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Quantized large-bias current in the anomalous Floquet-Anderson insulator
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We study two-terminal transport through two-dimensional periodically driven systems in which all bulk
Floquet eigenstates are localized by disorder. We focus on the anomalous Floquet-Anderson insulator (AFAI)
phase, a topologically nontrivial phase within this class, which hosts topologically protected chiral edge modes
coexisting with its fully localized bulk. We show that the unique properties of the AFAI yield remarkable
far-from-equilibrium transport signatures: for a large bias between leads, a quantized amount of charge is
transported through the system each driving period. Upon increasing the bias, the chiral Floquet edge mode
connecting source to drain becomes fully occupied and the current rapidly approaches its quantized value.
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Introduction. Topological phenomena, such as the quantum
Hall effect [1] and Thouless’ adiabatic pump [2], are charac-
terized by the precise quantization of certain transport proper-
ties. Recently, periodic driving has emerged as a versatile tool
to control the topological characteristics of quantum systems
[3–20]. Such “Floquet” systems can be realized in a wide
variety of physical settings, including cold atomic, optical,
and electronic systems [21–24]. The extent to which Floquet
systems may host quantized transport is an important direction
of investigation.

Interestingly, periodically driven quantum systems host
unique topological phases which cannot be realized by their
static counterparts [5,8,25–38]. The richer topological clas-
sification of these systems is due to their discrete (rather than
continuous) time translation symmetry, which is manifested as
a periodicity of the quasienergy—the energylike variable that
characterizes the Floquet spectrum. Crucially, this structure
provides the basis for wholly new types of quantized transport
phenomena, also without analogs in static systems.

The first example of a quantized transport phenomenon
unique to periodically driven systems was uncovered in
Ref. [2]. There, Thouless showed that the charge transmitted
through an insulating one-dimensional system is quantized
as an integer multiple of the fundamental charge when the
system is adiabatically driven through a cycle in parameter
space.

More recently, in Ref. [29] it was shown that two-
dimensional, disordered, periodically driven systems host a
unique topological phase called the anomalous Floquet An-
derson insulator (AFAI). In the AFAI phase, all bulk Floquet
eigenstates are localized, while chiral edge states run along the
system’s boundaries. The AFAI’s chiral edge states exist at all
quasienergies; each such chiral edge mode carries a quantized
current when completely filled. In this work we show that, in a
two-terminal transport setup, the AFAI carries a net quantized
current I = W2D/T in the limit of large source-drain bias

(see Fig. 1). Here W2D is the winding number invariant
that characterizes two-dimensional (2D) periodically driven
systems [25,29,39]. Associated with the quantized current, we
find an inhomogeneous density profile in which the AFAI’s
right-moving chiral edge state is fully occupied, while the
left-moving chiral edge state is empty. Importantly, while
quantized pumping in the Thouless pump is found in the adia-
batic limit, the large-bias quantized current carried by a driven
system in the AFAI phase occurs for intermediate driving
frequencies (comparable to the system’s natural bandwidth).

The AFAI phase occurs in two-dimensional systems,
whose dynamics are governed by a time-periodic Hamilto-
nian HS (t ) = HS (t + T ), where T is the driving period. The
periodic driving gives rise to a unitary evolution US (t ) =
T e−i

∫ t
0 dt ′HS (t ′ ), where T denotes time ordering. The spectrum

of the Floquet operator US (T ), given by US (T )|ψn(0)〉 =

FIG. 1. Quantized transport in the AFAI phase. (a) Two-terminal
transport setup. A large source-drain bias ensures that the edge states
running from source to drain are fully filled, while those running
from drain to source are empty. (b) Bias (V ) dependence of the
steady-state current, I , for clean (light blue) and fully localized
(dark red) systems. In the disordered system the current saturates to
the quantized value I = 1/T for V � 2�, where � = 2π/T is the
driving frequency.
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FIG. 2. Model of the AFAI phase. (a) Driving proceeds in five
steps of equal length, T/5. In each step, the highlighted bonds are
active with strength Ji j = 5π/(2T ), Eq. (2), while all others are set
to 0. The sublattices A and B are denoted by black and white circles,
respectively. (b) Quasienergy spectrum of H clean

S , with D = π/(2T ).
(c) Spectrum of the truncated extended zone (EZ) picture system
Hamiltonian, HEZ

S (with M = 3), see Eq. (9), in the absence of
disorder. While the bands near E = 0 have Chern number zero, close
to the truncation we find bands with Chern numbers ±1.

e−iεnT |ψn(0)〉, defines the Floquet states {|ψn(t )〉} and their
quasienergies {εn}.

