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Variational Bethe ansatz approach for dipolar one-dimensional bosons
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We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting
bosons on the continuum based on the Bethe ansatz ground state wave function of the Lieb-Liniger model. We
apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain
its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as
a function of density and the determination of the structure factor at small momenta. Moreover, in the case of
attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide
atoms.
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I. INTRODUCTION

One-dimensional interacting bosons [1] are a very active
topic in current research on the many-body problem, owing to
availability of experimental systems and powerful theoretical
techniques. One-dimensional bosons with repulsive interac-
tions are expected to have the Tomonaga-Luttinger liquid
state [2,3] as the ground state and display simultaneously
critical superfluid and density wave fluctuations with interac-
tion dependent exponents. In contrast to the case of fermions
[3], these exponents cannot be obtained from perturbation
theory in the vicinity of the noninteracting point. Instead, it is
necessary to know the dependence of the ground state energy
per unit length as a function of particle density [2]. In the case
of integrable models [4,5] such dependence can be obtained
analytically, but in the general case, one resorts to numerical
methods such as quantum Monte Carlo [6,7] or density matrix
renormalization group [8]. Variational methods have also
been proposed [9–13], using as variational wave function the
ground state wave function of the Calogero-Sutherland model
[14–18]. With such variational wave functions, the Tomonaga-
Luttinger exponent is the variational parameter. This form of
variational wave function can be interpreted [19] in terms of
a Jastrow [20] factor. Because of the difficulty of computing
correlation functions, the use of Bethe ansatz wave functions
as variational wave functions has been mainly restricted to
few body systems [21,22] in harmonic traps, although a Bethe
ansatz density functional theory has been proposed in the case
of spin-1/2 fermions in harmonic potential [23,24]. However
[25,26], using determinant representations of correlation func-
tions has allowed calculation of the structure factor of Bethe
ansatz integrable models. Such developments enable the use
of Bethe ansatz wave functions in a variational approach
[27]. Moreover, in the case of the integrable Lieb-Liniger [4]
gas, an approximation to the exact structure factor [26] is

known that further simplifies the variational calculation in the
thermodynamic limit.

Here we introduce a variational approach using the Bethe-
ansatz wave functions of the Lieb-Liniger model as variational
wave functions to determine the Tomonaga-Luttinger expo-
nents of a one-dimensional interacting model of bosons with
a sufficiently short-range interaction. In particular, we apply
it to a dipolar gas, using the separation of the dipole-dipole
interaction (DDI) in an effective contact potential and a soft
long-range part.

This study is particular timely as, recently, highly magnetic
lanthanide atoms such as dysprosium and erbium have given
access to strong magnetic dipole-dipole interactions (DDI) in
ultracold atomic physics [28–31]. The interplay of the short-
ranged van der Waals s-wave interaction and the long-range
and anisotropy nature of DDI in the atomic gas has enabled the
exploration of a wide variety of phenomena. The most recent
ones are novel quantum liquids [32–34], strongly correlated
lattice states [35–37], exotic spin dynamics [38] and the
emergence of thermalization in a nearly integrable quantum
gas [39]. An even more exciting physics can be accessed when
dimensionality is reduced. In fact in optical lattices, one would
be able to create dipolar Tomonaga-Luttinger liquids [7,40]
as well as novel quantum phases [41], including analogs of
fractional quantum Hall states [42]. On the application side,
setting the DDI strength to zero improves the sensitivity of
atom interferometry [43], atomtronic devices based on dipolar
interactions have been proposed [44], and tuning the interac-
tion strength from positive to negative may find application in
the simulation of nuclear matter.

Special attention has been devoted to the strictly one-
dimensional case with repulsive interactions, in which both
the determination of the equation of state [45] and of the
structure factor [46] has suggested the existence of a crossover
from a liquidlike, superfluid state with the characteristics
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of a Tonks-Girardeau gas [47] to a quasiordered (particles
localized at lattice sites), normal-fluid state with increasing
the linear density. However, in trapped atom experiments,
the finite transverse width of the trap allows an averaging of
repulsive and attractive dipolar interactions [40,48] that pre-
cludes the formation of the quasiordered state. In the present
paper, we wish to understand the crossover from the low
density Tonks-Girardeau-like regime to the quasi-BEC regime
at high density by studying the evolution of the Tomonaga-
Luttinger exponent with an approach applicable to interacting
one-dimensional boson models in the continuum. Understand-
ing the interplay between short-range van der Waals and
longer ranged interactions remains an experimental challenge
that may lead to new physics.

The paper is organized as follows. Section II describes
the variational approach for a general setting. Section III
introduces a model of dipolar bosons in a transverse harmonic
trap [40,48] and discusses the application of the variational
approach and the computation of the Tomonaga-Luttinger
parameters. In Sec. IV we offer some conclusions and
perspectives.

II. THE VARIATIONAL APPROACH

We consider the full Hamiltonian of a one-dimensional
interacting bosonic system

H1D = K + V, (1)

where

K = − h̄2

2m

N∑
i=1

∂2

∂x2
j

, V =
∑

1�i< j�N

v(xi − x j )

with v(x) a sufficiently short ranged interaction, with Fourier
transform v̂(k) = ∫

dxv(x)e−ikx, defined for all k.
We then introduce the variational Hamiltonian:

Hvar = K + gU , (2)

where

U =
∑

1�i< j�N

δ(xi − x j )

which is a Lieb-Liniger Hamiltonian that is Bethe-ansatz
integrable [4,49]. Let |ψ0(g)〉 the ground state wave function
of the Lieb-Liniger Hamiltonian (2), such that Hvar|ψ0(g)〉 =
E0(g)|ψ0(g)〉.

