f →0

∂

∂ f
〈φ|e−Tf Hf eTf |φ〉. (A10)

We can therefore compute the expectation value of any time-
independent operator Ô by computing �E f for f = 0 and for
f small and obtain

〈ψ |Ô|ψ〉
〈ψ |ψ〉 ≈ �E f − �E0

f
. (A11)

In particular, if

Ô = a†
i a j

= (p†
i + hi )(p j + h†

j )

= p†
i p j + p†

i h†
j + hi p j + hih

†
j , (A12)

we can obtain the one particle density-matrix elements

〈ψ |a†
i a j |ψ〉

〈ψ |ψ〉 . (A13)

By diagonalizing the one-particle density matrix, we obtain
the natural spin orbitals basis, which is the basis that yields
the fastest convergence of a configuration interaction series.
Although each density matrix elements requires a different
calculation, and the number of elements 2L2 can be large, each
calculation should converge rapidly if the parameters for the
unperturbed Hamiltonian are used as the initial ones in each
calculation since the perturbation is very small.

APPENDIX B: DERIVATION OF THE GENERALIZED CC
EQUATIONS FOR THE CI COEFFICIENTS

Here we provide the derivation of the equations (11) for T
given by Eq. (9), with projection of e−T HφeT |φ〉 on 〈φ| and
〈φi

j |, using the excited particle and hole operators, Eqs. (23),
and the representation (33) of the Hamiltonian. The derivation
of the equations with projection on 〈φi1i2

j1 j2
| are provided in

Ref. [33].
Taking into account the fact that T is an excitation oper-

ator, and thus 〈φ|e−T = 〈φ|, that H can destroy at most two
particle-hole pairs, and that 〈φ|Ĥφ|φ〉 = 0, the equation for
the energy is

�E = 〈φ|e−T ĤφeT |φ〉
= 〈φ|Ĥφ

(
1 + T + 1

2 T 2)|φ〉
�E = 〈φ|ĤφT |φ〉 + 1

2 〈φ|ĤφT 2|φ〉. (B1)

For 〈φ|ĤφT |φ〉, the only term in Hφ , Eq. (33), that contributes
is the term annihilating a single particle-hole pair:

〈φ|ĤφT |φ〉 = 〈φ|
⎛
⎝∑

i j

tφ
i jh j pi

⎞
⎠(∑

kl

ck
l p†

kh†
l

)
|φ〉

=
∑
i jkl

tφ
i jc

k
l δikδ jl ,

〈φ|ĤφT |φ〉 =
∑

i j

tφ
i jc

i
j . (B2)

For 〈φ|ĤφT 2|φ〉, only the part of Hφ that annihilates two pairs
contributes:

〈φ|ĤφT 2|φ〉

= 1

4
〈φ|

⎛
⎝∑

i jkl

Vi jkl hlhk p j pi

⎞
⎠1

2

∑
mnqs

cmq
ns p†

mh†
n p†

qh†
s |φ〉

= −1

8

∑
i jklmnqs

Vi jkl c
mq
ns 〈φ|p j pi p

†
m p†

qhlhkh†
nh†

s |φ〉

= −1

8

∑
i jklmnqs

Vi jkl c
mq
ns (δimδ jq − δiqδ jm)(δknδls − δksδln)

= −1

2

∑
i jkl

Vi jkl c
i j
kl , (B3)

where we have used the result (10) for T 2|φ〉 and where the
antisymmetry of ci j

kl or Vi jkl can be used to obtain the last line.
We thus obtain

�E =
∑

i j

tφ
i jc

i
j − 1

4

∑
i jkl

ci j
klVi jkl . (B4)

Note that, when reordering the products of operators to
obtain a group of particle operators times a group of hole
operators, the resulting sign can be obtained quickly by count-
ing the number of particle operators on the right-hand side of
each group consisting of an odd number of hole operators, and
add those numbers. The sign is then negative if that number
is odd.

The equations with projection on 〈φi
j | are

0 = 〈
φi

j

∣∣e−T ĤφeT |φ〉

= 〈
φi

j

∣∣(1 − T )Ĥφ

(
1 + T + 1

2
T 2 + 1

3!
T 3

)
|φ〉

0 = 〈
φi

j

∣∣Ĥφ|φ〉 + 〈
φi

j

∣∣ĤφT |φ〉 − 〈
φi

j

∣∣T ĤφT |φ〉

+ 1

2

〈
φi

j

∣∣ĤφT 2|φ〉 − 1

2

〈
φi

j

∣∣T ĤφT 2|φ〉

+ 1

3!