To study quantized transport in the AFAI phase, we
consider a finite region of AFAI connected to two wide-
bandwidth (nondriven) leads, as shown in Fig. 1(a). The leads
are indexed by λ = {L, R}, standing for the left and right
leads, respectively. Dynamics of the combined system-lead
setup are described by the Hamiltonian

H (t ) = HS(t ) +
∑

λ=L,R

Hλ +
∑

λ=L,R

HSλ, (1)

where HS(t ) = HS(t + T ) is the time-periodic Hamiltonian of
the AFAI system, Hλ is the Hamiltonian describing lead λ,
and HSλ describes the coupling between the system and lead
λ. We treat each lead as an ideal Fermi reservoir, with fill-
ing characterized by an equilibrium Fermi-Dirac distribution
with chemical potential μλ in lead λ. Specific forms for the
Hamiltonian terms above will be given below. Throughout this
paper, we use e, h̄ = 1.

The AFAI phase can be realized by a variety of driving
protocols and experimental platforms, including solid-state
and cold atoms. For concreteness and simplicity, here we use
the square lattice tight-binding model introduced in Ref. [29].
In this model, the AFAI is described by the Hamiltonian
HS (t ) = H clean

S (t ) + ∑
i wic

†
i ci, where c†

i (ci) is the fermionic
creation (annihilation) operator for site i, and wi is a normally
distributed on-site disorder potential with zero mean and
standard deviation w. The clean (disorder-free) Hamiltonian
is given by

H clean
S (t ) =

∑
〈i j〉

Ji j (t )c†
i c j +

∑
i

Dnic
†
i ci, (2)

where {Ji j (t )} are time-dependent nearest-neighbor hopping
amplitudes. It is convenient to define two sublattices A and
B on the square lattice (see Fig. 2). The piecewise-constant

amplitudes Ji j (t ) connecting the two sublattices are modulated
according to the five-step cycle depicted in Fig. 2(a), where
each step has length T/5. Within each step, all nonzero
hopping amplitudes (bold bonds) have strength J = 5π

2T ; in
the fifth interval, all Ji j = 0. The parameter D is a staggered
potential on the A and B sublattices, with ni = +1 (−1) for
the A (B) sublattice. We emphasize that the quantization of
the current at large bias is universal and independent of the
specific model; a cold atom realization based on Refs. [40,41]
is analyzed in the Supplemental Material [42].

Within the AFAI phase, realized for nonzero w below a
critical value [29], the system in an open geometry exhibits
chiral edge sates in coexistence with a fully localized bulk.
These chiral edge states are illustrated in the example spectra
for the clean system (w = 0) in an infinite-strip geometry,
shown in Fig. 2(b).

We now study the steady-state current transported through
the system when it is coupled to leads. To this end, we
consider the Heisenberg equations of motion for the operators
c j (t ) = U (t )c j (t0)U †(t ) and aλ

j (t ) = U (t )aj (t0)U †(t ), where
aλ

j is the fermionic annihilation operator on site j of lead λ,

and U (t ) = T e−i
∫ t

t0
dt ′H (t ′ ) is the evolution operator for the full

Hamiltonian, Eq. (1).
To simplify notation we introduce the operator vectors

aλ = (· · · aλi · · · )T and c = (· · · ci · · · )T , and express the sys-
tem, lead, and system-lead coupling Hamiltonians in Eq. (1)
as HS (t ) = c†HS (t ) c, Hλ = a†

λHλaλ, and HSλ = c†HSλaλ +
H.c., respectively. We leave the specific forms of the matrices
Hλ and HSλ unspecified for now.