We re-write the original Hamiltonian (1) in terms of the
variational one as

H1D = Hvar + V − gU (3)

and use |ψ0(g)〉 as a variational wave function, so that Evar =
〈ψ0(g)|H1D|ψ0(g)〉 is the variational energy [27] to be mini-
mized as a function of g

Evar (g) = E0(g) + 〈ψ0(g)|V − gU |ψ0(g)〉.
The Hellmann-Feynman theorem, ∂E0(g)

∂g = 〈ψ0(g)|U |ψ0(g)〉,
yields

Evar (g) = E0(g) − g
∂E0(g)

∂g
+ 〈ψ0(g)|V|ψ0(g)〉. (4)

We then express 〈ψ0(g)|V|ψ0(g)〉 in terms of the static struc-
ture factor S(k) (see Appendix A for derivation and defini-
tions) in the ground state |ψ0(g)〉 and obtain the trial energy
per unit length evar (g) = Evar (g)/L:

evar (g) = e0(g) − g
∂e0(g)

∂g
+ n

2
[nv̂(k = 0)

+
∫ ∞

−∞

dk

2π
v̂(k)S(k) − v(x = 0)], (5)

where n = N/L is the number of bosons per unit length and
e0(g) = E0(g)/L is the Lieb-Liniger energy per unit length.

The calculation of the variational energy requires knowl-
edge of e0(g) and the static structure factor S(k) of the Lieb-
Liniger model. The ground-state energy can be obtained from
the Bethe ansatz solution [4] by solving an integral equation
(see Appendix B). It takes the form

e0(g) = h̄2n3

2m
εLL(γ ), (6)

with the dimensionless parameter

γ = mg

h̄2n
. (7)

Moreover, an analytical conjecture for the exact result for εLL

is known [50–52] (see Appendix B) and can be readily used
to estimate the derivative in Eq. (5). The static structure factor
S(k) has been obtained from the form factor expansion [26]
or using Monte Carlo approaches [53] for selected interaction
strengths. Later, an analytic expression of S(k), interpolating
between weak and strong repulsion and in broad agreement
with the result of Ref. [26], was proposed [54]. Using that
approximation greatly simplifies the evaluation of the trial
energy in Eq. (5). Once the optimal g that minimizes the trial
energy has been found, Eq. (5) yields an approximation for
the ground state energy per unit length eGS of the original
Hamiltonian.

A one-dimensional interacting system of spinless bosons
with repulsive interactions is expected to form a Tomonaga-
Luttinger liquid in its ground state [1]. The low-energy exci-
tations of such Tomonaga-Luttinger liquid are described by a
bosonized Hamiltonian

Hb = h̄
∫

dx

2π

[
uK (π�)2 + u

K
(∂xφ)2

]
, (8)

where u is the velocity of excitations and K the Tomonaga-
Luttinger exponent [2]. The latter exponent determines the
long distance decay of the single particle Green’s function and
of the density-density correlations [2] as well as the stability
against the formation of a gapped state when an infinitesimal
periodic potential commensurate with the density is applied
along the tubes [55–57]. The effect of renormalization of the
Tomonaga-Luttinger exponent by a finite periodic potential on
the phase diagram has been studied in Ref. [57]. As a result of
Galilean invariance [2] of (1),

uK = h̄πn

m
, (9)

while [2]

u

K
= 1

π h̄

∂2eGS

∂n2
, (10)
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where eGS (n) is the ground state energy per unit length. The
existence of the Tomonaga-Luttinger liquid requires ∂2eGS

∂n2 >

0. The vanishing of ∂2eGS
∂n2 signals a collapse instability [58,59]

towards a state of high (possibly infinite) density. In the next
section, we will illustrate the application of this variational
method to a gas of one-dimensional dipolar bosons with
repulsive contact interaction.

III. THE QUASI-ONE-DIMENSIONAL DIPOLAR MODEL

The effective Hamiltonian in the single-mode approxima-
tion (SMA) [40,48], for polarized bosonic dipoles trapped in
quasi-one-dimensional geometry reads:

HQ1D = − h̄2

2m

∑
i

∂2

∂x2
i

+
∑
i< j

VQ1D(xi − x j )

+ gV dW

∑
i< j

δ(xi − x j ) (11)

where, compared to Hamiltonian (1) we have two contribu-
tions to the two-body potential energy: VQ1D(x) is the effective
1D dipole-dipole interaction obtained after projection of the
transverse degrees of freedom [40,48] and gV dW δ(x), which
originates from the Van der Waals interaction and other short
range interatomic interactions. These latter interactions are
represented in three dimensions by the Huang-Yang pseu-
dopotential [60,61]. After projection of the transverse degrees
of freedom, the pseudopotential yields the one-dimensional
contact interaction with [61] gV dW = 2h̄2a3D

ml2
⊥

(1 − C a3D√
2l⊥

)−1

where a3D is the s-wave scattering length of the three-
dimensional short range potential, l⊥ = √

h̄/(mω⊥) is the
transverse trapping length, and C = 1.4603 . . . is a numerical
constant. Away from the confinement induced resonance,
a3D � l⊥, the single mode approximation is applicable, and
one can approximate

gV dW = 2h̄2a3D

ml2
⊥

. (12)

If one wished to include confinement induced resonances, it
would be necessary to include the van der Waals and the
dipolar interaction in a single Huang-Yang pseudopotential
[62]. Such treatment is beyond the scope of our paper.

