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Signatures of coupling between spin waves and Dirac fermions in YbMnBi2
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We present inelastic neutron scattering measurements of magnetic excitations in YbMnBi2, which reveal
features consistent with a direct coupling of magnetic excitations to Dirac fermions. In contrast with the
large broadening of magnetic spectra observed in antiferromagnetic metals such as the iron pnictides, here
the spin waves exhibit a small but resolvable intrinsic width, consistent with our theoretical analysis. The
subtle manifestation of spin-fermion coupling is a consequence of the Dirac nature of the conduction electrons,
including the vanishing density of states near the Dirac points. Accounting for the Dirac fermion dispersion
specific to YbMnBi2 leads to particular signatures, such as the nearly wave-vector-independent damping
observed in the experiment.
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Dirac and Weyl materials exhibit many exotic and novel
quantum phenomena that are both of fundamental and po-
tential technological interest [1–4]. This class of materials
encompasses a wide range of condensed matter systems in-
cluding graphene, d-wave superconductors, and topological
insulators and semimetals [1]. In these materials, the linear
variation of energy as a function of wave vector about a
Dirac node is a universal feature that leads to novel behaviors
such as suppression of backscattering, high carrier mobil-
ity, impurity-induced resonant states, spin-polarized transport,
and the unusual quantum Hall effect [1–6]. Furthermore, the
interaction of these low-energy Dirac/Weyl fermions with
other degrees of freedom leads to novel physics with a techno-
logical potential [2,7,8]. Hence, understanding the coupling of
Dirac fermions with other quantum excitations, such as spin
waves, is a topic of great current interest.

From this perspective, 112 ternary bismuthides
(R, A)MnBi2 (R = rare earth, A = alkaline earth: Ca, Sr)
represent a particularly interesting family where both
magnetism and Dirac fermions coexist, providing a platform
to study their interplay [3,4,9–11]. In these materials, the
Dirac bands and the magnetic order are associated with
distinct square-net layers: conducting Bi layers and magnetic
MnBi layers separated by layers of R, A, as shown in Fig. 1(a)
of Ref. [12]. While indirect experimental evidence of a
coupling between conduction electrons and magnetic Mn ions
is provided by the impact of the magnetic order on electrical
transport in CaMnBi2 [11,13], inelastic neutron scattering
measurements on Sr/CaMnBi2 found spin waves without any
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evidence of strong damping due to particle-hole excitations
of the type seen in compounds such as CaFe2As2 [14].

RMnBi2 systems were suggested as possible candidates
where the coupling of Dirac fermions with spins could be
significant. EuMnBi2 and YbMnBi2 are two such recently
discovered materials [12]. YbMnBi2 is particularly interest-
ing because of its possible link with type-II Weyl physics
with broken time-reversal symmetry [15–17]. In addition, the
ferromagnetic stacking of Mn moments along the c axis,
similar to CaMnBi2, suggests that an interlayer exchange
interaction can be mediated by Dirac bands [11,18]. However,
the questions remain: Is there any theoretical signature of
coupling/entanglement with Dirac fermions in the magnetic
excitation spectrum of YbMnBi2? If so, is it significant
enough to be measured in a neutron-scattering experiment?

Here, we present the results of inelastic neutron scattering
(INS) measurements performed on YbMnBi2 at four different
temperatures, spanning the Néel temperature TN. We show
that the magnetic excitations are well-defined spin waves
below TN, becoming dispersive paramagnons (similar to spin
waves) just above TN, and the dispersion of both can be
described with a local-moment Heisenberg model. In fitting
the dynamical spin correlation function, we find that a good
fit requires inclusion of a damping parameter γ , and that
γ has no significant variation with momentum transfer Q.
While it is small, we note that no such damping is required
in an insulating antiferromagnet such as CaMn2Sb2 [19]. To
understand the nature of damping from particle-hole exci-
tations associated with the Dirac dispersion that has been
experimentally reported for YbMnBi2 [16], we have evalu-
ated a spin-fermion coupling model in the framework of the
random phase approximation (RPA). The results show that the
damping should be small in our case due to the vanishing
density of states near the Dirac points, which suppresses
the effects of the spin-fermion interaction, and is effectively
independent of Q. Thus, our observed damping is consistent
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FIG. 1. Spin waves in YbMnBi2 at T = 4 K. (a)–(c) INS spectra
showing dispersion along the [H, 0, 0] direction measured with
incident energies Ei = 35, 100, and 200 meV, respectively. The
dashed line in (a) indicates the spin gap � (cf. Table I and
Fig. S6). (d)–(f) INS spectra calculated using spin-wave dispersion
and Eqs. (1) and (2), with the best fit parameters listed in Table I.
Intensity scales shown in the color bars are in arbitrary units, which
differ for different Ei.