The macroscopic leads are assumed to be attached in
the very long past, such that the system operators c(t ) are
completely determined by the distribution in the leads; i.e.,
there is no memory of any initial occupations in the system.
We then write a formal solution for the Heisenberg equation
of motion, iċ = HSc + ∑

λ HSλaλ:

c(t ) =
∫

dt ′G(t, t ′)

[∑
λ

HSλgλ(t ′ − t0)aλ(t0)

]
, (3)

where gλ(t ) = −i exp(−iHλt )θ (t ) is the retarded propagator
for lead λ and G(t, t ′) is the full retarded Green’s function
within the system.

For the calculations below, it is convenient to furthermore
define the Fourier-transformed Floquet Green’s function,

G(k)(E ) = 1

T

∫ T

0
dt

∫ ∞

−∞
ds G(t, t − s)eiEseik�t , (4)

and

ξλ(E ) = HSλρλ(E )H†
Sλ, (5)

where ρλ(E ) = ∑
n δ(E − Eλn)|λn〉〈λn| captures the density

of states of lead λ, with Hλ|λn〉 = Eλn|λn〉 [43].
The net current flowing into the right lead, averaged over

one period, is given by

I = 1

T

∫ T

0
dt i〈[H (t ), NR(t )]〉, (6)

where NR(t ) = a†
R(t )aR(t ) is the number operator for the right

lead. Through Eq. (3) we express the system operators c(t )
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FIG. 3. Considerations leading to the sum rule in Eq. (10).
(a) Transport through the driven system. A particle with energy
E enters the system from the left lead via the component |φ (0)

ε 〉
of a Floquet state |ψε (t )〉, with quasienergy ε ≈ E . The particle
then scatters into a state with energy E + k� in the right lead via
its coupling to the component |φ (k)

ε 〉. (b) Transport in the static
extended zone (EZ) system [see Eq. (9)]. The EZ lead consists of
2M + 1 identical channels, shifted in energy by integer multiples
of �. A state in the lead with energy μ and harmonic index n is
coupled to the component |
(n)

μ 〉 of the eigenstate |ψEZ
μ 〉 of HEZ

S with
eigenvalue μ.

as linear combinations of the lead operators aλ(t0) in the
distant past (we take t0 → −∞). Similarly, the lead operators
aλ(t ) can be written in terms of aλ(t0). We assume that the
state in each lead λ is given by a Fermi distribution fλ with
chemical potential μλ and temperature Tλ: 〈a†

λn(t0)aλm(t0)〉 =
δnm fλ(ελn), where a†

λn creates an electron in eigenstate |λn〉
in lead λ (see above). Using Eqs. (3)–(5) and the Fermi
distributions for the leads, a standard calculation gives [44]

I = 2π

∫ ∞

−∞
dE

∑
k

{
T (k)

RL (E ) fL(E ) − T (k)
LR (E ) fR(E )

}
,

T (k)
λλ′ (E ) = Tr[G(k)†(E )ξλ(E + k�)G(k)(E )ξλ′ (E )]. (7)

Here T (k)
λλ′ (E ) is the probability for an electron at energy E to be

transmitted from lead λ′ to lead λ, along with the absorption
of k photons from the driving field.

As we now show, the steady-state time-averaged current
carried by the AFAI, Eq. (7), is quantized in the limit of large
bias, V → ∞, with μL = V/2, μR → −V/2. In this limit we
may set fL(E ) = 1 and fR(E ) = 0, yielding

I =
∫ ∞

−∞
dE σ (E ), σ (E ) = 2π

∑
k

T (k)
RL (E ). (8)

In the following, we show the quantization of the current by
relating σ (E ) to the differential conductance of an associated
static system. For illustration, we first consider the dominant
processes contributing to σ (E ) [see Fig. 3(a)]. In each pro-
cess a particle in the left lead with energy E scatters into
a Floquet state of the system with quasienergy ε ≈ E + n�

[45]. The integer n is determined by our convention for Flo-
quet states, |ψε(t )〉 = e−iεt

∑
m |φ(m)

ε 〉e−i�mt , with −�/2 �
ε < �/2. The scattering process thus proceeds through the
coupling between the lead state and the component |φ(−n)

ε 〉.
The particle then scatters into a state in the right lead with
energy E + k�, via its coupling to the component |φ(k−n)

ε 〉.
Thus, in the process of scattering from the left to the right
lead the particle absorbs k photons from the time-periodic
drive. The collection of processes involving such changes in

the particle’s energy is captured by the sum appearing in the
definition of σ (E ), Eqs. (7) and (8).