〈
φi

j

∣∣ĤφT 3|φ〉. (B5)

For the term 〈φi
j |Ĥφ|φ〉, only the part of Ĥφ that create a

single particle-hole pair contributes:

〈
φi

j

∣∣Ĥφ|φ〉 = 〈φ|h j pi

∑
kl

tφ

kl p†
kh†

l |φ〉,
〈
φi

j

∣∣Ĥφ|φ〉 = tφ
i j . (B6)
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The term 〈φi
j |ĤφT |φ〉 includes contribution from all the terms of Ĥφ that act on a single particle-hole pair, without creating or

destroying any pair:

〈φi
j |ĤφT |φ〉 = 〈φ|hj pi

(∑
kl

tφ

kl p†
k pl −

∑
kl

tφ

kl h
†
khl −

∑
klmn

Vkmln p†
kh†

l hm pn

)∑
qr

cq
r p†

qh†
r |φ〉

=
∑
klqr

tφ

kl c
q
r 〈φ|h j pi p

†
k pl p†

qh†
r |φ〉 −

∑
klqr

tφ

kl c
q
r 〈φ|h j pih

†
khl p†

qh†
r |φ〉 −

∑
klmnqr

Vkmlncq
r 〈φ|h j pi p

†
kh†

l hm pn p†
qh†

r |φ〉

=
∑
klqr

tφ

kl c
q
r 〈φ|pi p

†
k pl p†

qh jh
†
r |φ〉 −

∑
klqr

tφ

kl c
q
r 〈φ|pi p

†
qh jh

†
khl h

†
r |φ〉 −

∑
klmnqr

Vkmlncq
r 〈φ|pi p

†
k pn p†

qh jh
†
l hmh†

r |φ〉

=
∑
klqr

tφ

kl c
q
r δikδlqδ jr −

∑
klqr

tφ

kl c
q
r δiqδ jkδlr −

∑
klmnqr

Vkmlncq
r δikδnqδ jlδmr (B7)

and thus 〈
φi

j

∣∣ĤφT |φ〉 =
∑

l

tφ

il cl
j −

∑
l

tφ

jl c
i
l −

∑
mn

Vim jncn
m. (B8)

Now, 〈φi
j |T ĤφT |φ〉 factorizes as 〈φi

j |T |φ〉〈φ|ĤφT |φ〉. Thus, using the result (B2),

−〈
φi

j

∣∣T ĤφT |φ〉 = −ci
j

∑
kl

tφ

kl c
k
l . (B9)

In 〈φi
j |ĤφT 2|φ〉, all the parts of Ĥφ destroying a single pair contribute:

〈φi
j |ĤφT 2|φ〉 = 〈φ|hj pi

(∑
kl

tφ

klhl pk + 1

4

∑
klmn

Vklmn p†
nhm pl pk + 1

4

∑
klmn

Vklmnh†
n pmhlhk

)
1

2

∑
qrst

cqs
rt p†

qh†
r p†

sh†
t |φ〉

= 1

2

∑
klqrst

tφ

kl c
qs
rt 〈φ|h j pihl pk p†

qh†
r p†

sh†
t |φ〉 + 1

8

∑
klmnqrst

Vklmncqs
rt 〈φ|h j pi p

†
nhm pl pk p†

qh†
r p†

sh†
t |φ〉

+ 1

8

∑
klmnqrst

Vklmncqs
rt 〈φ|h j pih

†
n pmhl hk p†

qh†
r p†

sh†
t |φ〉

= 1

2

∑
klqrst

tφ

kl c
qs
rt 〈φ|h jhlh

†
r h†

t pi pk p†
q p†

s |φ〉 − 1

8

∑
klmnqrst

Vklmncqs
rt 〈φ|h jhmh†

r h†
t pi p

†
n pl pk p†

q p†
s |φ〉

+ 1

8

∑
klmnqrst

Vklmncqs
rt 〈φ|h jh

†
nhlhkh†

r h†
t pi pm p†

q p†
s |φ〉

= 1

2

∑
klqrst

tφ

kl c
qs
rt (δlrδ jt − δltδ jr )(δkqδis − δksδiq) − 1

8

∑
klmnqrst

Vklmncqs
rt (δmrδ jt − δmtδ jr )δin(δkqδls − δksδlq)

