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Thermomechanical bistability of phase-transition oscillators driven by near-field heat exchange
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Systems with multistable equilibrium states are of tremendous importance in information science to conceive
logic gates. Here we predict that simple phase-transition oscillators driven by near-field heat exchanges have a
bistable thermomechanical behavior around their critical temperature, opening the way to a possible Boolean
treatment of information from heat flux at microscale.
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Processing information with heat rather than with elec-
trons to perform logical operations is a challenging problem
in modern physics. Several directions have been explored
during the last decade to this end. In 2004, Li et al. [1]
demonstrated the possibility to locally break the symmetry for
phonon propagation inside nonlinear atomic lattices, opening
the door to the control of heat flow in solid-state elements
and consequently to a possible logical treatment of infor-
mation carried by thermal phonons [2–4]. More recently, to
overcome the inherent problems associated with the relatively
small propagation speed of acoustic phonons, solid photonics
systems have been proposed to achieve similar operations
[5–7] in contactless many-body systems [8–15]. Finally, heat
transport mediated by spin waves has also been considered
[16] to rectify heat flux in many-body systems, paving the way
to highly performing quantum devices for thermal computing.

In this rapid communication, we study a thermomechanical
oscillator composed by a bilayer beam made of two different
materials. Such a system has been experimentally studied in
Ref. [17], where the dynamic response to a periodic far-field
heating was considered, as well as in Refs. [18–22], where
the cantilever was made of VO2, a metal-insulator transition
(MIT) [23] material. In our work, we consider a bimaterial
VO2-dielectric cantilever, and the main novelty of our work
is the simultaneous thermal interaction of the cantilever in
the near-field regime [24–27] with a substrate and in the
far field [28,29] with a thermal bath. When the equilibrium
temperature along the beam is close to the critical temperature
Tc of the MIT material, we predict the existence of a bistable
behavior. The system is depicted in Fig. 1. The beam is
recessed in a wall maintained at temperature Tw by an external
power source, whereas its right end is left free to oscillate.

This cantilever exchanges heat radiatively with an environ-
ment at temperature Te and in near field with a substrate at
temperature Ts. Moreover, it is made of two different materials
having thicknesses (y axis in Fig. 1) h1 and h2 (h = h1 + h2).
Its length (x axis in Fig. 1) and width (z axis) are L and δ,
respectively. The bottom layer of the cantilever is made of
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silicon dioxide (SiO2) [30], while the upper one of vanadium
dioxide (VO2) which undergoes a first-order transition at Tc =
340 K [31]. The substrate is made of SiO2 and has length l .
The time evolution of the cantilever displacement u(x, t ) and
temperature profile T (x, t ) is governed by the coupled system
of nonlinear differential equations,

ρ Ch ∂t T (x, t ) = hκ ∂2
x T (x, t ) + �(u(x, t ), T (x, t )), (1)

EI ∂4
x u(x, t ) = −μ∂2

t u(x, t ) − γ ∂t u(x, t ) − ∂2
x MT (T (x, t )),

(2)

corresponding to the energy balance and Euler-Bernoulli [32]
equations, respectively. Here ρ, C, and κ are the beam mass
density, specific heat capacity, and thermal conductivity, while
� is the well-known heat flux per unit surface between
two parallel planes, and thus �δdx is the energy received
(from the substrate and the far-field environment) per unit
time by the infinitesimal element of the beam between x
and x + dx. The idea of calculating the interaction between
curved surfaces as a sum of plane-plane contributions closely
follows the proximity approximation (see, e.g., Ref. [33]),
typically used in the context of Casimir forces and near-
field radiative heat flux, valid when the curvature radii are
much larger than the distance, a condition fully met for
the cantilever displacements we obtain here. EI denotes the
beam flexural rigidity, μ = ρhδ its linear mass density, γ

its damping and MT the thermal moment. Concerning the
boundary conditions, we start by fixing the beam temperature
on its recessed end [T (0, t ) = Tw], while adiabatic conditions
are applied on its right end [∂xT (L, t ) = 0]. As for the initial
thermal conditions, we assume a given temperature profile
T (x, 0) = f (x). Concerning the displacement, we also impose
a given profile at t = 0, [u(x, 0) = g(x)], zero displacement,
and derivative at the fixed left end [u(0, t ) = ∂xu(0, t ) = 0]
describing the wall support, zero velocity of any element of
the beam [∂t u(x, 0) = 0], external bending moment at x = L
equal to the thermal moment [∂2

x u(L, t ) = MT (T (L, t ))] [34],
and zero third derivative at x = L associate with the absence
of a shear force [∂3

x u(L, t ) = 0] [35].
For a bimaterial cantilever, the mass density ρ, specific heat

capacity C, thermal conductivity κ , and flexural rigidity EI
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FIG. 1. Sketch of thermomechanical oscillator. A bilayered can-
tilever is supported at its left end by a wall at temperature Tw , being
kept free at the other end. It interacts through radiative heat transfer
with an environment at temperatures Te and in near field with a
substrate at temperature Ts. Its displacement is described by u(x, t ),
while T (x, t ) represents its temperature profile.