We now reexpress the current, Eq. (8), as I =∫ �/2
−�/2(dI/dε)dε, with dI/dε = ∑

n σ (E + n�). The quantity
dI/dε can be related to the differential conductance of
a static system, which describes the periodically driven
system in an “extended zone” (EZ) frequency-space
picture. The Hamiltonian of the static EZ system is
given by HEZ = ∑M

m,n HEZ
mn |m〉〈n|, where the sum runs

over −M � n, m � M, and

HEZ
mn = − δmnn� +

∫ T

0

dt

T
ei(m−n)�t H (t ). (9)

The operator HEZ acts in enlarged Hilbert space, which is
a tensor product of the original Hilbert space and a (2M +
1)-dimensional auxiliary space, which we call the harmonic
space.

As in Eq. (1), we write HEZ = HEZ
S + ∑

λ HEZ
Sλ +∑

λ HEZ
λ . An eigenstate of HEZ

S with energy E can be ex-
panded as |ψEZ

E 〉 = ∑
n |
(n)

E 〉 ⊗ |n〉. The eigenvalues of HEZ
S

in the range −�/2� E< �/2 approximate the quasienergy
spectrum of US (T ) = T e−i

∫ T
0 dtHS (t ), becoming exact for

M → ∞. Importantly, in this limit, for each |ψEZ
E 〉 there is

a corresponding partner Floquet state with quasienergy ε =
E + m� (with |ε| � �/2) in the original driven problem:
|ψε(t )〉 = e−iεt

∑
n |φ(n)

ε 〉e−i�nt , with |φ(n−m)
ε 〉 = |
(n)

E 〉.
We now relate the relevant transport processes in the static

EZ and Floquet pictures (see Fig. 3). Consider the differential
conductance, σEZ(μ), of the EZ system described by HEZ.
Since the lead is not driven, the spectrum of HEZ

λ consists
of 2M + 1 copies of that of Hλ, shifted by integer multiples
of �; it can thus be viewed as a lead with many channels,
labeled by the harmonic index. We define σEZ(μ) by taking
the Fermi level of the left and the right EZ leads to be μ + δμ

and μ − δμ, and take −�/2 � μ < �/2 throughout [46].
Consider now the dominant processes contributing to

σEZ(μ). The system-lead coupling HEZ
Sλ conserves the har-

monic index. Therefore, a lead state with energy E and har-
monic index n (which corresponds to a state of the physi-
cal lead with energy E − n�) is coupled to the state |ψEZ

E 〉
through the component |
(n)

E 〉. To obtain σEZ(μ), we sum
the contributions of states with energies close to μ from all
harmonic-index channels in both leads. Using the correspon-
dence between {|ψEZ

μ 〉} and {|ψμ(t )〉}, for M 	 1, we thus
obtain [42] ∑

n

σ (μ + n�) = σEZ(μ). (10)

Importantly, in the EZ picture, σEZ(μ) is just the two-
terminal differential conductance of a disordered Chern in-
sulator, with μ lying in a mobility gap. To see why this is
the case, consider the spectrum of HEZ

S in the AFAI phase.
In the spectral range −�/2 � μ < �/2 it exhibits two im-
portant properties: (i) all bulk states are localized [48], and
(ii) chiral edge states exist at all energies within this range.
These two properties of HEZ

S are a direct consequence of
the properties of US (T ) in the AFAI phase. Since in the EZ
picture the number of edge states corresponds to the total
Chern number of all bulk states below μ, the spectrum of
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FIG. 4. Steady-state current vs disorder strength w, for V 	 �.
As w is increased from zero, the steady-state current (averaged over
a period) rapidly approaches the quantized value of 1/T [47]. The
sample has dimensions L × W = 40 × 20 sites. The leads are taken
to have widths W0 = W/2. Inset: Bulk contribution to the steady-
state current, computed using a cylindrical geometry with contacts
on opposite edges of the cylinder, for w = 4.5/T . Exponential decay
of the bulk contribution with increasing L indicates that the system
is in the localized regime.

