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Thermopower in an anisotropic two-dimensional Weyl semimetal
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We investigate the generation of an electric current from a temperature gradient in a two-dimensional Weyl
semimetal with anisotropy in both the presence and absence of a quantizing magnetic field. We show that the
anisotropy leads to doping dependences of thermopower and thermal conductivities which are different from
those in isotropic Dirac materials. Additionally, we find that a quantizing magnetic field in such systems leads to
an interesting magnetic field dependence of the longitudinal thermopower, resulting in unsaturated thermoelec-
tric coefficients. Thus, the results presented here will serve as a guide to achieving high thermopower and a ther-
moelectric figure of merit in graphene-based materials, as well as organic conductors such as α-BEDT-TTF2I3.

DOI: 10.1103/PhysRevB.101.045101

I. INTRODUCTION

Since the discovery of Dirac materials in both two and
three dimensions, there has been an upsurge in the study of
thermopower in these systems in both the presence and ab-
sence of a quantizing magnetic field [1–8]. This is because the
thermopower is a sensitive and powerful tool to probe trans-
port properties, involving different scattering mechanisms in
materials. Two-dimensional (2D) graphene and related 2D
Dirac materials exhibit anomalous and universal thermoelec-
tric properties due to the Weyl/Dirac dispersion of the emer-
gent quasiparticles [5,9]. Similarly, three-dimensional (3D)
Weyl systems exhibit anomalous thermal properties due to the
Berry curvature [10–16]. Moreover, the 3D Dirac and Weyl
materials give rise to unsaturated thermopower, which in turn
leads to a large thermoelectric figure of merit in the presence
of a quantizing magnetic field [17].

Despite much work on the transport properties in
Dirac/Weyl materials [15,18–28], the thermoelectric proper-
ties in relatively new 2D anisotropic Dirac materials such
as VO2/TiO3 [29–31], organic salts [32,33], and deformed
graphene [34–37], having a quadratic dispersion in one direc-
tion and a linear dispersion along the orthogonal direction,
have not been explored so far in detail. This is in part because
there is a lack of natural materials with such anisotropic
dispersion and in part because the anisotropy leads to com-
plexities in finding the analytical expressions for relevant
thermoelectric coefficients involving different scattering
mechanisms compared to the in-plane and out-of-plane
anisotropy in double-Weyl materials [13]. Due to the
anisotropic dispersion, these 2D Dirac materials exhibit un-
conventional electric and magnetic properties as opposed to
the isotropic Weyl/Dirac systems [38,39]. Since transport
coefficients such as thermal conductivity and thermoelectric
coefficients are determined by the band structure and scatter-
ing mechanism, it is natural to ask how this anisotropy can
be leveraged in the thermal properties of these 2D systems in
both the presence and absence of quantized magnetic field.
Specifically, does this anisotropy give rise to interesting field,

temperature, and doping dependence of the thermoelectric
coefficients?

To address the above questions, we study the thermal trans-
port in such an anisotropic 2D Dirac/Weyl system, both in the
absence and in the presence of an external magnetic field. We
show that the thermopower in the absence of a magnetic field
exhibits a complex dependence on the chemical potential and
temperature, in contrast to its isotropic counterpart [3,15]. We
also find that the presence of an external magnetic field leads
to interesting field-dependent thermal properties, leading to
unsaturated thermopower. This field dependence differs no-
tably not only from its isotropic counterpart but also from 3D
Dirac/Weyl systems [17]. This is attributed to the fact that
the field dependence of the Landau spectrum (εn ∼ (n H )2/3,
where n is the Landau level and H is the applied magnetic
field [38]) for such anisotropic Dirac/Weyl systems differs
from that (εn ∼ √

n H ) of the 2D and 3D isotropic Dirac/Weyl
systems. We note that a similar anisotropic situation arises in
a 3D double-Weyl material [13], where anisotropy is present
in one of the three orthogonal directions. However, the result
varies from the present case due to different densities of states
(DOSs) in two different physical dimensions. Specifically, the
DOS of a 3D anisotropic double-Weyl dispersion turns out
be ρ(ε) ∼ |ε|, which simplifies the analytical expressions for
the thermoelectric coefficients [13]. In contrast, the DOS of a
2D anisotropic Dirac dispersion is ρ(ε) ∼ √|ε|, which in turn
leads to complex structures of the thermoelectric equations
and hence a complex chemical potential and magnetic field-
dependent thermopower.

The rest of this paper is organized as follows. In Sec. II, we
introduce the anisotropic 2D Dirac/Weyl model Hamiltonian
and define the thermoelectric coefficients. In Sec. III, we
provide analytical expressions for thermoelectric coefficients
in zero magnetic field. We then compare our results with
the case of isotropic Dirac dispersion. In Secs. IV and V,
we present the results for diffusive transport and electron-
electron interaction, respectively. We then extend these results
for quantizing (i.e., high) fields in Sec. VI and low fields in
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Sec. VII and discuss the unsaturated thermopower. Finally, we
conclude with a discussion of the possible future directions in
Sec. VIII.