need to be replaced by effective quantities. More specifically,
if the two parts of the beam have Young’s moduli E1 and E2,
densities ρ1 and ρ2, and thermal conductivities κ1 and κ2, ρ, C
and κ are defined in terms of the following weighted averages:

a = a1V1 + a2V2

V1 + V2
, C = C1ρ1V1 + C2ρ2V2

ρ1V1 + ρ2V2
, (3)

where a ∈ {ρ, κ}. The effective flexural rigidity EI can be
written as [32,36]

EI = δh1h2

12

E1h1E2h2

E1h1 + E2h2
K, (4)

with

K = 6 + 4

(
h1

h2
+ h2

h1

)
+

(
E1h2

1

h2
2

+ E2h2
2

h2
1

)
. (5)

Finally, MT is the thermal moment that can be expressed as a
function of the beam construction temperature T0 (the one at
which the beam is not curved), its temperature profile T (x, t ),
and the thermal expansion coefficients α1 and α2 of the two
materials, in the following way [34]:

MT (T (x, t )) = 6EI
(α2 − α1)

K

(
1

h1
+ 1

h2

)
(T (x, t ) − T0).

(6)

The radiative heat flux is described within a fluctuational-
electrodynamics approach, where the statistical properties of
the charges fluctuating inside each body are accounted for by
means of the fluctuation-dissipation theorem [37], correctly
describing the heat exchange both in far and near fields.
In this framework, for small temperature differences, the
distance-dependent heat flux per unit surface between two
planar substrates at distance d and temperatures T and T +
	T , respectively, can be written as �(d, T ) = G(d, T )	T ,
where the conductance G(d, T ) is given by a sum over all
the frequencies ω, lateral wave vectors k, and polarizations

p = {TE,TM} of the electromagnetic field as

G(d, T ) =
∫ ∞

0

dω

2π
�′(ω, T )

∑
p

∫ ∞

0

d2k
(2π )2

Tp(ω, k, d ),

(7)

where �′(ω, T ) is the T derivative of the average
thermal energy of a harmonic oscillator �(ω, T ) =
h̄ω/(exp(h̄ω/kBT ) − 1). The energy transmission coefficient
Tp(ω, k, d ) between two planar bodies 1 and 2 can be
expressed in terms of the Fresnel coefficients rip and tip
(reflection and transmission coefficients for body i and
polarization p) as [38]

Tp(ω, k, d ) =
⎧⎨
⎩

(1−|r1p|2−|t1p|2 )(1−|r2p|2−|t2p|2 )
|Dp|2 , ck < ω

4 Im(r1p)Im(r2p)e−2|kz |d

|Dp|2 , ck > ω,
(8)

kz being the z component of the wave vector and Dp =
1 − r1pr2pe2ikzd a Fabry-Pérot denominator. To simplify the
solution of the system of nonlinear differential Eqs. (1) and
(2), we replace the conductance G(d, T ) by a polynomial
expansion with respect to the separation distance,

G(d, T ) = A0 + A1d−1 + A2d−2, (9)

where A0 = 10.9 W m−2 K−1, A1 = 0 W m−1 K−1 and A2 =
3.61 × 10−12 W K−1 are the fitting parameters calculated
from the exact expression of heat flux.

To demonstrate the existence of bistability, we investigate
the spatiotemporal evolution of displacement and temperature
profiles by solving numerically the differential system Eqs. (1)
and (2). The complexity of this system does not allow us to
derive analytically an existence criteria of bistability. How-
ever, it is clear that the equilibrium temperature of the beam
must be close to the critical temperature of the MIT material.
Therefore, the temperatures of substrate, wall, and thermal
bath must not be all above or below Tc. To solve numerically
the system of nonlinear coupled differential equations, we
use a finite-difference method based on an implicit scheme
[39,40]. Concerning the geometric parameters, we choose val-
ues (δ = 1 μm, L = 360 μm, h1 = 90 nm for the VO2 layer,
h2 = 910 nm for the SiO2 layer, whereas the length of the
substrate is l = 30 μm, placed at distance d0 = 250 nm from
the x axis) to ensure a relative balance between the magnitude
of heat flux exchanged in far and near fields. An analysis of the
dependence of the bistability effect on these parameters and
on the temperatures is presented in Ref. [41]. For SiO2 we use
E2 = 68 GPa, C2 = 730 J K−1 kg−1, ρ2 = 2650 kg m−3, α2 =
8 × 10−6 K−1, and the optical data given in Ref. [30]. For
VO2, we take C1 = 344 J K−1 kg−1, ρ1 = 4570 kg m−3, and
E1 = 85 GPa since it does not vary significantly with the
phase [42]. To describe the temperature dependence of the
physical property a1 of VO2 (a1 ∈ {α1, κ1, ε1}, ε1 being
the emissivity), around Tc we use the smoothing function