In the Hamiltonian Eq. (11), the effective 1D dipole-dipole
interaction is [40,48]

VQ1D(x) = V (θ )

[
V 1D

DDI

(
x

l⊥

)
− 8

3
δ

(
x

l⊥

)]
, (13)

V (θ ) = μ0μ
2
D

4π

1 − 3 cos2 θ

4l3
⊥

, (14)

V 1D
DDI

(
x

l⊥

)
= −2

∣∣∣∣ x

l⊥

∣∣∣∣ +
√

2π

[
1 +

(
x

l⊥

)2
]

× e
1
2 ( x

l⊥ )2

erfc

[∣∣∣∣ x√
2l⊥

∣∣∣∣
]
, (15)

where μ0 is the magnetic permeability of the vacuum, μD is
the magnetic dipolar moment of the atom (μD = 9.93 μB in
the case [39] of 162Dy), and θ is the angle of the dipoles with

respect to the x axis. The Fourier transform of the soft-dipolar
interaction V 1D

DDI(r/l⊥) reads [40]:

V̂DDI(k) = 4l⊥

[
1 − (kl⊥)2

2
e

(kl⊥ )2

2 E1

(
(kl⊥)2

2

)]
, (16)

where E1(x) = �(0, x) is the exponential integral function
[63].

We can divide the Hamiltonian, Eq. (11), into a Lieb-
Liniger part that contains all the contact interactions and the
rest, a nonintegrable soft-dipolar part. The Lieb-Liniger part
of the Hamiltonian then reads:

HLL
Q1D = − h̄2

2m

∑
i

∂2

∂x2
i

+ gQ1D(θ )
∑
i< j

δ(xi − x j )

where gQ1D(θ ) = [gV dW − V (θ ) 8
3 l⊥]. The dimensionless pa-

rameter γ0 associated to gQ1D(θ ) is given by:

γ0 = 1

n

m

h̄2 gQ1D(θ ) = 2

naQ1D
= γvdW + γd

= 2

n

[
− 1

a1D
− 4

ad

l2
⊥

1 − 3 cos2 θ

3

]
(17)

where we have introduced the dipole length scale ad for the
one-dimensional dipolar interaction, as defined in Ref. [64],

which for the 162Dy atoms is ad = μ0μ
2
Dm

8π h̄2 � 195a0 where
a0 is the Bohr radius. In the following, we will treat a1D

as a phenomenological parameter measuring the strength of
the short range interaction. This value can be converted into
a three-dimensional interaction using the approximation of
Eq. (12).

The original Hamiltonian, Eq. (11), can therefore be writ-
ten as the sum of the Lieb-Liniger part and the rest:

H = HLL
Q1D(γ0) + V (θ )

∑
i< j

V 1D
DDI

(
xi − x j

l⊥

)
. (18)

We can now use a variational Hamiltonian of the form Eq. (2),
in which the contact interaction contains already the short
range part of (11), and minimize the trial ground state en-
ergy (5). The variational contact interaction is written g =
gQ1D(θ ) + ḡ, with ḡ to be determined by minimization.

Following Sec. II, we can extract the optimal correction
to g0 = gQ1D(θ ) by minimizing the trial energy per parti-
cle written in terms of dimensionless ratios ad/l⊥, nl⊥ and
the adimensional parameter γ = 1

n
m
h̄2 [gQ1D(θ ) + ḡ] = γ0 + γ̄

with respect to γ̄

2mE

Nh̄2n2
= ε(γ ) − γ̄

∂ε(γ )

∂γ
+ 2

ad

l⊥

1 − 3 cos2 θ

nl⊥

×
{

1 +
∫ ∞

0
dq[S(πqn; γ ) − 1]

×
[

1 − π2q2n2l2
⊥

2
e

π2q2n2 l2⊥
2 �

(
0,

π2q2n2l2
⊥

2

)]}
,

(19)
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γ

Θ=0 
Θ=π/2

a1D=100 a0

a1D=5000 a0

FIG. 1. γ as a function of n for two values of the scattering length
for contact interaction a1D. Solid lines represent γ0 from Eq. (17)
at angles θ = 0 (red) and θ = π

2 (black). The dashed (black) line
represents γvdW . The diamonds represent the optimal γ obtained by
minimizing Eq. (19), for angle θ = 0 (red) and θ = π

2 (black). At
large density, γ admits γ0 as asymptote.

where q is dimensionless. Using for instance the golden search
algorithm [65] or simply scanning the energy as a function of
γ̄ it is possible to find the minimum of Eq. (19). The optimal
γ , obtained through the minimization procedure, depends on
three independent dimensionless parameters, such as na1D,
a1D/l⊥, and ad (1 − 3 cos2 θ )/l⊥. At the critical angle

θc = arccos

(
1√
3

)
(20)

the optimal γ coincides by construction with γ0 and depends
only on na1D. At large densities (see Appendix D) the con-
tribution of the dipolar interactions in Eq. (19) is depressed
by the 1/(nl⊥) factor together with the decay of V̂ (qπnl⊥) ∼
2/(qπnl⊥)2, so that upon minimization γ → γ0 asymptoti-
cally, as if the dipolar interaction was reduced to its contact
contribution. If we consider Eq. (17) the contribution of the
contact term γd due to dipolar interactions is independent of
density n, positive when θ < θc and negative for θ > θc, up to
a point where γ0 can change its sign and become negative.
In such a case, the Tomonaga-Luttinger liquid state should
be unstable at high density. By contrast, for low densities,
the noncontact contribution of the dipolar interactions to the
variational energy is enhanced, and overwhelms the contact
term. The optimal γ is enhanced when θ > θc and lowered
when θ < θc (see Appendix C).

In Fig. 1 we show the dependence of γ (solid dots) on
the density n for two selected cases, a1D = 100a0 and a1D =
5000a0, and two angles, θ = 0 and θ = π/2. For comparison
the value of γ0 (solid lines) from Eq. (17) are shown, as well
as γvdW = 2/(na1D) (dashed lines). When not stated explicitly
all results refer to estimates where we have taken ad = 195a0

and l⊥ = 57.3 nm [39].

