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Topological charge pumping by a sliding moiré pattern
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We study the adiabatic topological charge pumping driven by interlayer sliding in the moiré superlattices. We
show that, when we slide a single layer of the twisted bilayer system relatively to the other, a moiré pattern
flow and a quantized transport of electrons occur. The number of pumped charges is quantized to a sliding
Chern number, which is related to the interlayer sliding degree of freedom. In the twisted bilayer graphene,
the topological pumping current flows perpendicularly to the sliding direction when the Fermi energy is in the
energy gap above or below the nearly-flat bands.
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The spiral pump, also known as the Archimedes’ screw,
is a mechanical device to pump up water by a rotating spiral
blade. The machine converts the cyclic motion of blade to a
directed motion of water, and it works no matter how slowly
the screw is rotated. The quantum version of this phenomena
is known as the Thouless pumping [1], where an adiabatic,
cyclic movement of a periodic potential pumps particles with-
out a bias voltage. The amount of the transferred particles is
precisely quantized and expressed as a topological invariant.
The experimental realization of quantum pumping requires
precise control of the time-dependent periodic potential. The
electron pumping experiments have been performed in various
semiconductor-based nanoscale devices [2–4]. More recently,
the topological charge pump was realized in ultracold atoms in
optical superlattices [5–7], and it was also extensively studied
in theory [8–15].

In this Rapid Communication, we propose a simple real-
ization of topological pumping using the moiré superlattice
of the two-dimensional (2D) materials. When two periodic
lattices are overlaid on top of each other with a relative
rotation, the lattice mismatch between the layers gives rise
to a moiré interference pattern. If we slide a single layer of
the twisted bilayer system relatively to the other, the moiré
pattern flows at a much faster speed than the sliding speed as
shown in Fig. 1. The process is cyclic, as sliding by a single
atomic constant shifts the moiré pattern exactly by a single
superlattice period. We can then ask how the electrons are
transported by the movement of the moiré pattern.

Here we study the topological charge pumping driven by
interlayer sliding in the moiré superlattices. We first consider
a one-dimensional (1D) double-chain model composed of
two tight-binding chains with different lattice constants. We
show that the number of pumped charges in the interlayer
sliding process is quantized into a sliding Chern number,
which satisfies a Diophantine equation similar to that for the
quantum Hall effect [16]. We apply the same argument to the
twisted bilayer graphene (TBG) [17–23], and find that eight
Chern numbers are associated with each single gap, which
correspond to different pumping directions under different
sliding directions. In low-angle twisted bilayer graphenes,

we show that energy gaps above and below the nearly-flat
bands [22,24] has nonzero sliding Chern numbers. When
the Fermi energy is in either of those gaps, the electrons
are pumped almost perpendicularly to the sliding direction
following the movement of the moiré pattern.

Let us consider a 1D double chain as illustrated in Fig. 2(a).
The system contains two atomic chains with different lattice
constants, which are arranged parallel to one another in a
certain distance d0. The chains are denoted by 1 and 2 and
their lattice constants by a1 and a2, respectively. In the fol-
lowing, we consider a commensurate case N1a1 = N2a2 = L
with integers N1 and N2, where a vertical overlap of an atom
pair from both chains appears in a period L.

We calculate the eigenenergies and eigenfunctions in a
double-chain tight-binding model with s atomic orbitals on
each single site. The Hamiltonian is written as

H = −
∑
〈i, j〉

t (Ri − R j )|Ri〉〈R j | + H.c., (1)

where Ri and |Ri〉 represent the lattice point and the atomic
state at site i, respectively, and t (Ri − R j ) is the transfer
integral between site i and site j. For the intrachain hopping
we just take the nearest-neighbor hopping and it is assumed
to be the same for both chains and defined as unit of energy.
For the hopping between sites on the different chains, we
assume t (d ) = t0e−(d−d0 )/δ0 where d = |Ri − R j | and δ0 is
decay length. In this Rapid Communication we assume t0 =
4.0, d0 = 1.0, and δ0 = 0.1.