+ 1

8

∑
klmnqrst

Vklmncqs
rt δ jn(δkrδlt − δktδlr )(δmqδis − δmsδiq), (B10)

which yields, using the antisymmetry of cqs
rt ,

1

2

〈
φi

j

∣∣ĤφT 2|φ〉 =
∑

kl

tφ

kl c
ik
jl + 1

4

∑
klm

Vklmic
kl
jm − 1

4

∑
klm

Vklm jc
im
kl . (B11)

Then, 〈φi
j |T ĤφT 2|φ〉 = 〈φi

j |T |φ〉〈φ|ĤφT 2|φ〉. Therefore, using the result of (B3),

−1

2

〈
φi

j

∣∣T ĤφT 2|φ〉 = 1

4
ci

j

∑
klmn

Vklmnckl
mn. (B12)
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Then, 〈φi
j |ĤφT 3|φ〉 involves only the part of Ĥφ destroying two pairs:

〈
φi

j

∣∣ĤφT 3|φ〉 = 1

4(3!)

∑
klmnqrq1r1q2r2

Vklmncqq1q2
rr1r2

〈φ|h j pihnhm pl pk p†
qh†

r p†
q1

h†
r1

p†
q2

h†
r2
|φ〉

= − 1

4(3!)

∑
klmnqrq1r1q2r2

Vklmncqq1q2
rr1r2

〈φ|h jhnhmh†
r h†

r1
h†

r2
pi pl pk p†

q p†
q1

p†
q2

|φ〉. (B13)

Here, because of the antisymmetry of cqq1q2
ss1s2 , all (3!)2 terms obtained by normal-ordering the operators are identical, thus

1

3!

〈
φi

j

∣∣ĤφT 3|φ〉 = −1

4

∑
klmn

Vklmnckli
mn j . (B14)

Therefore Eq. (B5) becomes

0 = tφ
i j +

∑
k

tφ

ikck
j −

∑
k

tφ

jkci
k −

∑
kl

Vik jl c
l
k − ci

j

∑
kl

tφ

kl c
k
l +

∑
kl

tφ

kl cik
jl

+ 1

4

∑
klm

Vklmic
kl
jm − 1

4

∑
klm

Vklm jc
im
kl + 1

4
ci

j

∑
klmn

Vklmnckl
mn − 1

4

∑
klmn

Vklmnckli
mn j, (B15)

or, if we group disconnect terms with similar connected ones,

0 = tφ
i j +

∑
k

tφ

ikck
j −

∑
k

tφ

jkci
k −

∑
kl

Vik jl c
l
k +

∑
kl

tφ

kl

(
cik

jl − ci
jc

k
l

) + 1

4

∑
klm

Vklmic
kl
jm

− 1

4

∑
klm

Vklm jc
im
kl − 1

4

∑
klmn

Vklmn
(
ckli

mn j − ci
jc

kl
mn

)
. (B16)

See Ref. [33] for the derivation of the equations with projection on 〈φi1i2
j1 j2

|.

APPENDIX C: TENSOR REPRESENTATION FOR QUADRUPLE-EXCITATION COEFFICIENTS

Provided here are the decompositions used in the STTN representation of the quadruple-excitation CI coefficients or cluster
operator amplitudes discussed in Sec. VII.

When all spins are equal, the decomposition for the particle-hole pairing only is

(
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

ph̄ph̄ph̄ph̄ =
sph̄ph̄∑

m1,m2=1

sph̄∑
l1,l2,l3,l4=1

sp∑
k1,k3,k5,k7=1

sh∑
k2,k4,k6,k8=1

∑
π∈S4

μph̄ph̄,ph̄ph̄
m1m2

(
λ

ph̄ph̄
l1l2m1

λ
ph̄ph̄
l3l4m2

+ λ
ph̄ph̄
l1l3m1

λ
ph̄ph̄
l2l4m2

+ λ
ph̄ph̄
l1l4m1

λ
ph̄ph̄
l2l3m2

)