II. MODEL AND FORMALISM

We consider a model of a 2D anisotropic Weyl fermion
(AWF) with the Hamiltonian [29–31]

HAWF = h̄2 k2
x

2 m
σx + h̄v ky σy, (1)

where σi’s are Pauli matrices, (kx, ky) are the momenta in the
x and y directions, respectively, m is the effective mass along
the x axis, and v is the effective velocity along the y axis.
We will use a = h̄2

2 m and b = h̄ v in the equations to simplify
the expressions. With these notations, the spectrum of Eq. (1)

is found to be ε±
k = ±

√
a2 k4

x + b2 k2
y . This anisotropic nature

of the spectrum is expected to manifest in the thermoelectric
properties of the system.

The response matrix, which relates the resulting general-
ized currents to the driving forces, can be expressed in terms
of some kinetic coefficients. We will use the relations obtained
from the Boltzmann formalism, such that the response matrix
takes the form [40](

Jα

JQ
α

)
=

(
L11

αβ L12
αβ

L21
αβ L22

αβ

)(
Eβ

−∇βT

)
, (2)

where (α, β ) ∈ (x, y), JQ is the heat current, and J is the elec-
trical current at temperature T in the presence of an electric
field E. For transport along the electric field and temperature
gradient, the expressions for the longitudinal thermoelectric
coefficients are given by [40]

L11
αα = σαα = L0

α, L21
αα = T L12

αα = −L1
α

e
,

L22
αα = L2

α

e2 T
, (3)

with

Ln
α = −e2

∑
s=±

∫
d2k

(2 π )2
τ
(
εs

k

)∂ f (εs
k )

∂εs
k

(
1

h̄

∂εs
k

∂kα

)2

(εs
k − μ)n,

(4)

where s = ± is the band index, e is the electric charge, μ is
the chemical potential, and f (ε) = 1

1+eβ (ε−μ) is the Fermi-Dirac
distribution at inverse temperature β = 1

kB T (kB is the Boltz-
mann constant). The thermal conductivity and the Seebeck
coefficient can now be defined as

καα = L22
αα − L21

αα (L11)−1
αα L12

αα, Sαα = L12
αα

L11
αα

, (5)

respectively. The Seebeck coefficient describes the voltage
generation due to a temperature gradient. In the presence of
transverse current, κ and S can be written in a more general
form [40]:

καβ = L22
αβ −

∑
γ ,ρ

L21
αγ (L11)−1

γ ρ L12
ρβ,

Sαβ =
∑

γ

(L11)−1
αγ L12

γ β . (6)

The diagonal elements of the matrix S are called Seebeck co-
efficients (or thermopower), and the off-diagonal components
are termed Nernst coefficients.

Let us denote an external magnetic field by H with mag-
nitude H . In the following sections, we will mainly focus
on the thermopower Sαα in both the absence (when H = 0)
and the presence (when H �= 0) of transverse thermoelectric
coefficients Lxy.

For the anisotropic dispersion in Eq. (1), we follow the
methods outlined in Ref. [41]. With the parametrization kx =
sgn[cos θ ]( r | cos θ |

a )
1/2

and ky = r sin θ
b , with r � 0, the energy

eigenvalues take the simple form ε±
k = ±r. The Jacobian of

this transformation is given by

J (r, θ ) =
∣∣∣∣
∂kx
∂r

∂kx
∂θ

∂ky

∂r
∂ky

∂θ

∣∣∣∣ =
∣∣∣∣∣

1
2

(
| cos θ |

a r

)1/2
− sin θ

2

(
r

a | cos θ |
)1/2

sin θ r cos θ

∣∣∣∣∣
=

√
r

4 a b2 | cos θ | . (7)

Let us apply this convenient parametrization for calculating
the DOS at energy ε > 0, which is given by

ρ(ε) =
∫

d2k

(2 π )2 δ
(
ε − ε+

k

)

=
∫ ∞

0
dr

∫ 2 π

0

dθ

(2 π )2 J (r, θ ) δ(ε − r)

=
∫ 2 π

0

dθ

(2 π )2

√
ε

4 a b2 | cos θ | = 10.4882

8 π2

√
ε

a b2
. (8)

Clearly, the DOS of the AWF differs from its isotropic coun-
terpart, i.e., graphene, where ρ(ε) ∼ |ε| (see Appendix A).
Thus, it is expected to have different thermopower and ther-
mal conductivities, depending on the scattering mechanisms.
However, it is not obvious how strongly this anisotropy will
manifest in the thermoelectric coefficients as a function of
μ and T . In the following sections, we therefore compute
the thermoelectric coefficients (i) for the free Hamiltonian,
(ii) in the presence of short-range disorder, and (iii) in the
presence of charge impurities. We then compare the results
with those obtained for graphene. We also compare the
thermoelectric coefficients with those of the isotropic and
anisotropic 3D Dirac materials, wherever deemed necessary.
Finally, we consider the case where an external magnetic field
is applied in order to determine the power-law dependence of
the thermoelectric coefficients on the applied field strength.