θ

0

2

4

6

8
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 16

 18

 20

0  0.5 1  1.5

 n=0.8 μm-1 Avar=3.34 

 n=3.1 μm-1 Avar=2.89 

FIG. 2. γ as a function of θ for n = 0.8 μm−1 red curves, and for
n = 3.1 μm−1, blue curves. Solid curves represent γ0 while open dots
are the results of the minimization procedure. The dashed magenta
lines are the estimates for γ if we use Eq. (21) with A = 3.6 for
both densities [39], while the dark-green lines fits of the variational
estimates to an expression of the form (21) with n dependent values
of A indicated in the inset.

In Ref. [39], the dipolar interaction is approximated by
replacing the full interaction (15) by gtotal

1D δ(x) where:

gtotal
1D = gV dW + V (θ )l⊥

(
A − 8

3

)
δ(x)

A =
∫ √

2π

−√
2π

duV 1D
DDI(u),

the integration bounds being chosen so that A = 3.6 is 90% of
the exact integral V̂DDI(k = 0)/l⊥. Analogously to our varia-
tional approach the dipolar interaction is replaced by a simpler
contact interaction. However, the criteria used to define the
contact interaction are markedly different. In Ref. [39], the
potential is replaced by a δ-function potential having almost
the same Fourier transform at k = 0. Such approximation is
expected to be valid when the interparticle distance is large
compared with l⊥, i.e., when nl⊥ � 1. In our variational ap-
proach, no assumption is made on the two-particle scattering
problem nor interparticle distance, since the effective contact
interaction is determined by the minimization of the energy
per particle. At low density, nl⊥ � 1, it should be possible
to make contact with the approximation of Ref. [39] and we
should have

ḡ → AvarV (θ )l⊥, (21)

where Avar is a dimensionless constant. The values of Avar

we find (see Fig. 2) are in reasonable agreement with the
approximations used in Ref. [39]. However, the coefficient
Avar in Eq. (21) that gives the best fit to the variational value of
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 1  2  3  4  5  6  7  8  9  10

A

n (µm-1)

3.589exp(-0.07374 n)

FIG. 3. Behavior of A obtained by fitting the variational γ to an
expression of the form (21) for a given density n. The amplitude A
is seen to decrease approximately exponentially with n, reaching a
value of order 3.6 at low density.

γ decreases slightly with n. In Fig. 3, we show the dependence
of Ã obtained by fitting the θ dependence of the optimal γ with
an expression of the form (21). We find that the dependence
can be described by an exponential and that at low density the
result of Ref. [39] holds.

The minimum of the trial energy per particle, Eq. (19), in
units of h̄2n2

2m is εvar (n), and can be expressed as

εvar (n) = εLL[γ0(n)] + ε(n) (22)

where εLL(γ0(n)) is the dimensionless Lieb-Liniger ground-
state energy defined in Eq. (6) at dimensionless parameter
γ0(n) [see Eq. (17)] while the contribution of the noninte-
grable soft-dipolar interaction is encapsulated in the ε(n)
correction.

As discussed before, at large density the γ → γ0 and
εvar (n) → εLL(γ0(n)). At small density, whenever the optimal
γ is so large that we can approximate the static structure
factor as the one of the noninteracting fermionic gas, the
correction due the soft dipolar interaction ε(n) ∝ n log(n)
(see Appendix D for a detailed discussion). This behavior can
be seen in Fig. 4 where the ε(n) corrections are shown as a
function of density for a1D = 100a0. At large density as well
as for small density these corrections go to zero, in the inset
we show ε(n)(n log(n)) that for extremely low density goes
towards a constant value.

A. θ > θc: Repulsive soft dipolar interaction

As already observed, the overall effect of the repulsive
soft dipolar interaction is to make the optimum γ (n) > γ0.
In the large density limit, nl⊥ � 1, γ → γ0 and according to
Eq. (17), we can find γ0 < 0 if

ad >
3l2

⊥
4|a1D|(1 − 3 cos2 θ )

. (23)

If that condition is satisfied, the dipolar gas is unstable at
high density. Otherwise, the gas is stable for all densities. In
Fig. 5 we show εvar (n), εLL[γ0(n)] together with εLL[γ (n)],
for various scattering length a1D as a function of the density.
At very low density the Tonks-Girardeau limit ε(n) = π2/3
is recovered, while in the very high density limit the weakly

-1

-0.5

0

 0.5

1

 1.5

2

 0.01  0.1 1  10  100

Δε
(n

) 

n (μm-1) 

a1D=100 a0

-0.5

0

 0.5

 0.01  0.1

Δε
/[n

 lo
g(

n)
]

n(μm-1)

FIG. 4. Plot of ε(n) from Eq. 22 as a function of atom
density for a1D = 100a0 for θ = 0 (red solid dots) and θ =
π/2 (black solid dots). The red and black solid lines are fit-
ting curves of the form: f (n) = (an log n + bn5/4 + cn2)/(1 +
dn + e2+g). When θ = 0 we get a = 0.394(3), b = −0.551(6), c =
−0.009(2), d = 0.13(1), e = 0.00039(8), g = 1.14(1); when θ =
π/2 we get a = −0.1853(2), b = 0.287(1), c = −0.00136(4), d =
0.168(5), e = −0.0005(1), g = 0.73(3). In the inset we show the
low density behavior of ε(n)/(n log n) with the same color code.

interacting regime is recovered. The quantities εLL[γ0(n)] and
εLL[γ (n)], solid and dashed lines in Fig. 5, respectively, can be
seen as successive approximations to the variational energies
(solid dots). In Fig. 5 we have also shown the case (a1D/a0 =
10 000, black data) where, for the parameters chosen to make
the calculation, γ0(n) < 0 so the condition (23) is met. In

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 0.1 1  10  100

ε(
n)

 

n (μm-1) 

FIG. 5. Plot of energy per particle ε(n) as a function of atom
density, at θ = π/2 corresponding to the largest repulsive soft dipo-
lar interaction, for two scattering length a1D/a0 = 1000 and 10 000;
red and black solid dots, respectively. With the same color code
the εLL[γ0(n)] (solid line) and εLL[γ (n)] (dashed line) are shown.
εLL[γ0(n)] for a1D/a0 = 10 000 is not shown since for the parameter
we have chosen γ0(n) < 0. The dashed blue line represents the low
density limit π 2/3.
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FIG. 6. Plot of energy per unit length as a function of atom den-
sity for selected scattering lengths. Starting from the top a1D/a0 =
5000, 6000, 7000, 8000, 9000, and 10 000 for fixed angle θ = 0.

the minimization procedure, for the densities considered, we
always get a positive optimal γ .