S(T, Tc, β ) = 1

1 − e−2β(T −Tc )
, (10)

where β is a parameter allowing us to adjust the smoothness
in the transition region between the dielectric and the metallic
phases. In terms of this function, the physical quantity a1 is
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given by

a1(T ) = a1d + S(T, Tc, β )(a1m − a1d ), (11)

where a1d and a1m are the properties in the dielectric
and metallic phases, respectively. For film thicknesses of
few dozens of nm, the transition generally occurs over a
temperature interval of a few degrees. We assume here a
range of approximately 10 degrees, which corresponds to
the value β = 0.5 K−1. As for the physical quantities asso-
ciated with VO2 they are [23,31] α1d = 26.4 × 10−6 K−1,
κ1d = 3.6 W m−1 K−1, ε1d = 0.8 in the dielectric phase
and α1m = 17.1 × 10−6 K−1, κ1m = 3.6 W m−1 K−1, ε1m =
0.1 in the metallic phase. Finally, the damping factor γ is
defined in terms of the oscillator quality factor Q as [43]
γ = 3.52 Q−1L−2√EIμ. It depends on the surrounding envi-
ronment and on the first natural frequency of the cantilever.
For a cantiver embedded in air and in vacuum, the quality
factors are Q ≈ 100 and Q ≈ 50 000 [43], respectively.

In Fig. 2, we show the time evolution of T (L, t ) and
u(L, t ) for the temperatures {Te, Tw, Ts} = {300, 356, 353} K,
with the boundary conditions u(x, 0) = g(x) = 135 m−1x2

and T (x, 0) = f (x) = λx2 − 2λLx + Tw, where λ is an ad-
justable parameter. Notice that a parabolic initial temperature
profile is similar to the type of solution we get in the steady-
state regime. We observe in Fig. 2 that for two different
values of λ [λ = −0.1 × 108 K m−2 (blue curves) and λ =
3 × 108 K m−2 (red curves)], that is, for two different initial
temperature profiles, the system evolves to two distinct stable
solutions, thus demonstrating its bistability. More specifically,
we show in the left inset of Fig. 2(a) that, as a function
of λ, only two stationary solutions for T (L, t ) are obtained.
Since the surrounding medium only affects the oscillator
damping and does not modify its asymptotic behavior, the
steady-state solutions are the same both in vacuum and in air.
We also observe that the steady state is reached after almost
the same time interval (τ∞ ≈ 0.5 s) in both cases. This time
is in agreement with the decay timescale τc = ρ CL2/κ ≈
0.14 s, which can be extracted from a simple dimensional
analysis of the energy-balance equation. The behavior of the
displacement u(L, t ) is more interesting, and contrarily to the
temperature evolution it clearly depends on the surrounding
medium. Although the time needed both in air and in vacuum
to reach the asymptotic regime is still τ∞, the displacement
oscillates differently in vacuum and in air. As shown in the
left inset of Fig. 2(b), we clearly observe two oscillation
frequencies, corresponding to the first and third natural fre-
quencies of the cantilever, ω1 = 3.52 L−2√EI/μ and ω3 =
61.7 L−2√EI/μ. Since the decay time τωi of these oscil-
lations is proportional to the quality factor (τωi = 2Q/ωi),
the longest decay timescales in air and vacuum are, re-
spectively, τ air

ω1
= 5.1 × 10−3 s, and τ vacuum

ω1
= 2.5 s. As ex-

pected, the damping of the oscillations is stronger in air than
in vacuum.