We consider an adiabatic charge pumping caused by a
relative sliding of chains. By starting from an initial state
in Fig. 2(a), we horizontally shift either of chain l = 1 or
2 by λal (0 � λ � 1) with the other chain fixed. When λ is
increased from 0 to 1, the Hamiltonian returns to its original
state. We assume that the shift occurs in a sufficiently long
time, so that we can treat the problem as an adiabatic topo-
logical pumping [1]. The charge transport in such a process
is expressed as a change of the polarization. If the Fermi
energy lies inside a certain gap of the spectrum, the electric
polarization, or the center of mass of the occupied electrons,

2469-9950/2020/101(4)/041112(5) 041112-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4882-0465
https://orcid.org/0000-0001-9702-4196
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.041112&domain=pdf&date_stamp=2020-01-28
https://doi.org/10.1103/PhysRevB.101.041112


FUJIMOTO, KOSCHKE, AND KOSHINO PHYSICAL REVIEW B 101, 041112(R) (2020)

FIG. 1. Moiré pumping in twisted bilayer graphene. From left to
right, we slide the layer 1 by half of the atomic constant and then the
moiré pattern shifts by the half of the moiré period as indicated by a
pink circle.

is given by

P(λ) =
∑

n∈occ.

L

2π

∫ π/L

−π/L
dk i〈unk (λ)| ∂

∂k
|unk (λ)〉, (2)

where unk (λ) is the Bloch eigenstate of the nth band in the
instantaneous Hamiltonian at shift λ, and occ. represents the
occupied bands below the Fermi energy. The charge transport
during the process is then given by �P = ∫ 1

0 dλ(∂P/∂λ). This
is expressed as �P = CL with the sliding Chern number,

C =
∑

n∈occ.

iL

2π

∫ π/L

−π/L
dk

∫ 1

0
dλ

[〈
∂u

∂λ

∣∣∣∂u

∂k

〉
−

〈
∂u

∂k

∣∣∣ ∂u

∂λ

〉]
, (3)

where u = unk (λ). We can define two different Chern numbers
Cl (l = 1, 2) for the movement of chain l .

Figure 2(b) shows the evolution of a wave function of the
lowest band in the double chain of (N1, N2) = (10, 11), where
the chain 2 (red) is shifted by λa2 with the chain 1 (blue) fixed.

FIG. 2. (a) Double-chain model with N1 = 4, N2 = 5. (b) Evo-
lution of a wave function of the lowest band in the double chain of
(N1, N2) = (10, 11), where the chain 2 (red) is shifted by λa2 with
the chain 1 (blue) fixed. (c) Polarization P [Eq. (2)] in the lowest gap
as a function of sliding parameter λ.

FIG. 3. Energy spectrum of the one-dimensional double-chain
model as a function of N1/N2. The numbers assigned to gaps indicate
the sliding Chern numbers (C1,C2).

The blue and red dots in the bottom represent the horizontal
positions of chains 1 and 2, respectively. We see that the wave
center exactly follows the atom overlap region, i.e., the region
where the chain 1 atoms and chain 2 atoms are overlapping in
the horizontal position. In this particular system (N2 − N1 =
1), the center of the overlap region is given by x = λL as a
function of sliding paramater λ, so it moves exactly by the
superlattice period L from λ = 0 to 1. In Fig. 2(c), we plot
the polarization P [Eq. (2)] in the lowest gap as a function of
shift λ, where we actually see that the charge is pumped by L
after one cycle, i.e., C2 = 1. We can consider a similar process
to move chain 1 by fixing chain 2 instead, and then we have
C1 = −1, i.e., the change is pumped by a single moiré period
in the negative direction.

We calculate the band structure and the sliding Chern num-
bers for various configurations of N1 and N2. In Fig. 3, we plot
the energy spectrum as a function of N1/N2, where the filled
area represents the energy region where the eigenstates exist,
and the numbers assigned to the gaps are the sliding Chern
numbers (C1,C2). The picture shows some similarities with
Hofstadter’s butterfly [25] with the quantized Hall integers
in a two-dimensional periodic system under the magnetic
field [16]. Actually the sliding Chern numbers can be found
by using a Diophantine equation similar to that in the quantum
Hall systems [16], without integrating the Berry curvature in
Eq. (3), as in the following manner.

Let us consider a double chain specified by N1 and N2, and
assume the Fermi energy lies in a gap with r bands below, i.e.,
r bands out of N1 + N2 bands in total are fully occupied. If
we fix chain 2 and shift chain 1 by L(= N1a1), the number
of pumped electrons is given by N1C1, i.e., N1C1 electrons
passed through any cross section perpendicular to the double
chain. On the other hand, if we fix chain 1 and shift chain 2 by
−L(= −N2a2), the number of pumped electrons is given by
−N2C2, i.e., N2C2 electrons passed in the negative direction.
The former and the latter processes share the same relative
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motion between the two chains, but differ only in the absolute
position of the final state by L. If we shift the whole system
(chains 1 and 2 together) by L following the latter process,
it causes a pump of extra r electrons, because the number of
electrons per a superlattice period L is equal to the number of
occupied bands, r. The equality of the two processes leads to
N1C1 = −N2C2 + r, or

N1C1 + N2C2 = r, (4)

which is a Diophantine equation for the sliding Chern
numbers.