B. θ < θc: Attractive soft dipolar interaction

When V (θ ) is negative, γ0 is enhanced by the contact
contribution and the effect of the soft dipolar interaction
is to lessen this repulsion. For small scattering lengths, the
situation is similar to the one described for the repulsive case
but with a negative correction with respect to εLL[γ0(n)] in
Eq. (22).

However for large scattering lengths at small angles, when
the effect of the soft dipolar interaction is larger the system
can become unstable. In Fig. 6 we show the variational ground
state energy per unit length evar (n) for different increasing
scattering lengths. When a1D/a0 > 8000 the energy per unit
length is convex at low density but presents a concavity at
higher density. In such a case, the compressibility becomes
negative, indicating an instability towards collapse at n = nc

where the second derivative of energy per unit length as a
function of density is vanishing.

C. Tomonaga-Luttinger parameters

Having obtained the ground state energy per unit length,
with Eqs. (9) and (10) we can calculate the Tomonaga-
Luttinger exponent K as well as the velocity of excitations
u that enter the bosonized Hamiltonian Eq. (8). At very low
density the Tomonaga-Luttinger exponent has a logarithmic
correction that qualitatively can be understood as follows
(see also Appendix D). In the limit of low density, one can
approximate

eGS � π2n3

6m
+ n2

2
v̂(k = 0) +

∫ 2πn

0

dk

2π
v̂(k)

(
k

2π
− n

)
,

(24)

 0.7

 0.8

 0.9

1

 1.1

0  0.5 1  1.5 2  2.5 3

K

n (μm-1)

a1D/a0=100

Θ=π/2

l⊥=100 nm 

l⊥=57.3 nm

l⊥=30 nm 

FIG. 7. Plot of the Tomonaga-Luttinger exponent K deduced
from the variational ground state energy in case of maximally re-
pulsive dipolar interaction at a1D/a0 = 100 for three different values
of confinement: l⊥ = 100, 57.3, and 30 nm (blue, red, and green
data, respectively). Open dots are K obtained from evar (n) by nu-
merical differentiation, solid curves are K obtained by differentiating
the fitted expression e(n) = n3(π 2/3 + an log n + bnc ). The dashed
curves are the Tomonaga-Luttinger exponents of the Lieb-Liniger
gas computed at the optimal γ .

where we have used Eq. (B14), giving

K � 1√
1 + m

π2n [v̂(0) − v̂(2πn)]
. (25)

In the case of dipolar forces [48], v(x) behaves for long
distance distance as ∼|x|−3, so v̂(0) − v̂(2πn) ∼ n2| ln n| +
O(n2), leading to K − 1 ∼ n| ln n|. This low density behavior
can be traced in K when γ minimizing the variational energy
is sufficiently large to satisfy the above conditions. See for
example Fig. 7, where K (n) obtained by fitting the low density
behavior of the evar (n), including a logarithmic correction
(solid line) with an expression e(n) = n(π2/3 + an log n +
bnc), is in agreement with the values obtained by numerical
differentiation (open dots).

When the dipolar interaction is repulsive, the Tomonaga-
Luttinger exponent is lower than the exponent of a Lieb-
Liniger gas having either γ = γ0 or γ minimizing the vari-
ational energy (19). This shows that the contribution from
nonintegrable soft dipolar interaction in (18) is not negligible
and that it is not correctly approximated by replacing the non-
contact interaction in (18) by an effective contact interaction
only.

Moreover, such approximations always lead to a
Tomonaga-Luttinger exponent larger than unity [54],
and as we will see below, the dipolar gas can have a
Tomonaga-Luttinger exponent less than unity. Reducing l⊥
with fixed r, VDDI(r/l⊥) → (l⊥/r)3 while V (θ ) increases
as l−3

⊥ . As the contribution to the ground-state energy is
enhanced, the Tomonaga-Luttinger exponent is progressively
reduced and for small density it can be less than unity
like in the strictly one-dimensional dipolar gas dipolar gas
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FIG. 8. Plot of the Tomonaga-Luttinger exponent K derived from
variational ground state energy in case of attractive dipolar inter-
action: θ < θc. Red solid dots represent K obtained from evar (n)
by numerical differentiation, solid red curve K obtained using a
six degrees polynomial fit for the variational ground state energy
and analytic differentiation. Blue and magenta solid curves are the
Tomonaga-Luttinger exponents of a Lieb-Liniger gas computed,
respectively, at the optimal γ and at γ0. In panel (a) the results
are for a1D = 10 000a0 and θ = π/8 while in both panels (b) and
(c) θ = 0 with a1D = 5000a0 and a1D = 100a0, respectively. The
blue dashed curve in panel (c) is a fit of the exponent obtained
by numerical differentiation of evar (n) to an expression including
logarithmic correction.