× κ
ph̄
k1k2l1

κ
ph̄
k3k4l2

κ
ph̄
k5k6l3

κ
ph̄
k7k8l4

επ1π2π3π4 u↑
i1k1

u↑
i2k3

u↑
i3k5

u↑
i4k7

v
↓
jπ1 k2

v
↓
jπ2 k4

v
↓
jπ3 k6

v
↓
jπ4 k8

. (C1)

Then, if we combine particle-hole, particle-particle and hole-hole pairing, we can have

(
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

ppph̄h̄h̄ph̄ =
sppph̄∑
m1=1

sh̄h̄ph̄∑
m2=1

spp∑
l1=1

sph̄∑
l2,l4=1

shh∑
l3=1

sp∑
k1,k2,k3,k7=1

sh∑
k4,k5,k6,k8=1

∑
π,χ∈S4

μppph̄,h̄h̄ph̄
m1m2

λ
ppph̄
l1l2m1

λ
h̄h̄ph̄
l3l4m2

× κ
pp
k1k2l1

κ
ph̄
k3k4l2

κ h̄h̄
k5k6l3κ

ph̄
k7k8l4

επ1π2π3π4εχ1χ2χ3χ4 u↑
iπ1 k1

u↑
iπ2 k2

u↑
iπ3 k3

u↑
iπ4 k7

v
↓
jχ1 k4

v
↓
jχ2 k5

v
↓
jχ3 k6

v
↓
jχ4 k8

. (C2)

Then, for particle-particle and hole-hole pairing only, the expression is

(
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

pppph̄h̄h̄h̄ =
spppp∑
m1=1

sh̄h̄h̄h̄∑
m2=1

spp∑
l1,l2=1

sh̄h̄∑
l3,l4=1

sp∑
k1,k2,k3,k4=1

sh∑
k5,k6,k7,k8=1

∑
π,χ∈S4

μpppp,h̄h̄h̄h̄
m1m2

λ
pppp
l1l2m1

λh̄h̄h̄h̄
l3l4m2

× κ
pp
k1k2l1

κ
pp
k3k4l2

κ h̄h̄
k5k6l3κ

h̄h̄
k7k8l4επ1π2π3π4εχ1χ2χ3χ4 u↑

iπ1 k1
u↑

iπ2 k2
u↑

iπ3 k3
u↑

iπ4 k4
v

↓
jχ1 k5

v
↓
jχ2 k6

v
↓
jχ3 k7

v
↓
jχ4 k8

, (C3)

and finally,

ci1↑i2↑i3↑i4↑
j1↓ j2↓ j3↓ j4↓ =

(
ci1↑i2↑i3↑i4↑

j1↓ j2↓ j3↓ j4↓
)

ph̄ph̄ph̄ph̄
+ (

ci1↑i2↑i3↑i4↑
j1↓ j2↓ j3↓ j4↓

)
ppph̄h̄h̄ph̄ + (

ci1↑i2↑i3↑i4↑
j1↓ j2↓ j3↓ j4↓

)
pppph̄h̄h̄h̄. (C4)
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Then, when one spin is different, the decomposition based on singlet particle-hole pairing only is

(
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄ph̄ph̄p̄h =
sph̄ph̄∑
m1=1

sph̄p̄h∑
m2=1

sph̄∑
l1,l2,l3,l4=1

sp∑
k1,k3,k5,k7=1

sh∑
k2,k4,k6,k8=1

∑
π∈S3

μph̄ph̄,ph̄p̄h
m1m2

(
λ

ph̄ph̄
l1l2m1

λ
ph̄p̄h
l3l4m2

+ λ
ph̄ph̄
l1l3m1

λ
ph̄p̄h
l2l4m2

+ λ
ph̄ph̄
l2l3m1

λ
ph̄p̄h
l1l4m2

)

× κ
ph̄
k1k2l1

κ
ph̄
k3k4l2

κ
ph̄
k5k6l3

κ
p̄h
k7k8l4

επ1π2π3 u↑
i1k1

u↑
i2k3

u↑
i3k5

u↓
i4k7

v
↓
jπ1 k2

v
↓
jπ2 k4

v
↓
jπ3 k6

v
↑
j4k8

, (C5)

then, we can have both singlet and triplet particle-hole pairing:

(
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄phph̄p̄h̄ =
sph̄ph∑
m1=1

sph̄p̄h̄∑
m2=1

sph̄∑
l1,l3=1

sph∑
l2,l4=1

sp∑
k1,k3,k5,k7=1

sh∑
k2,k4,k6,k8=1

∑
π,χ∈S3

μph̄ph,ph̄p̄h̄
m1m2

λ
ph̄ph
l1l2m1

× λ
ph̄p̄h̄
l3l4m2

κ
ph̄
k1k2l1

κ
ph
k3k4l2

κ
ph̄
k5k6l3

κ
p̄h̄
k7k8l4

επ1π2π3εχ1χ2χ3 u↑
iπ1 k1

u↑
iπ2 k3

u↑
iπ3 k5

u↓
i4k7

v
↓
jχ1 k2

v
↓
jχ2 k6

v
↓
jχ3 k8

v
↑
j4k4

, (C6)

singlet particle-hole, particle-particle, and hole-hole pairing:

(
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ph̄pp̄ph̄h̄h =
sph̄pp̄∑
m1=1

sph̄h̄h∑
m2=1

sph̄∑
l1,l3=1

spp̄∑
l2=1

shh̄∑
l4=1

sp∑
k1,k3,k4,k5=1

sh∑
k2,k6,k7,k8=1

∑
π,χ∈S3

μph̄pp̄,ph̄h̄h
m1m2

λ
ph̄pp̄
l1l2m1

× λ
ph̄h̄h
l3l4m2

κ
ph̄
k1k2l1

κ
pp̄
k3k4l2

κ
ph̄
k5k6l3

κ h̄h
k7k8l4επ1π2π3εχ1χ2χ3 u↑

iπ1 k1
u↑

iπ2 k3
u↑

iπ3 k5
u↓

i4k4
v

↓
jχ1 k2

v
↓
jχ2 k6

v
↓
jχ3 k7

v
↑
j4k8

, (C7)

or triplet particle-hole, particle-particle, and hole-hole pairing:

(
ci1↑i2↑i3↑i4↓

j1↓ j2↓ j3↓ j4↑
)

ppphp̄h̄h̄h̄
=

sppph∑
m1=1

sp̄h̄h̄h̄∑
m2=1

spp∑
l1=1

sph∑
l2,l3=1

shh∑
l4=1

sp∑
k1,k2,k3,k5=1

sh∑
k4,k6,k7,k8=1

∑
π,χ∈S3

μppph,p̄h̄h̄h̄
m1m2

λ
ppph
l1l2m1

× λ
p̄h̄h̄h̄
l3l4m2

κ
pp
k1k2l1

κ
ph
k3k4l2

κ
p̄h̄
k5k6l3

κ h̄h̄
k7k8l4επ1π2π3εχ1χ2χ3 u↑

iπ1 k1
u↑

iπ2 k2
u↑

iπ3 k3
u↓

i4k5
v

↓
jχ1 k6

v
↓
jχ2 k7

v
↓
jχ3 k8

v
↑
j4k4

, (C8)

and we can use

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑ = (

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

)
ph̄ph̄ph̄p̄h + (

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

)
ph̄phph̄p̄h̄ + (

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

)
ph̄pp̄ph̄h̄h + (

ci1↑i2↑i3↑i4↓
j1↓ j2↓ j3↓ j4↑

)
ppphp̄h̄h̄h̄. (C9)

Finally, for two up spins and two down spins, we can use

(
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pp̄h̄hphp̄h̄ =
spp̄h̄h∑
m1=1

sphp̄h̄∑
m2=1

spp̄∑
l1=1

shh̄∑
l2=1

sph∑
l3,l4=1

sp∑
k1,k2,k5,k7=1

sh∑
k3,k4,k6,k8=1

∑
π,ρ,τ,χ∈S2

μpp̄h̄h,php̄h̄
m1m2

λ
pp̄h̄h
l1l2m1

λ
php̄h̄
l3l4m2

κ
pp̄
k1k2l1

κ h̄h
k3k4l2

× κ
ph
k5k6l3

κ
p̄h̄
k7k8l4

επ1π2ερ1ρ2ετ1τ2εχ1χ2 u↑
iπ1 k1

u↑
iπ2 k5

u↓
iρ1+2k2

u↓
iρ2+2k7

v
↓
jτ1 k3

v
↓
jτ2 k8

v
↑
jχ1+2k4

v
↑
jχ2+2k6

, (C10)