HEZ
S must contain a band with nontrivial Chern number at

an energy near the harmonic space truncation at n = −M.
The quantized two-terminal differential conductance of such
a Chern insulator [49], σ EZ(μ) = W2D, together with Eq. (8),
yields I = ∑

n

∫ �/2
−�/2 dE σ (E + n�) = W2D/T .

For the model given in Fig. 2(a), the above considerations
are exemplified by inspecting the spectrum of the correspond-
ing HEZ

S (without disorder), given in Fig. 2(c). Here we find
a single chiral edge in the spectral range −�/2 � E < �/2;
in this spectral range, the Chern numbers of the bands are all
zero. However, the highlighted bands near the bottom and top
of the spectrum, which are strongly affected by the truncation,
have Chern numbers ±1.

Numerical simulations. To support the arguments above,
we now numerically study the steady-state current. We sim-
ulate the model described above, Eq. (1), for a range of
system sizes and disorder strengths w (see Fig. 4). We take
D = π/(2T ), and the leads to have constant density of states,
ρ0λ = 1/J . The lead-system coupling HSλ is taken to yield
ξλ(E ) = ∑

r∈W0
ρ0λ|r〉〈r|, where the sum runs over W0 system

sites directly adjacent to lead λ [see Fig. 5(a)].
In the presence of disorder, all bulk states are localized

and the current through the bulk vanishes exponentially with
the distance between the leads. To probe this, we computed
the current in a cylindrical geometry, with leads attached at
opposite ends of the cylinder such that there were no edge
states connecting the source and drain (shown in the inset of
Fig. 4). As shown in Fig. 1(b) and the main panel of Fig. 4,
for the Hall bar geometry of Fig. 1(a) the total current through
the system saturates to the quantized value I = 1/T in the
insulating regime, for large (finite) bias.

As explained above, a quantized current is expected to flow
in the AFAI when the edge states exiting from the left lead are
completely filled, while those exiting the right lead are empty.
We confirm this picture (for a typical disorder realization)

FIG. 5. (a) Map of the steady-state period-averaged density, ni,
for w = 4.5/T . The large bias between the leads, V 	 �, ensures
that the edge state running from source to drain is fully occupied,
while that running from drain to source is empty. (b) The period-
averaged bond currents ji j (see text). The current density is concen-
trated at the interface between fully occupied and empty regions.

by mapping out the steady-state time-averaged local density,
ni = 1

T

∫ T
0 dt 〈c†

i (t )ci(t )〉, in Fig. 5(a). This situation is real-
ized for “good” contacts, with appropriately strong couplings
ξλ and large enough contact width W0 (see Fig. 5 and the
Supplemental Material [42]).

To further investigate the spatial distribution of the current,
we map out the period-averaged bond current density, ji j =
1
T

∫ T
0 dt 2Im[Ji j (t )〈c†

i (t )c j (t )〉] [see Eq. (2)]. As shown in
Fig. 5(b), the current density is concentrated at the boundary
of the filled and empty regions. This result may at first seem
counterintuitive since (a) all states in the bulk are localized
and (b) we expect the quantized current to be carried by
the chiral edge states. However, it is crucial to remember
that the local current density ji j (t ) includes contributions of
both transport currents and magnetization current [39,50]. The
quantized transport current is indeed carried by the chiral
edge states, as they are the only delocalized states in the
system [42].

Summary. In this work we demonstrated theoretically a
topological quantized transport phenomenon, occurring in
disordered two-dimensional periodically driven systems. In
contrast to the equilibrium quantized Hall conductivity, in the
AFAI phase, which occurs in a system far from equilibrium,
we find a quantized current in the limit of large bias [51].
Looking ahead, disorder-induced localization may provide
a route for stabilizing interacting Floquet phases of matter
by suppressing energy absorption from the periodic drive.
Recently, several works proposed interacting analogs of the
AFAI [52–56]. Determining whether quantized transport and
other response functions can be used to probe these interacting
phases will be crucial for further progress in the field.
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