with a coupling to Dirac electrons and allows us to determine
the coupling constant, which is directly proportional to the
experimental damping parameter.

Single crystals of YbMnBi2 were grown from Bi flux as
described in Ref. [12]. YbMnBi2 orders antiferromagnetically
below TN ≈ 290 K, with an ordered moment of 4.3 μB at 4 K
[12,13,20]. INS measurements were performed at SEQUOIA
(Figs. 1–3) and HYSPEC [21] spectrometers at the Spallation
Neutron Source, Oak Ridge National Laboratory. Four single
crystals with a total mass of ≈1.8 g were coaligned in the
(H, 0, L) horizontal scattering plane, with the effective mo-
saic spread of �0.8◦ full width at half maximum (FWHM).
The measurements were carried out with incident energies
Ei = 35, 100, and 200 meV at T = 4, 150, 270, and 320 K
by rotating the sample about its vertical axis in 1◦ steps
over a 270◦ range (70◦ for 150 K). Throughout this Rapid
Communication, we index Q = (H, K, L) in reciprocal lattice
units (r.l.u.) of the P4/nmm lattice, a = b = 4.48 Å, c =
10.8 Å [12]. The collected event data were histogrammed
into rectangular bins using the MANTID package [22]. For
both the two-dimensional (2D) intensity maps (Figs. 1–3)
and one-dimensional (1D) cuts (see Ref. [21]), the bin size
of ±0.0125 r.l.u. along (H, 0, 0) and ±0.05 r.l.u. along
(0, K, 0) was used, except for the 320-K data, for which it
was ±0.1 r.l.u. along (0, K, 0); the bin size along (0, 0, L)
was ±0.1 rlu.

Figures 1(a)–1(c) present INS spectra for YbMnBi2 in the
antiferromagnetic (AFM) phase at T = 4 K, which reveal the
spin-wave dispersion along the [H, 0, 0] symmetry direction.
Magnetic excitations are well defined and sharp in both Q
and E , indicating the presence of conventional spin waves
consistent with the local-moment description. The spin waves
originate from the antiferromagnetic wave vector QAFM =
(±1, 0, 0), as expected for a Néel-type magnetic order in
YbMnBi2 [12]; the spin-gap � ∼ 10 meV marked in Fig. 1(a)
is due to uniaxial anisotropy. The spin-wave dispersion
bandwidth along (H, 0, 0), W = EQ=(1.5,0,0) − EQ=(1,0,0) ≈
50 meV, is similar to the values measured in AMnBi2 [18].
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FIG. 2. INS spectra measured on YbMnBi2 with Ei = 100 meV
at T = 320, 270, 150, and 4 K, illustrating the spin-wave dispersions
along two symmetry directions, (a)–(d) [H, 0, 0] and (i)–(l) [0, 0, L].
(e)–(h) and (m)–(p) INS spectra calculated using Eqs. (1) and (2) for
the same wave vectors as the data, using the results of fits given in
Table I, and corrected for the instrument resolution (see Ref. [21] for
details).