where λpp̄h̄h = λ p̄phh̄ and λ
php̄h̄
l3l4m2

= λ
p̄h̄ph
l4l3m2

, and then

(
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

ph̄ph̄p̄hp̄h =
sph̄ph̄∑

m1,m2=1

sph̄∑
l1,l2,l3,l4=1

sp∑
k1,k3,k5,k7=1

sh∑
k2,k4,k6,k8=1

∑
π,ρ,τ,χ∈S2

μph̄ph̄,p̄hp̄h
m1m2

λ
ph̄ph̄
l1l2m1

λ
p̄hp̄h
l3l4m2

κ
ph̄
k1k2l1

κ
ph̄
k3k4l2

κ
p̄h
k5k6l3

κ
p̄h
k7k8l4

× επ1π2ερ1ρ2ετ1τ2εχ1χ2 u↑
iπ1 k1

u↑
iπ2 k3

u↓
iρ1+2k5

u↓
iρ2+2k7

v
↓
jτ1 k2

v
↓
jτ2 k4

v
↑
jχ1+2k6

v
↑
jχ2+2k8

, (C11)

(
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pphhp̄p̄h̄h̄ =
spphh∑

m1,m2=1

spp∑
l1,l3=1

shh∑
l3,l4=1

sp∑
k1,k2,k5,k7=1

sh∑
k3,k4,k6,k8=1

∑
π,ρ,τ,χ∈S2

μpphh,p̄p̄h̄h̄
m1m2

λ
pphh
l1l2m1

λ
p̄p̄h̄h̄
l3l4m2

κ
pp
k1k2l1

κhh
k3k4l2κ

p̄p̄
k5k6l3

κ h̄h̄
k7k8l4

× επ1π2ερ1ρ2ετ1τ2εχ1χ2 u↑
iπ1 k1

u↑
iπ2 k2

u↓
iρ1+2k5

u↓
iρ2+2k6

v
↓
jτ1 k7

v
↓
jτ2 k8

v
↑
jχ1+2k3

v
↑
jχ2+2k4

, (C12)

(
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pp̄pp̄h̄hh̄h =
spp̄pp̄∑
m1=1

sh̄hh̄h∑
m2=1

spp̄∑
l1,l2=1

sh̄h∑
l3,l4=1

sp∑
k1,k2,k3,k4=1

sh∑
k5,k6,k7,k8=1

∑
π,ρ,τ,χ∈S2

μpp̄pp̄,h̄hh̄h
m1m2

λ
pp̄pp̄
l1l2m1

λh̄hh̄h
l3l4m2

κ
pp̄
k1k2l1

κ
pp̄
k3k4l2

κ h̄h
k5k6l3κ

h̄h
k7k8l4επ1π2

× ερ1ρ2ετ1τ2εχ1χ2 u↑
iπ1 k1

u↑
iπ2 k3

u↓
iρ1+2k2

u↓
iρ2+2k4

v
↓
jτ1 k5

v
↓
jτ2 k7

v
↑
jχ1+2k6

v
↑
jχ2+2k8

, (C13)

and we use

ci1↑i2↑i3↓i4↓
j1↓ j2↓ j3↑ j4↑ = (

ci1↑i2↑i3↓i4↓
j1↓ j2↓ j3↑ j4↑

)
pp̄h̄hphp̄h̄

+ (
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

ph̄ph̄p̄hp̄h
+ (

ci1↑i2↑i3↓i4↓
j1↓ j2↓ j3↑ j4↑

)
pphhp̄p̄h̄h̄

+ (
ci1↑i2↑i3↓i4↓

j1↓ j2↓ j3↑ j4↑
)

pp̄pp̄h̄hh̄h
. (C14)
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APPENDIX D: SVD FORM OF THE TREE
TENSOR NETWORKS

Let us see how the decomposition (42),

(
ci1↑i2↓

j1↓ j2↑
)

pp̄h̄h =
spp̄∑

k=1

shh̄∑
l=1

sp∑
m,n=1

sh∑
q,r=1

λ
pp̄h̄h
kl1 κ

pp̄
mnkκ

h̄h
qrl

× u↑
i1mu↓

i2nv
↓
j1qv

↑
j2r, (D1)

can be written as a combination of SVD’s if the matrix slices
of the κ tensors, labeled by their third index, are orthogonal.
First, we define

w
pp̄
(i1i2 ),k =

sp∑
m,n=1

κ
pp̄
mnku↑

i1mu↓
i2n (D2)

and

wh̄h
( j1, j2 ),l =

sh∑
q,r=1

κ h̄h
qrlv

↓
j1qv

↑
j2r . (D3)