III. THERMOELECTRIC RESPONSE FOR
THE FREE HAMILTONIAN

Using the semiclassical approach for calculating the
dc conductivity by assuming an energy- and momentum-
independent scattering time τ , we get
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σ dc
xx =L0

x = e2 τ
√

a β

8 π2 h̄2 b

∫ ∞

0
dr

∫ 2 π

0
dθ r3/2 | cos θ |5/2

[
sech2

(
β(r − μ)

2

)
+ sech2

(
β(r + μ)

2

)]

= − 2.16 e2 τ
√

a

2 h̄2 b (π β )3/2
[Li3/2(−eβ μ) ) + Li3/2(−e−β μ) )], (9)

σ dc
yy =L0

y = e2 τ bβ

32 π2 h̄2 √
a

∫ ∞

0
dr

∫ 2 π

0
dθ

√
r | sec θ | sin2 θ

[
sech2

(
β(r − μ)

2

)
+ sech2

(
β(r + μ)

2

)]

= − 3.5 e2 τ b

8 π3/2 h̄2 √
a β

[Li1/2(−eβ μ) ) + Li1/2(−e−β μ) )], (10)

where Lis(z) denotes the polylogarithm function. For μ/(kB T ) � 1, we obtain

σ dc
xx = 2.88 e2 τ

√
a

2 π2 h̄2b

(
μ3/2 + π2

8
√

μ
(kB T )2

)
, (11)

σ dc
yy = 7 e2 τ b

8 π2 h̄2 √
a

(√
μ − π2

24 μ3/2
(kB T )2

)
. (12)

Evidently, the low-temperature longitudinal dc conductivities are direction dependent and have different doping dependence as
well. This is because the group velocity vk = ( 1

h̄
∂εs

k
∂kα

) in Eq. (4) differs in the x and y directions as vx ∼ kx σx and vy ∼ σy. This is
in contrast to the case of an isotropic Dirac Hamiltonian such as graphene, where vx ∼ σx and vy ∼ σy. Consequently, we obtain
σxx = σyy ∼ μ, as derived in Appendix A. Thus, the anisotropic band spectrum, or, in other words, the DOS of the system,
plays an important role in revealing the anisotropic dc conductivities. We note that for 3D double-Weyl Dirac semimetals with

quadratic dispersion in the xy plane (energy spectrum εk =
√

h̄2(k2
x +k2

y )2

2 m + v2 k2
z ), the DOS turns out to be ρ(ε) ∼ |ε|, similar to

that of 2D graphene. Thus, the z component of the dc conductivities shows dependence similar to that of graphene. However, the
x and y components depend quadratically on both chemical potential and temperature [13]. But this scenario differs from the 2D
model discussed in this paper.

The thermoelectric coefficients are obtained in a similar fashion, as shown below:

L21
xx = e τ

√
a β

8 π2 h̄2 b

∫ ∞

0
dr

∫ 2 π

0
dθ r3/2 | cos θ |5/2

[
μ

{
sech2

(
β(r + μ)

2

)
+ sech2

(
β(r − μ)

2

)}

+ r

{
sech2

(
β(r + μ)

2

)
− sech2

(
β(r − μ)

2

)}]

= − 2.16 e τ
√

a

2h̄2 b (πβ )3/2

[
μ

{
Li3/2(−e−β μ) + Li3/2(−eβ μ)

} + 5

2 β

{
Li5/2(−e−β μ) − Li5/2(−eβ μ)

}]
, (13)

L21
yy = e τ bβ

32 π2 h̄2 √
a

∫ ∞

0
dr

∫ 2 π

0
dθ

√
r | sec θ | sin2 θ

[
μ

{
sech2

(
β(r + μ)

2

)
+ sech2

(
β(r − μ)

2

)}

+ r

{
sech2

(
β(r + μ)

2

)
− sech2

(
β(r − μ)

2

)}]

= − 3.5 e τ b

8 π3/2 h̄2 √
aβ

[
μ

{
Li1/2(−e−β μ) + Li1/2(−eβ μ)

} + 3

2 β

{
Li3/2(−e−β μ) − Li3/2(−eβ μ)

}]
. (14)

At low temperatures, i.e., μ/(kB T ) � 1, we obtain

L21
xx = −2.88 e τ

√
a

2 π2 h̄2 b

(
π2 μ1/2

2
(kB T )2

)
,

L21
yy = − 7 e τ b

8 π2 h̄2 √
a

(
π2

6 μ1/2
(kB T )2

)
. (15)

As before, the low-temperature behavior of the off-diagonal
longitudinal thermal coefficients have an interesting direc-
tion dependence on the chemical potential. In contrast, for
graphene Lxx = Lyy = π (kBT )2 are independent of chemical
potential. Although the individual coefficients in the AWF
differ from those in graphene, the Mott relation still prevails

at low temperature as follows:

Sxx = L21
xx

T σ dc
xx

� −π2 k2
B T

2 e μ
,

Syy = L21
xx

T σ dc
xx

� −π2 k2
B T

6 e μ
. (16)

Indeed, at low-temperature and for energy-independent scat-
tering, there is no deviation of thermopower from the usual
Mott relation. However, different energy-dependent scatter-
ing mechanisms may lead to deviation [3] from the lin-
ear temperature-dependent Mott relation, as will be evident
shortly.
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To investigate the electronic contribution to the thermal conductivity κ , we next compute

L22
xx = L2

x

e2 T

= τ
√

aβ

8π2h̄2b T

∫ ∞

0
dr

∫ 2 π

0
dθ r3/2 | cos θ |5/2

[
sech2

(
β(r + μ)

2

)
(r + μ)2 + sech2

(
β(r − μ)

2

)
(r − μ)2

]

= − 2.16τ
√

a

2h̄2b(πβ )3/2 T

[
μ2

{
Li3/2(−e−β μ) + Li3/2(−eβ μ)

} + 5 μ

β

{
Li5/2(−e−β μ) − Li5/2(−eβ μ)