To model the dispersion, we use a J1-J2-Jc Heisenberg
model, where J1 and J2 are the nearest- and next-nearest-
neighbor in-plane exchange interactions, respectively, and Jc

is the interplane exchange. The dynamical spin correlation
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FIG. 3. (a)–(d) The damping parameter γ (magenta solid circles
with white error bars) obtained from fitting 1D energy cuts using
DHO response, and the low-energy part of spin-wave dispersion
at T = 4, 150, 270, and 320 K, respectively. Black circles show
the corresponding spin-wave energy Eq which was fitted for all
temperatures. White circles illustrate the dispersion obtained using
the parameters in Table I for the corresponding temperature. The
underdamped spin wave exists where Eq > γ/2. (e)–(h) Open circles
are fitted values from 1D data and magenta dashed lines are for 2D
data given in Table I. Error bars show one standard deviation.
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TABLE I. Exchange coupling, uniaxial anisotropy, and damping parameters for YbMnBi2 obtained from fitting two-dimensional data
shown in Fig. 2.

T = 4 K T = 150 K T = 270 K T = 320 K

SJ1 (meV) 25.9 ± 0.2 24.4 ± 0.3 27.1 ± 0.5 25.6 ± 0.6
SJ2/SJ1 0.39 ± 0.01 0.40 ± 0.01 0.43 ± 0.01 0.41 ± 0.01
|SJc|/SJ1 0.0050 ± 0.0001 0.0041 ± 0.0001 0.0022 ± 0.0001 0.0016 ± 0.0001
SD (meV) −0.20 ± 0.01 −0.16 ± 0.01 −0.06 ± 0.02 −0.003 ± 0.001
� (meV) 9.1 ± 0.2 8.0 ± 0.2 5.3 ± 0.8 1 ± 1
γ (meV) 3.6 ± 0.2 3.4 ± 0.2 7 ± 1 22 ± 4

function S(Q, E ) can be written as

S(q + QAFM, E ) = Seff
(Aq − Bq)

Eq

fq(E )

1 − e−E/kBT
, (1)

where Seff is the effective fluctuating spin, kB is
the Boltzmann constant, and spin-wave theory gives
Aq = 2S[2J1−2J2[sin2(πH ) + sin2(πK )]−2Jc sin2(πL)−D],
Bq = 4SJ1 cos(πH ) cos(πK ), and E2

q = A2
q − B2

q. In
the absence of damping, the spectral function fq(E ) =
δ(E − Eq) − δ(E + Eq) describes the conservation of energy.
In the presence of damping, which we introduce to obtain
a good fit to the full intensity distribution, delta functions
are replaced by Lorentzians [23] and the spectral function is
given by the imaginary part of the dynamical susceptibility of
a damped harmonic oscillator (DHO),

fq(E ) = Zq
2Eq

π

γ E[
E2 − E2

q

]2 + (γ E )2
. (2)

Here, γ is the damping parameter (Lorentzian FWHM) and
prefactor Zq ensures that the temperature-corrected DHO
spectral function in Eq. (1) at all q is normalized to 1 [for
(T, γ ) → 0, Zq → 1] [21].

We fit the data at each temperature using the cross section
given by Eqs. (1) and (2) convolved with the instrumental
resolution and accounting for the actual (Q, E ) binning of
the data. The apparent energy width is dominated by the
wave-vector resolution, which causes local averaging over the
dispersion, so convolution with both the spectrometer reso-
lution and binning functions is essential (additional details
about the resolution correction and the fitting procedure are
given in the Supplemental Material [21] and Refs. [24–29]
therein). The resulting fits are shown side by side with the data
in Figs. 1 and 2, and the best fit values thus obtained are listed
in Table I. We find that the in-plane exchange parameters are
nearly temperature independent. The gap � decreases with
increasing temperature and approaches zero at T � TN.

Our central finding is a small but finite value of the damp-
ing parameter γ at all temperatures (Table I). It increases by
roughly a factor of 6 in the paramagnetic state, just above TN.
While the global fits assume that γ is independent of Q, we
tested this assumption by fitting 1D energy cuts at different
Q values, as shown in Fig. 3; the corresponding plots of data
with fits at 4 K and comparison calculations with γ ∼ 0 are
presented in Fig. S4 [21]. As one can see from Fig. 3, γ

is non-negligible at all Q and with no systematic variation
with Q (except possibly at T > TN). The values are generally
within 2σ of the global fit values from Table I, which are

indicated in the bottom panels of Fig. 3 by magenta dashed
lines.