Then (D1) becomes

(
ci1↑i2↓

j1↓ j2↑
)

pp̄h̄h
=

spp̄∑
k=1

shh̄∑
l=1

λ
pp̄h̄h
kl1 w(i1i2 ),kw( j1, j2 ),l (D4)

which can be written in matrix form as

(C↑↓
↓↑ )pp̄h̄h = Wpp̄�

pp̄h̄hW T
h̄h

= Wpp̄X �̄pp̄h̄hY T W T
h̄h

= W̄pp̄�̄
pp̄h̄hW̄ T

h̄h, (D5)

where �̄pp̄h̄h is diagonal, X and Y are unitary, W̄pp̄ = Wpp̄X ,
W̄h̄h = Wh̄hY , and the row indices of Wpp̄ and Wh̄h are (i1i2)
and ( j1 j2) pairs, respectively. Now, expression (D5) has SVD
form, but it is an actual SVD only if the columns of W̄pp̄ and
W̄h̄h are orthogonal. Since X and Y are unitary, this is the case
if the columns of Wpp̄ and Wh̄h, corresponding to matrix slices
of tensors wpp̄ and wh̄h, are orthogonal. Now, using the fact
the columns of matrices uσ are orthogonal, the matrix slices of
wpp̄ are orthogonal if the matrix slices of κ pp̄ are, and similarly
for vσ , wh̄h, and κ h̄h

qrl .
Furthermore, the decompositions (D2) and (D3) are also

closely related to SVD’s. For instance, for a fixed k, (D2) has
the matrix form

W̃ pp̄
k = U ↑Kk (U ↓)T

= U ↑RkK̄kST
k (U ↓)T

= U ↑
k K̄k (U ↓

k )T , (D6)

where K̄k is diagonal, U ↑
k = U ↑Rk , U ↓

k = U ↓Sk and Rk and Sk

are unitary.
Therefore, if the matrix slices of the κ tensors are orthog-

onal, (D1) is related to a combination of SVD’s only by a
few rotations and thus, for that partition of the indices, that
combination of SVD is the optimal decomposition. However,
since spp̄ and shh̄ are not equal in general, λ is not diago-
nal, and the orthogonality condition for the κ tensors is not
necessarily satisfied, the decomposition (D1) is less compact
than its corresponding SVD form. The other decompositions
in Sec. VII all have the same structure and can be written

similarly as combinations of SVD’s using internal rotations.
Although, because of those rotations, they are not individually
as compact as possible, their more general form allows tensors
to be shared between decompositions, and therefore the STTN
structure to be globally compact.

APPENDIX E: COMPUTATIONAL COMPLEXITY

The computational complexity in evaluating the general-
ized CC equations of Sec. VI depends on the term∑

klmn

Vklmnckli1i2
mn j1 j2

(E1)

in Eq. (40). More specifically, assuming the decompositions
provided in Appendix C are used, the complexity depends
on the contributions in which the summed indices have the
largest entanglement with the external ones, namely, when
each index in {k, l, m, n} is connected by a κ tensor to an index
in {i1, i2, j1, j2}. Those contributions have the form

Ri1i2
j1 j2

= Vn1n2n3n4μm1m2λl1l2m1λl3l4m2κk1k2l1κk3k4l2

× κk5k6l3κk7k8l4 un1k1 un2k3 ui1k5 ui2k7vn3k6vn4k8v j1k2v j2k4 ,

(E2)

where we use Einstein’s notation for the sums. To simplify the
scaling analysis, we will assume that each ni index takes N
values, the ki indices take s1 values, the li indices, s2 values
and the mi indices, s4 values. We also assume no memory
limitation. Now, after summing over n1, we obtain

Ri1i2
j1 j2

= (Vu)k1
n2n3n4

μm1m2λl1l2m1λl3l4m2κk1k2l1κk3k4l2

× κk5k6l3κk7k8l4 un2k3 ui1k5 ui2k7vn3k6vn4k8v j1k2v j2k4 ,

(E3)

where each of the N3s1 elements of (Vu) takes O(N ) opera-
tions to compute, and thus (Vu) takes O(N4s1) operations to
compute. Then, after summing over n2, we obtain

Ri1i2
j1 j2

= (Vu2)k1k3
n3n4

μm1m2λl1l2m1λl3l4m2κk1k2l1κk3k4l2

× κk5k6l3κk7k8l4 ui1k5 ui2k7vn3k6vn4k8v j1k2v j2k4 , (E4)

where (Vu2) takes O(N3s2
1) additional operations to compute.