[7,46,66,67]. In Fig. 7 we show K (n) for a fixed a1D/a0 = 100
at θ = π/2, varying the confinement: namely l⊥ = 100, 57.3,
and 30 nm. This is a clear indication that approximating the
Tomonaga-Luttinger exponent of the dipolar gas with the
exponent of a Lieb-Liniger gas can lead to results incorrect
not just quantitatively but also qualitatively. Indeed, finding a
Tomonaga-Luttinger exponent 1/2 < K < 1 yields [3] S(k �
2πn) � S(2πn) + C|k − 2πn|2K−1 + o(|k − 2πn|2K−1),
giving a cusp in S(k) near k = 2πn, whereas such a cusp
is absent with K > 1. However, the dynamical superfluid
susceptibility remains divergent as long as K > 1/4.

In the attractive case, the Tomonaga-Luttinger exponent,
which is related to the compressibility by Eq. (10), diverges
when the homogeneous ground state becomes unstable. In
Fig. 8 in panel (a), for a1D = 10 000a0 we show the case in
which the system undergoes an instability with K diverging at
nc ∼ 1.2 μm−1. Panels (b) and (c), for a1D/a0 = 5000 and
100, respectively, show instead the enhancement of K due
the attractive interaction with respect to the approximations
using the Tomonaga-Luttinger exponent of the Lieb-Liniger
gas at the optimal γ or at γ0. Moreover, when a1D/a0 = 100,
the optimal γ corresponds to the Tonks-Girardeau limit (very
low density), and the logarithmic correction to the exponent is
visible [see panel (c) where the blue dashed line is obtained by
fitting the variational energy taking into account n log(n) term,
while a six degrees polynomial fit for the variational ground
state energy gives results that do not match with the values
of K (n) obtained with numerical differentiation). In Fig. 9 we
follow the behavior of the Tomonaga-Luttinger exponent, at
fixed density n = 1.5 μm−1 and fixed a1D = 10 000a0, as a

0

4

6

8

0  0.5 1  1.5

Θ

γ 0
 <

 0

0

 2

4

6

8

0  0.5 1  1.5

K

Θ

γ 0
 <

 0

γ > 0

FIG. 9. Plot of the Tomonaga-Luttinger exponent K deduced
from the variational ground state energy as a function of θ at fixed
density n = 1.5 μm−1, and scattering length a1D/a0 = 10 000. A
region of instability is found for θc < π/8. The solid red points
represent K obtained from evar (n) by numerical differentiation, the
solid red curve represents the Tomonaga-Luttinger exponents of the
Lieb-Liniger gas computed at the optimal γ . The black dashed curve
is K in the Lieb-Liniger gas at γ0.

function of the angle θ . This a case where the original γ0 is
negative for large angles, while the optimal γ is positive in
the whole range of θ . However corrections beyond eLL(γvar )
predict an instability for θ < π/8, as shown by the diverging
K (n) corresponding to a change of sign in ∂2

n evar (n); qualita-
tively, the Tomonaga-Luttinger exponent of a Lieb-Liniger gas
with the optimal γ is a decreasing function of θ not showing
any hint of instability. Moreover, the exponent that would be
obtained by neglecting the non Lieb-Liniger part of Eq. (18)
is an increasing function of θ and shows the instability for
θ > π

3 .

IV. CONCLUSION

We have presented a variational approach to the ground
state energy of bosons in the continuum interacting by a two-
body potential, based on analytic expressions for the ground
state energy [50] and structure factor [54] of the Lieb-Liniger
model. Using this variational approach we have calculated
the ground-state energy bosonic atoms in transverse harmonic
trapping with dipolar interaction [39] treated within the single
mode approximation as a function of density for several scat-
tering lengths, confinement lengths, and spanning the angle
of dipoles. From the ground-state energy we have estimated
the Tomonaga-Luttinger exponent as a function of density
and interaction: When dipolar interactions are attractive and
density is sufficiently high an instability of the Tomonaga-
Luttinger liquid is predicted. Knowledge of the dependence of
the variational ground state energy on the density will permit
us to consider the effect of longitudinal harmonic trapping,
in particular to compute the frequencies of the breathing
modes [68–71]. This will be the object of a future work. The
variational method can be applied to other systems of interest
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such as atoms interacting via shoulder potentials [72] or power
law interactions [73]. The variational approach of the present
paper could be extended in different directions. Since an exact
form factor representation for the structure factor [26] of
the Lieb-Liniger model is available, the Tomonaga-Luttinger
exponent and critical density could be calculated more ac-
curately, albeit with greater computational cost with respect
to the semianalytical approach presented here. Second, the
variational principle used here can be generalized to positive
temperature [74] and the free energy of integrable models
can be obtained from the thermodynamic Bethe ansatz [75].
Using form factor expansion techniques, the static structure
factor of the Lieb-Liniger gas has been calculated for positive
temperatures [76], thus the present variational approach could
also be generalized to free energy calculations for positive
temperatures.
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APPENDIX A: CONTRIBUTIONS TO THE
VARIATIONAL ENERGY

Writing explicitly the average by introducing ρ(x) =∑N
i=1 δ(x − xi ) and n = N/L, being N the number of particles

and L the system length, one has

〈ψ0(g)|V|ψ0(g)〉 = Ln2

2

∫
dxv(x)g(x) (A1)

where g(x) is the pair correlation function n2g(x) =
〈ψ0(g)|ρ(x)ρ(0)|ψ0(g)〉 − N

L δ(x). In the integral (A1), one
can introduce the static structure factor S(k) with

g(x) = 1 +
∫ ∞

−∞

dk

2πn
eikx[S(k) − 1], (A2)

where the relation is derived by the definition of the static
structure factor:

S(q) = 1

n

∫ +∞

−∞
dxe−iqx[〈ρ(x)ρ(0)〉 − n2], (A3)

so that the following relation between the static structure
factor and the pair correlation function holds:

S(q) = 1 + n
∫ +∞

−∞
[g(x) − 1]e−iqxdx (A4)

and hence:

〈ψ0(g)|V|ψ0(g)〉
L

= n

2

∫ +∞

0

dq

π
v̂(k)[S(q) − 1] + n2

2
v̂(q = 0),

(A5)

where we have used the parity S(q) = S(−q) and v̂(q) =
v̂(−q).