We now explore the possibility of using the bistability,
identified so far only for a specific configuration, to produce
a hysteretic behavior with respect to an external control
parameter. A natural parameter is the substrate temperature
Ts or the wall temperature Tw (modifiable using for instance
Peltier elements or external laser sources). Here we will
focus on Ts as a control parameter. We start by identifying

FIG. 2. Time evolution of the (a) temperature and (b) displace-
ment of the free end of the cantilever. The main part of both
plots refers to an evolution in air, the right insets in vacuum. The
red-dashed curves are the lower-temperature solutions obtained for
λ = −0.1 × 108 K m−2, the blue-solid curves the upper-temperature
solutions obtained for λ = 3 × 108 K m−2. The left inset of panel
(a) describes the time evolution of T (L, t ) as a function of the
parameter λ associated to the initial temperature profile (see main
text for details). The left inset of panel (b) gives the time evolution
of u(L, t ) in air over a shorter timescale.

numerically the range for this temperature over which the
bistability is present. To this aim, we perform numerical
calculations keeping all the parameters, except Ts, unchanged.
The steady solutions for T (L) are represented by the blue and
orange solid lines in Fig. 3(a). We clearly see that, when Ts

lies in the range [349, 356.3] K [gray zone in Fig. 3(a)], we
observe a bistable behavior, while for values of Ts outside this
range we only get one stable solution. As suggested by the
curves plotted in Fig. 3(a), a time variation of Ts allows us
to switch from one stable solution to the other one through a
hysteresis loop. Of course, this possibility strongly depends
on the specific time dependence of Ts, and in particular on
the comparison between the typical timescale over which Ts

is tuned and the relaxation time τc of our system. To get a
deeper insight into this aspect, we let Ts vary according to
the time-dependent function represented in Fig. 3(b). We start
from a minimum temperature Tm = 347 K and from t = 0
to t = τ1 we increase the value of Ts up to its maximum
TM = 358 K through the growing branch of the function
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FIG. 3. (a) Phase diagram of the time-dependent temperature
T (L, t ) of the free end of the cantilever as a function of the substrate
temperature Ts(t ). The three different curves correspond to different
profiles of Ts(t ) (see legend). The blue and orange solid curves corre-
spond the steady-state solutions for T (L) associated with each value
of Ts. (b) Imposed time dependence of the substrate temperature Ts

(see text for functional dependence). The blue segment represents the
decay timescale τc. (c) Time evolution of T (L) as a function of time
[same color scheme as in panel (a)]. The horizontal brown dashed
line represents the critical temperature Tc. (d) Time evolution of T (L)
for constant Ts equal to 353 K (solid), 358 K (dashed), and 400 K (dot
dashed).

(TM − Tm)(1 − cos[π t/τ1])/2. We then keep Ts = TM during
a time interval τ2 to finally go down to Tm over a time
interval τ1 through the descending branch of the function
(TM − Tm)(1 − cos[π (t − τ2)/τ1])/2. We observe that, when
the period of modulation is smaller than the time of thermal
relaxation of the cantilever, the latter is not sufficiently heated
up to transit into its metallic phase [dot-long-dashed curve in
Fig. 3(c)]. On the contrary, with a slower thermal excitation
the system is able to perform the transition and its temperature
switches from the lower stable solution to the upper one
beyond Tc.

The two stable solutions plotted in Fig. 3(a) correspond
to a net heat flux which is locally convex in the [Ts, T (L)]
plane. In Fig. 3(d), we also demonstrate the presence of an
unstable solution. The time evolution of T (L, t ) is plotted
for three fixed values of Ts = 353, 358, 400 K, assuming that
the initial temperature profile is T (x, 0) = f (x) with λ =
3 × 108 K m−2. For Ts = 353 K (Ts = 400 K), we observe
the expected convergence to the lower (upper) solution on a
timescale ≈τc. Differently, for Ts = 358 K we highlight an
intermediate plateau before the system converges to its unique
steady-state solution. This is a signature of the fact that Ts

is still close to the region where two solutions exist, and is
analogous to the saddle-point behavior already observed in
Ref. [6].

A direct application of this thermomechanical bistability
is the thermal treatment of information. It is straightforward
to see that such a system can operate as a NOT gate when
the control parameter Ts is the input of the gate and T (L) its
Boolean output. If we define a thermal state 0 as the state
where Ts is close to Tm and a thermal state 1 as the state
where Ts is close to TM [by defining appropriate threshold
temperatures] and, on the other hand, two states 1 and 0
when T (L) < Tc (larger bending) and T (L) > Tc (smaller
bending), then the cantilever behaves like a NOT gate. The
coupling of such oscillators and their control with multiple
input parameters could allow to define more complex logical
operations.

We have shown that a phase-transition cantilever in a
scenario out of thermal equilibrium may have a bistable
thermomechanical behavior. We have demonstrated that its
temperature profile can be driven by external heat flux and
switched from one stable state to another, thus paving the
way to basic logical operations using external thermal control
parameters. Several open questions remain to be explored
at a fundamental level, including the thermal preparation of
oscillators, their coupling with other oscillators, and their
scalability to operate at different time and spatial scales.

The authors are grateful to Prof. P. Salvini for very fruitful
discussions.
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