In order to understand the possible origin of the spin-wave
damping, we first note that the contributions expected from
magnon-magnon and magnon-defect scattering can be esti-
mated by considering the case of the insulating antiferromag-
netic layered compounds Rb2MnF4 [30] and CaMn2Sb2 [19].
In the first case, a high-resolution measurement of the magnon
linewidths was performed, and the low-temperature ratio γ /W
was at least an order of magnitude smaller that our result;
in the latter case, any damping was smaller than resolution.
We also note that coupling to two-magnon excitations cannot
occur at energies below 2�, which is 18 meV in our case,
and so such an effect is inconsistent with our observation of
finite damping even at the lowest energies. Thus, we conclude
that simple magnon-magnon interactions do not provide a
plausible explanation of our results.

The decay of magnons into electron-hole excitations can
have a very large effect in itinerant magnets [31–34]. The rea-
son that similar effects are relatively small in our case is that
unlike the parabolic dispersions of electrons in conventional
metallic systems, the linear dispersion of Dirac fermions
results in a vanishing density of states near the Dirac nodes,
which suppresses the available phase space for spin-fermion
interactions. In addition, the Dirac fermions and spin waves
in YbMnBi2 are spatially separated degrees of freedom that
primarily propagate in different layers, which further inhibits
the coupling. Hence, smaller broadening/damping with a very
different nature (both energy and Q dependence) than in
metallic magnets should be expected.

Next, to establish that the spin-fermion coupling can
indeed explain the observed non-negligible Q-independent
damping, we calculate the correction to the spin susceptibility
through coupling to the Dirac fermions within RPA and
show that the observed damping is consistent with theoretical
expectations for YbMnBi2. We model the system of spins and
conduction electrons in YbMnBi2 via the action

S =
∫

dd p

(2π )d

∑
η=±

[ψ†
η (p)(ip0 + ηv1,ητx p1 + v2,ητy p2)ψη(p)]

+ g

2

∫
dd p

(2π )d

∫
dd q

(2π )d

× [Sqψ
†
+(p)σ ⊗ τxψ−(p − q) + H.c.]

+
∫

dd q

(2π )d
Sqχ

−1
0 S−q, (3)
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FIG. 4. (a) The Fermi surface resulting from the anisotropic
Dirac cones and a shift of the crossing away from the Fermi surface.
The Dirac cones are rotated with respect to each other as sketched
to the right. The centers of the p+ and p− cones are connected by
the antiferromagnetic wave vector QAFM = (π, 0). (b) Diagrammatic
representation of the leading correction to the spin susceptibility
through coupling to the Dirac electrons. Solid lines are Dirac
propagators, and dashed lines are spin waves. (c) The polarization
Im �(E , q̄1, q̄2) obtained by numerical integration for an energy
E >

√
2v‖q and v‖/v⊥ = 0.005 as a function of q̄i = v⊥qi.

which describes two Dirac cones at pη [η = ±; see Fig. 4(a)]
with anisotropic velocities v1,+ = v2,− = v⊥ and v1,− =
v2,+ = v‖ rotated with respect to each other (v‖/v⊥ ≈ 0.005
in YbMnBi2) [16]. We use rotated coordinates p1,2 = (px ±
py)/

√
2. Pauli matrices (τ ) σ act on (pseudo)spin, respec-

tively. The Mn spin waves are represented by the three-
component boson field S. Their dynamical susceptibility is
given by the bare expression, without damping, χ−1

0 (E ) =
E2 − E2

q [cf. Eq. (2)].
For simplicity, we perform calculations at T = 0 and in

d = 2 + 1 dimensions. We assume that the Dirac points have
opposite chirality, as was found in the related compound
SrMnBi2 [35], and we consider a coupling ∝g which does
not break chiral symmetry. In the coupling term in Eq. (3),
we measure the wave-vector transfer relative to the antifer-
romagnetic wave vector, QAFM = p+ − p−, which happens to
connect the centers of the Dirac cones [see Fig. 4(a)]. Because
of the large anisotropy, v⊥ ≈ 9 eV Å and v‖ ≈ 0.043 eV Å
in YbMnBi2 [16,17], the elliptical Fermi surface is extremely
elongated and appears very similar to a true nodal line.