The other contribution to the variational energy is evalu-
ated using the Hellmann-Feynman theorem. One can show

that in the Lieb-Liniger model,

〈ψ0(g)|U |ψ0(g)〉
L

= n2

2
ε′(γ ), (A6)

where

ε′(γ ) = g(0). (A7)

APPENDIX B: GROUND STATE ENERGY AND STATIC
STRUCTURE FACTOR OF THE LIEB-LINIGER GAS

We can express the ground state energy e0(g) as a func-
tion of the dimensionless parameter γ = mg

h̄2n
so that e0(g) =

h̄2n3

2m εLL(γ ). The function ε is given by the solution of integral
equations [4]

2πρ(μ) = 1 + 2c
∫ q0

−q0

dμ′ ρ(μ′)
c2 + (μ − μ′)2

, (B1)

n =
∫ q0

−q0

dμρ(μ), (B2)

n3εLL(γ ) =
∫ q0

−q0

dμμ2ρ(μ), (B3)

where c = mg
h̄2 = nγ .

In our paper, instead of solving the integral equations (B1)
and (B2) we will use the approximate analytical expression
for the dimensionless energy εLL(γ ) suggested in Ref. [50].
At small γ where the Lieb-Liniger energy εLL is approximated
by [50]

εLL(γ ) = γ − 4

3π
γ 3/2 +

[
1

6
− 1

π2

]
− 0.002005γ 5/2

+ 0.000419γ 3 − 0.000284γ 7/2 + 0.000031γ 4,

(B4)

while from strong to intermediate coupling regime [50]

εLL(γ )

εT G
= γ 2

(2 + γ )2
+

∞∑
n=1

π2nγ 2

(2 + γ )3n+2
Ln

L1 = 32

15

L2 = −96

35
γ + 848

315

L3 = 512

105
γ 2 − 4352

525
γ + 13 184

4725

L4 = −1024

99
γ 3 + · · · (B5)

with εT G = π2/3. The expression (B4) was obtained [50] by
fitting the ground state energy to a polynomial expression in√

γ for γ < 15. An exact expansion has been conjectured
[51,52]. We have checked that in the range 0 < γ < 8 the
relative difference between the two expressions was under
2 × 10−3, while the relative difference between the derivatives
was under 10−2. Using the expansion [51,52] instead of
Eq. (B4) in the variational calculation of the ground state
energy yields relative differences under 5 × 10−3. Concerning
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the expression (B5), we note that an alternative asymptotic
expansion [77,78] in powers of 1/γ also applies for γ � 1.
However, the expression (B5) is more convenient [50] to
match with (B4) in the intermediate region of γ ∼ 1.

Using the phenomenological suggestion given in Ref. [54]
for structure factor S(k, ω) it is possible to have an approx-
imate estimate of the static structure factor S(k) in terms of
ratio between Gauss hypergeometric functions [63]

S(k) = k2

2mω−(k)

2F1
(
1 +

√
K

1+√
K

+ μ−(k) + μ+(k), 1 + μ−(k); 2 + μ−(k) − μ+(k), 1 − (
ω−(k)
ω+(k)

)2)
2F1

(
1 + 2

√
K

1+√
K

+ μ−(k) + μ+(k), 1 + μ−(k); 2 + μ−(k) − μ+(k), 1 − (
ω−(k)
ω+(k)

)2) (B6)

where K = 4π2ρ(±q0) is the Tomonaga-Luttinger exponent,
ω+(k) is the dispersion of the Type-I Lieb excitations [49],
ω−(k) the dispersion of the Type-II Lieb excitations [49]
for k < 2πn and ω+(k − 2πn) otherwise, and μ±(k) are the
exponents of the threshold singularity, respectively, at ω±(k)
and can be calculated from the shift function [54,79,80]. The
expression (B6) reduces to Eq. (22) in Ref. [54] when the
approximation K � 1 is made (Fig. 10).

To calculate S(k) we have to consider [54] the integral
equation for the shift function:

FB(ν|λ) − 1

2π

∫ q0

−q0

2c

(ν − μ)2 + c2
FB(μ|λ)

= 1

2
+ 1

π
arctan

(
ν − λ

c

)
, (B7)

and

ωp,h(λ) = ± h̄2

2m

[
λ2 − 2

∫ q0

−q0

μFB(μ|λ)dμ

]
(B8)

kp,h(λ) = ±
[
λ + 2

∫ q0

−q0

arctan

(
λ − μ

c

)
ρ(μ)dμ

]
(B9)

Then, the dispersion of Lieb modes is given by:

ω+(λ) = ωh(q0) + ωp(q0 + λ)

k+(λ) = kh(q0) + kp(q0 + λ) (B10)

2πn

ωΙΙ(k)

ωΙ(k)

μ+(k)
μ−(k)

ωΙ 2πn

ω

k

(k−      )

FIG. 10. Dispersion of the Lieb-I and Lieb-II modes. The dy-
namic structure factor is nonvanishing for ωII (k) < ω < ωI (k) for
0 < k < 2πn and ωI (k − 2πn) < ω < ωI (k) for k > 2πn. μ+(k) is
the threshold singularity exponent of the dynamical structure factor
near the higher branch of excitations, while μ−(k) is the exponent
near the lower branch.

for type I, and

ω−(λ) = ωp(q0) + ωh(q0 − λ)

k−(λ) = kp(q0) + kh(q0 − λ) (B11)

with λ < q0 for type II. When λ > q0, Eq. (B11) reduces, up
to a sign, to the dispersion of the Lieb-I mode shifted of 2πn.
For a given wave vector k, one must first determine λ±(k)
that solves k±(λ±) = k and calculate ω±(λ±(k)) to obtain the
dispersion [49,54]. Once λ+ is known, the quantities