Similarly, the summation over n3 and n4 take respectively
O(N2s3

1) and O(Ns4
1) additional operations. We then obtain

Ri1i2
j1 j2

= F k1k3
k6k8

μm1m2λl1l2m1λl3l4m2κk1k2l1κk3k4l2

× κk5k6l3κk7k8l4 ui1k5 ui2k7v j1k2v j2k4 , (E5)

where F thus takes O(N4s1) operations to compute, since N �
s1. Then, summing over k1, we obtain

Ri1i2
j1 j2

= (Fκ )k2l1,k3
k6k8

μm1m2λl1l2m1λl3l4m2κk3k4l2

× κk5k6l3κk7k8l4 ui1k5 ui2k7v j1k2v j2k4 , (E6)

where (Fκ ) takes O(s5
1s2) additional operations to compute.

After the summation over k3, we obtain

Ri1i2
j1 j2

= (Fκ2)k2l1,k4l2
k6k8

μm1m2λl1l2m1λl3l4m2

× κk5k6l3κk7k8l4 ui1k5 ui2k7v j1k2v j2k4 , (E7)
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where (Fκ2) takes O(s5
1s2

2) additional operations to compute.
Similarly, the sums over k6 and k8 take respectively O(s5

1s3
2)

and O(s5
1s4

2) additional operations to compute. We then obtain

Ri1i2
j1 j2

= Gk2l1,k4l2
k5l3,k7l4

μm1m2λl1l2m1λl3l4m2 ui1k5 ui2k7v j1k2v j2k4 , (E8)

where G takes O(s5
1s4

2) additional operations to compute. Now,
if we the sum over k2, we obtain

Ri1i2
j1 j2

= (Gv) j1l1,k4l2
k5l3,k7l4

μm1m2λl1l2m1λl3l4m2 ui1k5 ui2k7v j2k4 , (E9)

where (Gv) takes O(Ns4
1s4

2) additional operations to compute.
Then, after summing over k4, we obtain

Ri1i2
j1 j2

= (Gv2) j1l1, j2l2
k5l3,k7l4

μm1m2λl1l2m1λl3l4m2 ui1k5 ui2k7 , (E10)

where (Gv2) takes O(N2s3
1s4

2) additional operations to com-
pute. Similarly, the sums over k5 and k7 take, respectively,
O(N3s2

1s4
2) and O(N4s1s4

2) additional operations. We thus ob-
tain

Ri1i2
j1 j2

= J j1l1, j2l2
i1l3,i2l4

μm1m2λl1l2m1λl3l4m2 , (E11)

where J takes O(N4s1s4
2) additional operations to compute.

Now, after summing over l1 and l2, we obtain

Ri1i2
j1 j2

= (Jλ) j1 j2m1

i1l3,i2l4
μm1m2λl3l4m2 , (E12)

where (Jλ) takes O(N4s4
2s4) additional operations to compute,

and after summing over l3 and l4, we obtain

Ri1i2
j1 j2

= (Jλ2) j1 j2m1
i1i2m2

μm1m2 , (E13)

where (Jλ2) takes O(N4s2
2s2

4) additional operations to com-
pute. Finally, the sums over m1 and m2 to obtain R take
O(N4s2

4) additional operations.
We therefore obtain O(s5

1s4
2) + O(N4s1s4

2) + O(N4s4
2s4) +

O(N4s2
2s2

4) = O(N4s1s4
2) + O(N4s4

2s4) + O(N4s2
2s2

4) oper-
ations in total, where the simplification comes from using
N � s1, and we cannot simplify further without knowing the
complexity of s1, s2, and s4.

[1] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum Monte Carlo
Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[2] F. Coester and H. Kümmel, Short-range correlations in nuclear
wave functions, Nucl. Phys. 17, 477 (1960).
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