}

+ 35

4 β2

{
Li7/2(−e−β μ) + Li7/2(−eβ μ)

}]
, (17)

L22
yy = L2

y

e2 T

= τbβ

32π2h̄2√a T

∫ ∞

0
dr

∫ 2 π

0
dθ

√
r | sec θ | sin2 θ

[
sech2

(
β(r + μ)

2

)
(r + μ)2 + sech2

(
β(r − μ)

2

)
(r − μ)2

]

= − 3.5e2τb

8π3/2 h̄2√aβ T

[
μ2

{
Li1/2(−e−β μ) + Li1/2(−eβ μ)

} + 3 μ

β

{
Li3/2(−e−β μ) − Li3/2(−eβ μ)

}

+ 15

4 β2

{
Li5/2(−e−β μ) + Li5/2(−eβ μ)

}]
. (18)

At low temperatures [μ/(kB T ) � 1], we obtain

L22
xx = 2.88 τ

√
a

2 π2 h̄2 b T

×
(

π2 μ3/2

3
(kB T )2 + 7 π4

40 μ1/2
(kB T )4

)
,

L22
yy = 7 τ b

8 π2 h̄2 √
a T

×
(

π2 μ1/2

3
(kB T )2 − 7 π4

120 μ3/2
(kB T )4

)
. (19)

Together with Eqs. (19) and (12), we recover the Wiedemann-

Franz law, L22
αα = π2 k2

B T
3 e2 σ dc

αα , up to leading order in kB T .
Finally, using Eq. (5), we get

κxx = L22
xx −

(
L21

xx

)2

T σ dc
xx

= 2.88 τ
√

a

2 π2 h̄2 b T

[
π2 μ3/2 (kB T )2

3
− 3 π4 (kB T )3

40 μ1/2

]
,

κyy = L22
yy −

(
L21

yy

)2

T σ dc
yy

= 7 τb

8 π2 h̄2 √
a T

[
π2μ1/2 (kB T )2

3
− 31 π4 (kB T )3

360 μ3/2

]
.

(20)

As expected, the thermal conductivities show linear depen-
dence on temperature for both the x and y directions. However,
their chemical potential dependences differ by μ as a result of
anisotropic dispersion, as discussed before. We note that we
have neglected the phonon contribution to the thermal conduc-
tivity for simplicity. Strong contributions from phonons may
lead to the violation of the Wiedemann-Franz law.

Let us also state our results in the opposite limit of
μ/(kB T ) 	 1. In this high-temperature limit, we get

σ dc
xx � 2.16 e2 τ

√
a

2 h̄2 b (π β )3/2

(
1.5303 + 0.3801 μ2

k2
B T 2

)
,

σ dc
yy � 3.5 e2 τ b

8 π3/2 h̄2 √
a β

(
1.2098 + 0.1187 μ2

k2
B T 2

)
,

L21
xx = − 2.16 e2 τ

√
a

2 h̄2 b (πβ )3/2
× 2.3 μ,

L21
yy = − 3.5 e2 τ b

8 π3/2 h̄2 √
a β

× 0.60 μ,

L22
xx = 2.16 e2 τ

√
a β2

2 T h̄2 b (π β )3/2

(
16.88 + 0.6

μ2

k2
BT 2

)
,

L22
yy = 3.5 e2 τ bβ2

8 π3/2 h̄2 √
a β

(
6.54 − 0.15

μ2

k2
BT 2

)
. (21)

It turns out that the prefactors of both Eqs. (9) and (13) give
rise to dominant leading-order contributions at high tempera-
tures. Thus, both σ and L21 scale as T 3/2. Consequently, we
obtain thermopower decaying with temperature. We note that
the high-temperature behavior can be qualitatively understood
by rewriting Seebeck coefficient as Sαα = 〈εk〉/T − μ/e T ,
where 〈εk〉 = ∑

s=±
∫

d2k
(2 π )2 εs

k F s(k) /
∑

s=±
∫

d2k
(2 π )2 F s(k)

and F s(k) = τ (εs
k ) ∂ f (εs

k )
∂εs

k
( 1

h̄
∂εs

k
∂kα

)
2
. Neglecting 〈εk〉/T at

T → ∞, one arrives at Sαα � −μ/(e T ). We note that
generically, 〈εk〉 may depend on μ through the Fermi
function, which eventually may lead to different prefactors
in Sxx and Syy in the high-temperature limit, as obtained
for the present model. It is also worth pointing out that at
high temperatures, the Seebeck coefficient can further be
related to entropy using the thermodynamic relation between
entropy and chemical potential, usually known as Heikes
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formula [42]. However, this relation turns out to be valid in
all temperature ranges, as will be evident shortly.

Finally, we would like to point out that, for isotropic Dirac
dispersion, the leading-order scaling of σxx turns out to be
∝ T , whereas L21 scales as T 2. This leads to temperature-
independent thermopower in graphene at high temperatures
[3].