The leading correction to the bare susceptibility due to
coupling to the Dirac electrons renormalizes the spin sus-
ceptibility via the polarization χ−1 = χ−1

0 − � [Fig. 4(b)].
As the coupling is small and the semimetallic state in 2D
Dirac materials is known to be stable due to a vanishing
density of states at the Dirac points, we expect the second-
order approximation for � to adequately capture the damping
effects,

�(E , q) = − g2

2

∫
dd p

(2π )d
Tr[G+(p0, p)

× τxG−(p0 + E , p + q)τx], (4)

with Dirac propagators Gη(p0, p) = (−ip0 + ηv1,ητx p1 +
v2,ητy p2)/(p2

0 + v2
1,η p2

1 + v2
2,η p2

2). The damping can be deter-
mined by the imaginary part of the retarded polarization after
analytical continuation, ip0 → E + i0+. For general v⊥, v‖,

we obtain a lengthy expression, which can be found in the
Supplemental Material [21].

It is instructive to consider two limits. For isotropic Dirac
cones, v⊥ = v‖ = vF , we find

Im �R(E , q) = Nf

8v2
F

g2 sgn(E )
√

E2 − v2
F q2�

(
E2 − v2

F q2
)
,

(5)

where Nf is the number of Dirac cone pairs and � is the step
function. There are four Dirac points in each Brillouin zone of
YbMnBi2 [16,17], so Nf = 2. Although Eq. (5) has approx-
imately the correct functional form for the DHO (Im �R ≈
cE ), the kinematic constraint E > vF |q| usually cannot be
satisfied because for most wave vectors, electronic energies
are much larger than the spin-wave energy. For E2 < v2

F q2,
the polarization function is purely real [36].

The extreme anisotropy of the electronic dispersion in
YbMnBi2 relaxes the kinematic constraint. For momentum
transfers along QAFM, corresponding to the data shown in
Figs. 1–3, the leading order in small (v‖/v⊥) reads

Im �R(E , q) ≈ Nf

2πv2
⊥

g2E�(E2 − 2v2
‖q2). (6)

Accounting for further corrections leads to a weak momentum
dependence [21]. The full numerical result for Im �R is
presented in Fig. 4. The main processes responsible for the
enabled damping connect points along the elongated Fermi
surfaces so that their energy cost is determined by v‖. Due to
its remarkable smallness, spin waves are able to excite such
particle-hole pairs.

We conclude that the spin-wave damping factor in Eq. (2)
is given by γ ≈ Nf g2/(2πv2

⊥). Thus, using γ ≈ 3.6 meV
(Table I), Nf = 2, vF = 9 eV Å, we can estimate the coupling
constant, g ≈ 1.0 eV3/2 Å. The obtained value of g quantifies
the spin-fermion interaction in YbMnBi2 and can be used,
in future work, to analyze the effect of magnetism on the
transport of Dirac electrons in the framework of Eq. (3).

In summary, we measured magnetic excitations in the
Dirac material YbMnBi2 for temperatures in the range of
0.02 � T/TN � 1.10. The results show dispersing spin waves
for all temperatures and their detailed analysis unfolds the
nature of spin-fermion coupling between the magnetic Mn
layer and Dirac fermions of the Bi layer. We find a small,
but distinct, damping of spin waves, which for T < TN is
weakly dependent on temperature and is nearly independent
of wave vector. Despite its small magnitude, the observed
damping indicates a substantial spin-fermion coupling pa-
rameter, g ≈ 1.0 eV3/2 Å, which we quantify by comparing
the experiment with the theoretical analysis of the model
action for Dirac fermions coupled to spin waves [Eq. (3)].
Therefore, by combining the experimental measurements
and theory, we establish the existence of long-sought sig-
nificant spin-fermion coupling in the 112 family of Dirac
materials.
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