δ±(λ+(k)) = 2πFB(±q0, λ+(k)) (B12)

are found from the integral equation (B7), and the threshold
exponent of the Lieb-I mode [79,80] is

μ+(k) = 1 − 1

2

(
1√
K

+ δ+(λ+) − δ−(λ+)

2π

)2

− 1

2

(
δ+(λ+) + δ−(λ+)

2π

)2

. (B13)

Similarly, having found λ−, one obtains δ±(λ−) by replacing
λ+ with λ− in (B12). Substituting λ+ with λ− in Eq. (B13),
the threshold singularity exponent μ−(k) of the dynamical
structure factor at the lower edge is found [54,79,80]. For
k < 2πn, the lower edge is given by the Lieb-II mode, while
for k > 2πn it is given by a replica of the Lieb-I mode shifted
by 2πn.

In the limit of γ → +∞, the exact expression of S(k)
simplifies to

S(k) = |k|
2πn

θ (2πn − |k|) + θ (|k| − 2πn). (B14)

In some selected cases, S(k) from quantum Monte Carlo sim-
ulations can be used as benchmark for expression (B6); com-
parison between the static structure factor from simulations
and from the approximated ansatz,for some selected cases, are
shown in Fig. 11. The linear increase S(k) = K|k|

2πn + o(k) for
small k predicted by bosonization [7] is well reproduced by
both simulations and the ansatz (B6). The agreement between
simulations and ansatz is better for the case of γ > 1. We note
that in Ref. [54], a satisfactory comparison with the expression
obtained for form factor summation was already shown.

APPENDIX C: MINIMIZATION OF THE ENERGY

In Fig. 12 we show Eq. (19) with and without the dipolar
interaction term, for a1D = 5000a0 and n = 2.0 μm−1, for
θ = 0 when the interaction is maximally attractive and for
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FIG. 11. Comparison of the structure factor S(k) calculated from
the Cherny-Brand ansatz [54] (red solid lines) with the structure
factor obtained from QuantumMonte Carlo calculations (black solid
dots). S(k) is increasing linearly for low k with a slope that is a
decreasing function of γ . For large k, it saturates to the value 1. In
the figure, kF = πn.

θ = π/2 when the interaction is maximally repulsive. When
the dipolar interaction is repulsive it enhances the total re-
pulsion and hence the optimal value of γ its greater than γ0,
whereas when it is attractive it reduces the total repulsion so
that the optimal γ < γ0.

APPENDIX D: HIGH AND LOW DENSITY LIMITS
OF THE VARIATIONAL ENERGY

Analytic expressions of E
L can be obtained using the Lieb-

Liniger ground state energy derived in Ref. [50] and the

FIG. 12. E/N as a function of γ with (red solid line) and without
the soft dipolar interaction, ε̄ = ε(γ ) − γ̄

∂ε(γ )
∂γ

where we have added
a constant (black dashed line). The solid blue points on the curves
show the minimum of E/N . In the upper panel we show results for
θ = 0 when V 1D

DDI is maximally attractive and in the lower panel we
show results for θ = π/2 when V 1D

DDI is maximally repulsive.

expressions of the structure factor derived in Ref. [54] for
γ � 1 and for γ � 1. In the latter case, using (24), we have

E

L
= h̄2π2n3

6m
+ h̄2n2ad

ml2
⊥

(1 − 3 cos2 θ ) + h̄2ad (1 − 3 cos2 θ )

πml4
⊥

×
∫ 2πnl⊥

0
du

( u

2π
− nl⊥

)[
1 − u2

2
e

u2

2 E1

(
u2

2

)]
, (D1)

and using (9) and (10) the Tomonaga-Luttinger exponent is
given by

K−2 = 1 + nad (1 − 3 cos2 θ )e
(2πnl⊥ )2

2 E1

(
(2πnl⊥)2

2

)
, (D2)

so that in the limit nl⊥ → 0, K = 1 + nad (1 −
3 cos2 θ ) ln(π

√
2eγ /2nl⊥) + O(n3), the expected behavior

with interactions decaying as 1/|x|3 at long distance. In the
case of γ � 1, we can approximate [54]

S(k) � |k|√
k2 + 4γ n2

, (D3)

leading to a variational energy

E

L
� h̄2n3

2m

[
ε(γ ) − γ̄

∂ε

∂γ

]
+ V (θ )

[
2n2l⊥ − n

√
π

2

+ n

2π

∫ +∞

0

1 − ueuE1(u)√
2u + 4γ n2l2

⊥
du

⎤
⎦. (D4)

Minimizing with respect to γ̄ , we obtain

∂

∂γ

(
E

L

)
� − h̄2n3

2m
γ̄ ε′′(γ ) + n

2π

dI

dγ
(γ ) = 0, (D5)

where we have defined

I (γ ) =
∫ +∞

0

1 − ueuE1(u)√
2u + 4γ n2l2

⊥
du. (D6)

According to Eq. (7), for n → +∞, γ n2 → +∞, so
we can replace the denominator in the integral I (γ ) with
(4γ n2l2

⊥)3/2. Using the expansion [50] of ε(γ ) valid for γ �
1, we end up with

γ̄ �
√

2π
h̄2ad (1 − 3 cos2 θ )

mgn2l4
⊥

, (D7)

so ḡ = O(n−1) when n → +∞. In the high density limit, γ →
γ0, and the leading order expansion is

g = gV dW − h̄2ad (1 − 3 cos2 θ )

2ml2
⊥

×
⎡
⎣8

3
−

√
π

2

1

nad
( 4l2

⊥
ad |a1D| − 8

3 (1 − 3 cos2 θ )
) + . . .

⎤
⎦.

(D8)

This behavior is illustrated in Fig. 1.
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