IV. DIFFUSIVE TRANSPORT DUE TO DISORDER

We now consider the case of short-range disorder, which is
less realistic for Weyl/Dirac semimetals because the relatively
poor screening of charged impurities leads to longer-range
potentials. Nevertheless, it is useful to investigate the predic-
tions for the thermal properties in this case for the purposes
of comparison. The short-range disorder potential has the
following form:

V (r) = V0

∑
i

δ(r − ri ), (22)

where ri denotes the position of the impurity potential and V0

denotes the strength of the impurity potential. The scattering
time for such a disorder potential is calculated to be [35]

τdis = τ0(ε)

1 + 0.435 cos θ
, (23)

where τ0(ε) = h̄
π γ ρ(ε) , γ = V 2

0 nimp, and nimp is the impurity
concentration. Considering this energy dependence of the
scattering rate (τ ∼ 1√

ε
), the transport coefficients at low

temperatures [(μ/(kBT ) � 1)] are found to be

σ dc
xx � 2.88 e2τ

√
a

2 π2 h̄2 b
μ, σ dc

yy � 7 e2 τ b

8 π2 h̄2 √
a
,

L21
xx � − 2.88 e τ

√
a

2 π2 h̄2 b

(π kB T )2

3
, L21

yy � − 7 e τ b

8 π2 h̄2 √
a

μ.

(24)

Evidently, the thermopower Sxx follows the Mott relation,
whereas Syy turns out to be independent of temperature (up
to leading order). In contrast, for short-range disorder, the
thermopower in graphene is exponentially suppressed at low
temperature since τdis ∼ 1/ε [3].

V. TRANSPORT IN THE PRESENCE OF CHARGED
IMPURITY SCATTERINGS

The presence of charged impurities in a material acts as
a dopant, thus shifting the Fermi level away from the nodal
points. The screened Coulomb potential generated by such
impurities is given by

V (q) = 4 π e2

q + qT F
, (25)

where qTF is the Thomas-Fermi wave vector. The transport
relaxation time within the Born approximation is given by

1

τ (εs
k )

= 2 π nimp

h̄

∫
d2k′

(2 π )2
V 2(|k − k′|) Fk k′ δ

(
εs

k − εs
k′
)
,

(26)

where Fk k′ = 1−cos2 φkk′
2 , φkk′ is the angle between k and k′,

and nimp is the impurity density. Using the parametrization
introduced before, cos φkk′ takes the form

cos φkk′

= s0
√

α| cos θ |√α| cos θ ′| + √
r r′ sin θ sin θ ′√

α| cos θ | + r sin2 θ
√

α| cos θ ′| + r′ sin2 θ ′
, (27)

where α = b2/a, s0 = sgn[cos θ ] sgn[cos θ ′], and (r, r′) � 0.
For definiteness, let us consider the case when s = +. Since
ε+

k = r is independent of θ , we set θ = π
2 without any loss of

generality. This leads to

Fk,k′ = α | cos(θ ′)|
2 ( | cos θ ′| + r′ sin2 θ ′ )

. (28)

Together with Eqs. (28), (26), and (7), we obtain

1

τ (r)
= 4 π nimp e4 α

h̄ r3/2

∫
dθ ′(

(1 − sin θ ′)2 + α | cos θ ′|
r

)

×
√

α | cos θ ′|
α | cos θ ′| + r sin2 θ ′ , (29)

where we have considered qT F = 0 for unscreened charge
impurities. In this case, Eq. (29) can be further simplified in
the various limits as follows (assuming α ∼ 1):

1

τ (r)
� 4 π e4 nimp

h̄

{ 8.0
r for r 	 1,

6.0476
r5/3 + 16.509

r7/3 − 10.6889
r3 for r � 1.

(30)

The first limit is found from the leading-order con-
tribution of 2

∫ π/2−r
−π/2+r

dθ ′ √| cos θ ′|
( | cos θ ′ |

r )(| cos θ ′ |) , whereas the second

limit is found from the leading-order contribution of

4
∫ π/2−( 4

r )
1/3

0
dθ ′ √| cos θ ′|

(1−sin θ ′ )2r sin2 θ ′ .

We emphasize that the scattering from the unscreened
Coulomb interaction in graphene is known to be τ ∼ ε ir-
respective of the values of ε. In contrast, the anisotropy
in Eq. (1) leads to a different expression for energy-
dependent scattering for ε � 1. Considering the leading
energy-dependent term for τ ∼ ε5/3, we find

σ dc
xx = 2.88 e2 τ

√
a

2 π2 h̄2b

(
μ19/6 + 247μ7/6π2

216
(kB T )2

)
,

σ dc
yy = 7 e2 τ b

8 π2 h̄2 √
a

(
μ13/6 + 91μ1/6π2

216
(kB T )2

)
,

L21
xx = − 2.88 e τ

√
a

2 π2 h̄2 b
× 19 π2μ13/6(kB T )2

18
,

L21
yy = − 7 e τ b

8 π2 h̄2 √
a

× 13 π2 μ7/6(kB T )2

18
. (31)

Thus, we recover the Mott relation of Sαα ∼ T . However,
the dc conductivities have an interesting chemical potential
dependence due to energy-dependent scatterings. This is in
conjunction with the results obtained before.
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VI. THERMOPOWER IN THE PRESENCE OF A
QUANTIZING MAGNETIC FIELD

Having obtained the zero-magnetic-field thermopower, we
next turn to the thermopower in the presence of a quantiz-
ing magnetic (i.e., orbital motion is fully quantized), which
basically corresponds to the high-field limit. In this case, the
transverse thermoelectric coefficients Lxy, Lyx �= 0. Thus, the
Seebeck coefficients are given by [see Eq. (6)]

Sxx = L11
yy L12

xx + L11
xy L12

xy

L11
yy L11

xx + L11
xy L11

xy

,

Syy = L11
xx L12

yy + L11
xy L12

xy

L11
yy L11

xx + L11
xy L11

xy

. (32)

Here we have used the fact that Li j
yx = −Li j

xy in the strong-field
limit [43]. We now focus on the dissipationless limit, where
the heat current is obtained by Hall edge, because of the
diverging scattering time. In this limit, L11

xy � L11
xx , L11

yy , which
in turn leads to Sxx � L12

xy /L11
xy = Syy. Thus, the Seebeck coef-

ficient in the dissipationless limit turns out to be symmetric in
both the x and y directions, as opposed to the cases discussed
in the preceding sections where Sxx �= Syy (without transverse
coefficients). In the following, we concentrate only on the
Seebeck coefficient along the x direction, allowing a heat
current along the same direction.