If we define the ratio of the double periods as α = N1/N2 =
a2/a1 and the electron density as ρ = r/N2, we have ρ =
C1α + C2. Now the Chern numbers C1 and C2 can easily be
derived from the diagram of Fig. 3, by counting the number of
states below a particular gap as a function of α, and calculating
∂ρ/∂α. This is an analog to Strěda’s formula in the integer
quantum Hall effect [26].

We can calculate the charge pumping in sliding TBGs in
the same manner. We define the structure of TBG of twist
angle θ by rotating layers 1 and 2 of the AA-stacked bilayer
around a center of hexagon by −θ/2 and +θ/2, respectively.
The lattice vectors of layer l are given by a(l )

i = R(∓θ/2)ai

with ∓ for l = 1, 2, respectively, where a1 = a(1, 0) and a2 =
a(1/2,

√
3/2) are the lattice vectors of the AA-stacked bilayer

before the rotation, a ≈ 0.246 nm is the lattice constant, and
R(θ ) represents the rotation by θ . When the rotation angle
is small, the mismatch between the lattice vectors of the two
layers gives rise to a long-range moiré pattern which is ruled
by the primitive lattice vectors [27],

LM
i = [R(θ/2) − R(−θ/2)]−1ai (i = 1, 2). (5)

The atomic structure of TBG is not exactly periodic in
general, because the moiré period is generally incommen-
surate with the underlying atomic lattice. A commensurate
structure with an exact period takes place when the twist
angle θ coincides with the angle between v1 = ma1 + na2 and
v2 = na1 + ma2 with certain integers m and n. Then the lattice
points v1 on layer 1 and v2 on layer 2 of the nonrotated bilayer
graphene merge after the rotation and a rigorously periodic
structure is obtained. A lattice vector of the superlattice unit
cell is then given by L = ma(1)

1 + na(1)
2 = na(2)

1 + ma(2)
2 . The

twist angle θ is equal to the angle between v1 and v2, which
is cos θ = (1/2)(m2 + n2 + 4mn)/(m2 + n2 + mn). The 60◦
rotation of L also gives a lattice vector because of C6 rotational
symmetry. We can choose two primitive lattice vectors as
L1 = R(−2π/3)L and L2 = R(−π/3)L, which can be writ-
ten as

L1 = na(1)
1 − (m + n)a(1)

2 = ma(2)
1 − (m + n)a(2)

2 ,

L2 = (m + n)a(1)
1 − ma(1)

2 = (m + n)a(2)
1 − na(2)

2 . (6)

In this choice, the rigorous period and the moiré period are
simply related by Li = |m − n|LM

i [27].
Now let us consider the charge pumping of a commensu-

rate TBG. We adiabatically slide the layer l (= 1 or 2) by its
own lattice period a(l )

i (i = 1 or 2) while the other layer is

fixed. The variation of polarization in this process is written
as

�P =C(l )
i1 L1 + C(l )

i2 L2, (7)

C(l )
i j =

∑
n=occ.

iS

(2π )2

∫
BZ

d2k
∫ 1

0
dλi

×
[〈

∂u

∂λi

∣∣∣∣ ∂u

∂k j

〉
−

〈
∂u

∂k j

∣∣∣∣ ∂u

∂λi

〉]
, (8)

where u = unk(λ1, λ2) is the Bloch eigenstate in the instan-
taneous Hamiltonian with the layer l shifted by λ1a(l )

1 +
λ2a(l )

2 , BZ represents the first superlattice Brillouin zone,
and S = |L1 × L2| is the superlattice unit cell area. ∂/∂k j =
(G j/|G j |) · ∇k, and G j is the reciprocal lattice vectors satisfy-
ing Gi · L j = 2πδi j . The sliding Chern number C(l )

i j represents
the number of electrons passed through the unit-cell side
perpendicular to G j (i.e., the cross section spanned by L2 for
j = 1, and L1 for j = 2), during an adiabatic sliding of the
layer l by a(l )

i . It is formally similar to, but different from the
Chern number for the quantized Hall conductivity [16], as it
is related to derivative in mechanical interlayer shift.