A very useful proposition regarding the Seebeck coefficient
in materials is that it can be thought of as electronic entropy
per unit net charge density, i.e., Sαα = S

e n0
, where S is the

total entropy and n0 is the electron density. Although this idea
was subject to considerable debates for several years [44], it
is now a well-accepted fact, and there is extensive literature to
support this [6,42,45,46]. We note that this relation between
thermopower and entropy holds at all temperature and even
in the dissipationless limit. In Appendix B, we provide the
relation between Lxy and the electronic entropy of materials.
With this, we proceed to find the thermopower in the presence
of magnetic field.

The total entropy can be expressed in terms of the Fermi-
Dirac distribution f function as [6,17]

S = −kB

∑
n

[
fn ln fn + (1 − fn) ln (1 − fn)

]
, (33)

where fn = f (εn − μ) and εn denotes the Landau level en-
ergy. For a magnetic field H = H ẑ, and using the Landau
gauge A = (−H y, 0, 0), the Landau levels are obtained to be
[38]

εn = ± 1.17325
(
m v2

)1/3
[(n + 1/2)h̄ ωc]2/3,

ωc =e H

m
. (34)

Here ωc is the effective cyclotron frequency, and n =
0, ±1, ±2, . . . . With this, we find

Sxx = kB

2 π n0 e l2
b

∑
n

[
ln(1 + ex̃n ) − x̃n ex̃n

ex̃n + 1

]
, (35)

1 10 20 30 40
H (T)

0.004

0.008

0.012

0.016

0.02

µ(
eV

)

Numerical
Fitting

FIG. 1. Plot (blue solid line) of the chemical potential as a func-
tion of magnetic field for fixed electron density n0 = 5 × 1011 cm−2

and temperature T = 5 K. The strong field part of the red dotted
line is the approximate analytical results in Eq. (38), where b0 =
0.0017, b1 = 0.0006, b2 = 0.0028. Considering typical parameters
of Dirac materials, we have used v = 5 × 105 m/s and m = 3.1me

[47,48], where me is the electron mass. With this mass, the cyclotron
frequency ωc has a range of 50 GHz to 2 THz for the range of
magnetic field presented in the plot.

where x̃n = β (εn − μ), lb =
√

h̄
e H is the magnetic length, and

n0 fixes the Fermi energy through

n0 = 2 × 1

2 π l2
b

∞∑
n=0

fn. (36)

Here the factor of 2 accounts for the hole Landau levels. For
a reasonably strong magnetic field (h̄ωc � μ), the system
enters into a strong quantum limit, and electrons occupy
only the lowest Landau level. With this assumption, we can
approximate Eq. (36) as

n0 � 1

π l2
b

1

1 + eβ(ε0−μ)
. (37)

This leads to μ = ε0 − β−1 ln( 1
n0π ł2

b
− 1), which can be ex-

pressed in terms of explicit field dependence as

μ = b0 + b1 H2/3 + b2 ln (b3 H − 1), (38)

where the bi’s can be readily obtained from the approximate
analytical solution of μ. Interestingly, this approximate ana-
lytical result fits reasonably well with the numerical solution
obtained from Eq. (37). Figure 1 corroborates this. Notably,
Eq. (38) differs from the case of 3D Dirac/Weyl systems
(having μ ∼ 1

H ) and doped semiconductors (having μ ∼ 1
H2 ),

as studied in Ref. [17]. This difference again comes from the
different magnetic field dependence of the Landau spectrum.
Notice that for weak enough magnetic field (h̄ωc 	 μ), the
chemical potential is mainly unaffected by the field. As we
increase the field, we start to see quantum oscillations in
the chemical potential, which in turn leads to oscillations in
the thermopower, as will be evident shortly.
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FIG. 2. Plot (blue solid line) of Sxx as a function of magnetic field
for fixed electron density n = 5 × 1011 cm−2 and temperature T =
5 K. The red dotted line is the approximate analytical result with the
function shown in Eq. (39). Values of the parameters v and m are the
same as in Fig. 1.

To find the approximate high-field dependence of the ther-
mopower, we substitute Eq. (38) in Eq. (35) with n = 0. This
gives

Sxx = kB

e

[(
π n0 l2

b

)
ln

(
1 − π n0 l2

b

) − ln

(
1

π n0 l2
b

− 1

)]

= kB

e

[(
1 − H

α0

)
ln

(
1 − α0

H

)
− ln

(α0

H

)]
, (39)

where α0 = n0h
2e . To verify this complex H dependence, we

numerically compute Eq. (35) along with the numerical so-
lution of μ(H ). In Fig. 2, we have plotted the behavior of
Sxx as a function of H . Clearly, the approximate large field
dependence of Sxx fits well (solid red dotted line) with the
numerical solutions.

Note that this field dependence differs from the behav-
ior of doped semiconductors and from typical Dirac/Weyl
systems [15], where Sxx ∼ H2. We would like to point out
that the thermopower here turns out to be large compared
to 2D semiconductors such as GaAs/Ga1−x, AlxAs, and Si-
metal-oxide-semiconductor field-effect transistors [49]. This
is indeed due to the Dirac nature of the quasiparticles with
low Dirac velocity and low zeroth-order Landau energy, as
pointed out by several authors in the context of graphene
[9,48]. Interestingly, the thermopower obtained for the present
case has good agreement with the experimental results as
found in α-BEDT-TTF2I3 [48].

VII. WEAK MAGNETIC FIELD

We next discuss Seebeck coefficients at low fields for
completeness. In the dissipationless limit, the low-field be-
havior can be understood easily, considering temperatures
much smaller than the chemical potential. For kB T 	 μ,
the entropy can be approximated as S � π2

3 ρ(μ) k2
B T [50].

At low temperatures and sufficiently weak magnetic fields,

multiple Landau levels are filled (kB T 	 μ 	 h̄ωc). In such
a scenario, ρ(μ) can be approximated by the zero-field DOS
given in Eq. (8), with μ � n2/3

0 (4π2
√

a b2/3.5)2/3. With this,
we recover the typical temperature and chemical potential
dependencies of the thermopower as S ∼ k2

B T/μ.
The approach used in the preceding section is valid in the

strong magnetic field limit, namely, h̄ ωc 	 μ. However, at
small magnetic fields, quasiparticle scatterings must be taken
into account using Boltzmann’s quasiclassical theory. Within
this theory, the thermoelectric coefficients can be expressed as
[see Eq. (4)]

L11
αβ = −

∫
dε f ′(ε) σαβ (ε),

L12
αβ = − e

T

∫
dε f ′(ε)(ε − μ) σαβ (ε), (40)

where the energy-dependent σ (ε) has the following tensorial
form [10,12]:

σ = σ0

(
v2

x (ε) −H τ (ε) ṽx

H τ (ε) ṽy v2
y (ε)

)
. (41)

Here σ0(ε) = e2 ρ0(ε) τ (ε), ṽx = v2
x (ε) ∂2ε

∂2ky
−

vx(ε) vy(ε) ∂2ε
∂ky∂kz

, ṽy = v2
y (ε) ∂2ε

∂2kx
− vx(ε) vy(ε) ∂ε

∂ky∂kz
, with

ρ0(ε) = √
ε

4ab2 , v2
x (ε) = 2.88 a

π2 ε, and v2
y (ε) = 7 b2. We note

that the diagonal elements of σ (ε) are taken up to zeroth order
in H and for off-diagonal components we retain leading order
in H . For simplicity, we assume τ to be independent of the
energy. For kB T, h̄ωc 	 μ, Eq. (40) can be further simplified
as

L11
αβ � σαβ (μ),

L12
αβ � π2k2

BT

3e

d

dε
σαβ (ε)

∣∣∣∣
ε=μ

. (42)

With this, we obtain the thermopowers as

Sxx � π2 k2
B T

3 e μ

× 1.5 v2
x (ε) v2

y (ε) + H2 τ 2 ṽx(ε)
[
0.5 ṽy(ε) + μ ṽ′

y(ε)
]

v2
x (ε) v2

y (ε) + H2 τ 2 ṽ2
x (ε) ṽ2

y (ε)

∣∣∣∣
ε=μ

,

(43)

Syy � π2 k2
B T

3 e

×
0.5 v2

x (ε) v2
y (ε)

μ
+ H2 τ 2 ṽy(ε)

[
0.5 ṽx(ε) + μ ṽ′

x(ε)
]

v2
x (ε) v2

y (ε) + H2 τ 2 ṽ2
x (ε) ṽ2

y (ε)

∣∣∣∣
ε=μ

.

(44)

Evidently, in the limit of H → 0, we recover the field-free
thermopower as shown in Eq. (16).

To this end, we comment on the transverse thermoelectric
coefficient Sxy (or Syx), namely, the magnetothermoelectric
Nernst-Ettinghausen effect. For simplicity, we focus on Sxy

[which is given by Eq. (6)]:

Sxy = L12
xy L11

yy − L12
yy L11

xy

L11
yy L11

xx − L11
xy L11

yx

. (45)
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Evidently, without transverse coefficients Lxy, Sxy turns out to
be identically zero. In the weak-field limit when L11

xx � L11
xy ,

Sxy is found to be Sxy ∼ L12
xy

L11
xx

, which in turn leads to the usual
Mott relation, as is evident from Eq. (40). We note that Syx

also follows the Mott relation but the prefactor differs from
Sxy due to anisotropy. In contrast, for strong magnetic field, the
two terms in the numerator of Sxy mutually cancel or reduce
each other since L11

yy 	 L11
xy and/or L12

yy 	 L12
xy (dissipationless

limit), similar to the results obtained in Refs. [2,43].