To obtain the Diophantine equation for the sliding Chern
numbers in the TBG, we follow the same steps as in 1D.
We assume that the Fermi energy is in a gap and r bands
are fully occupied. Considering that a shift of layer 1 by
L1[= na(1)

1 − (m + n)a(1)
2 ] is equivalent to a shift of layer 2 by

−L1[(= −ma(2)
1 + (m + n)a(2)

2 )] followed by a shift of whole
system by L1, we obtain

nC(1)
11 + mC(2)

11 − (m + n)
(
C(1)

21 + C(2)
21

) = r,

nC(1)
12 + mC(2)

12 − (m + n)
(
C(1)

22 + C(2)
22

) = 0. (9)

A similar argument for the shift by L2 gives

(m + n)
(
C(1)

11 + C(2)
11

) − mC(1)
21 − nC(2)

21 = 0,

(m + n)
(
C(1)

12 + C(2)
12

) − mC(1)
22 − nC(2)

22 = r. (10)

The exact lattice commensurability is not actually impor-
tant in low twist angles, where the physical property is approx-
imately described by the continuum model, which is periodic
in the moiré period LM

j [17,22,23,27–31]. Indeed, Eqs. (9)
and (10) can also be transformed in a continuous form as
follows. Since the rigorous period L j is |m − n| times as large
as the moiré period LM

j , a single continuum band corresponds
to |m − n|2 rigorous bands considering the zone folding, and
therefore the number of occupied continuum bands is given by
r̃ = r/|m − n|2. We can also define C̃(l )

i j = C(l )
i j /|m − n| as the

number of electrons passed through the cross section spanned
by LM

j in the adiabatic sliding of the layer l by a(l )
i . Then

Eqs. (9) and (10) become

β + 1

2
C̃(1)

11 + β − 1

2
C̃(2)

11 − β
(
C̃(1)

21 + C̃(2)
21

) = r̃,

β + 1

2
C̃(1)

12 + β − 1

2
C̃(2)

12 − β
(
C̃(1)

22 + C̃(2)
22

) = 0,

β
(
C̃(1)

11 + C̃(2)
11

) − β − 1

2
C̃(1)

21 − β + 1

2
C̃(2)

21 = 0,

β
(
C̃(1)

12 + C̃(2)
12

) − β − 1

2
C̃(1)

22 − β + 1

2
C̃(2)

22 = r̃, (11)
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where β = (1/
√

3) cot(θ/2).
In the TBGs with low-angle angles, it is known that the

nearly-flat bands around the charge neutral point are separated
from the rest of the spectrum by energy gaps [32–36]. If
we assume that the Fermi energy lies in the gap just above
the flat band, for example, we have r̃ = 4 (relative to the
charge neutral) by including the spin and valley degeneracies.
The set of equations of Eq. (11) can be regarded as identities
for a variable β, as it stands for any θ ’s in the low-angle
regime. Then the Chern numbers are uniquely determined
as C̃(1)

11 = C̃(1)
22 = 4, C̃(2)

11 = C̃(2)
22 = −4, and otherwise 0. Ac-

tually, we can show that sliding the layer l by a(l )
i leads to

the moiré-pattern movement by ±LM
i with ± for l = 1, 2,

respectively. The above solution of C̃(l )
i j means that four elec-

trons trapped at each AA-stacking region precisely follow the
movement of the moiré pattern, as naturally expected.

To conclude, we studied the topological charge pumping
driven by interlayer sliding in the moiré superlattices. The
number of pumped charges is quantized to the sliding Chern
numbers, which can be found as a solution of a Diophantine
equation. When the Fermi energy is in the energy gap above
or below the nearly-flat bands of the twisted bilayer graphene,

four electrons per superlattice period are conveyed following
the flow of the moiré pattern perpendicularly to the sliding
direction. The interlayer sliding in moiré superlattices is, in
principle, experimentally feasible by using a mechanical de-
vice [37]. We expect that the slide-driven topological pumping
may be observed as an electric current by source and drain
electrodes appropriately attached. If the system is isolated,
the interlayer sliding should generate an electric polarization
by accumulated charge at the edge. This naturally implies
the existence of the edge states in the energy gap with
nonzero sliding Chern numbers. The bulk-edge correspon-
dence of this problem will be studied elsewhere. Also, the
topological pumping in other moiré bilayer systems, such as
graphene/hBN [38–46] and transition metal dichalcogenide
bilayers [47–52], is left for future work.

Note added. Recently, we became aware of preprints which
also report the topological pumping by a sliding moiré pat-
tern [53,54].

The authors acknowledge fruitful discussions with P. Kim
and J. C. Hone. The authors are supported by JSPS KAKENHI
Grant No. JP17K05496.
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