VIII. CONCLUSION

In this paper, we have studied the zero- and finite-
magnetic-field thermoelectric coefficients in an anisotropic
2D Weyl system, with the two anisotropic directions having
linear and quadratic dispersions, respectively. We have shown
that this intrinsic anisotropy leads to an interesting doping
and temperature dependence of the thermopower compared
to its isotropic counterpart. Our findings can be summarized
as follows: (i) The low-temperature dc conductivities have a
different Fermi energy dependence than the case of graphene
(with 2D isotropic Weyl dispersion). (ii) The high-temperature
thermopower decays with temperature in AWF, whereas it is
independent of temperature in graphene. (iii) The relaxation
rates due to diffusive and electron-electron interactions differ
from the case of graphene, resulting in distinct expressions
for the thermal and dc conductivities. (iv) The finite-field
thermopower has an interesting magnetic field dependence,
resulting in unsaturated thermopower. We note that the results
obtained here for a single-node anisotropic Dirac/Weyl sys-
tem can be used for multinode systems, provided that there is
no internode scattering.

We conclude that the doping and temperature dependence
of the transport measurements can be used to distinguish
Dirac materials exhibiting anisotropy. In addition, the field-
dependent large thermopower can have potentials for ther-
moelectric devices to transform heat into electric power. In
future work, it will be worthwhile to analyze the effects of
Coulomb as well as short-range four-fermion interactions and
impurities, as has been done in the case of 2D [51,52] and 3D
[53–55] isotropic semimetals with quadratic band touching
points.

APPENDIX A: THERMOELECTRIC RESPONSE FOR THE
2D WEYL SEMIMETAL

In this Appendix, we compute the response matrix for the
2D isotropic Weyl semimetal, with the Hamiltonian

HD = v(kx σx + ky σy). (A1)

Here we can use the usual polar coordinate parametrization
kx = r cos θ and ky = r sin θ , with r � 0, such that the energy
eigenvalues are given by ε±

k = ± v r. The Jacobian of this
transformation is given by

J (r, θ ) =
∣∣∣∣∣
∂kx
∂ r̃

∂kx

∂θ̃
∂ky

∂ r̃
∂ky

∂θ̃

∣∣∣∣∣ = r. (A2)

The density of states is ρ(ε) = |ε|
2π v2 .

We compute the dc conductivity by assuming an energy-
and momentum-independent scattering time, such that

σ dc
xx = σ dc

yy = L0
x = L0

y = β v2 e2 τ

8 π h̄2

∫ ∞

0
dr r

[
sech2

(
β(r + μ)

2

)
+ sech2

(
β(r − μ)

2

)]
= e2 τ ln [2 + 2 cosh (β μ)]

4 π h̄2 β
. (A3)

At low temperatures (μ/(kBT ) � 1), we obtain σ ∼ μ.
The thermoelectric coefficients are given by

L21
xx = L21

yy = −L1
x

e
= −L1

y

e

= β v2 e τ

8 π2 h̄2

∫ ∞

0
dr r

[
μ

{
sech2

(
β(r + μ)

2

)
+ sech2

(
β(r − μ)

2

)}
+ r

{
sech2

(
β(r + μ)

2

)
− sech2

(
β(r − μ)

2

)}]

= − v e τ

(2 β π h̄)2

[
β μ ln {2 + 2 cosh (β μ)} + 2 Li2(−eβ μ) − 2 Li2(−e−β μ)

]
, (A4)

L22
xx = L22

yy = L2
x

e2 T
= L2

y

e2 T

= β v2 τ

8 π h̄2 T

∫ ∞

0
dr r

[
sech2

(
β(r + μ)

2

)
(r ε0 + μ)2 + sech2

(
β(r − μ)

2

)
(r − μ)2

]

= v τ

4 π h̄2 T

[
4 μ

{
Li2(−e−β μ) − Li2(−eβ μ)

}
β

+ 6 Li3(−eβ μ) + 6 Li3(−e−β μ)

β2
− μ2 ln {2 + 2 cosh (β μ)}

]
. (A5)

At low temperatures, we get

L21
xx = L21

yy = v2 e τ

2 π h̄2

π2 (kB T )2

3
, L22

xx = L22
yy = v2 τ

2 π h̄2

μπ2 k2
B T

3
. (A6)
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APPENDIX B: RELATION BETWEEN THE SEEBECK
COEFFICIENT AND ENTROPY

To derive the relation between entropy and the Seebeck
coefficient, in the presence of sufficiently strong magnetic
fields, we begin with the general expression of thermoelectric
coefficients L12

xy and L11
xy [43]:

L11
xy = − e2

h

∑
n

∫ ∞

εn−μ

dε
∂ f (ε)

∂ε
,

L12
xy = kB e β

h

∑
n

∫ ∞

εn−μ

dε ε
∂ f (ε)

∂ε
, (B1)

where εn denotes the Landau energy spectrum and f (ε) =
1

1+eβε . Note that the transport properties are independent of

the details of the confining potential of the sample, although
microscopic currents depend on it. Equation (B1) can further
be simplified by changing variables ε → f as follows:

L11
xy = − e2

h

∑
n

fn,

L12
xy = kB e

h

∑
n

∫ ∞

εn−μ

df [ln(1 − f ) − ln f ] = e

h
S,

where fn = f (εn − μ) and

S = −kB

∑
n

[ fn ln fn + (1 − fn) ln(1 − fn)] (B2)

is the total entropy of the carriers. With this, we obtain ther-
mopower Sxx = S

e n0
, where n0 = ∑

n fn is the total number of
carriers.
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