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How order melts after quantum quenches

Mario Collura 1,2 and Fabian H. L. Essler3

1Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
2Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, I-35131 Padova, Italy

3Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3PU, United Kingdom

(Received 1 March 2019; published 23 January 2020)

Injecting a sufficiently large energy density into an isolated many-particle system prepared in a state with
long-range order will lead to the melting of the order over time. Detailed information about this process can
be derived from the quantum mechanical probability distribution of the order parameter. We study this process
for the paradigmatic case of the spin-1/2 Heisenberg XXZ chain. We determine the full quantum mechanical
distribution function of the staggered subsystem magnetization as a function of time after a quantum quench
from the classical Néel state. We establish the existence of an interesting regime at intermediate times that
is characterized by a very broad probability distribution. Based on our findings we propose a simple general
physical picture of how long-range order melts.
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Introduction. A fundamental objective of quantum theory
is to determine probability distribution functions of observ-
ables in given quantum states. In few-particle systems the
time evolution of such probability distributions provides a
lot of useful information beyond what is contained in the
corresponding expectation values. Recent advances in cold-
atom experiments have made possible not only the study of
the nonequilibrium time evolution of (almost) isolated many-
particle systems [1–13], but have given access to the full quan-
tum mechanical probability distributions of certain observ-
ables [14–18]. This provides an opportunity to gain insights
about the coherent dynamics of many-particle quantum sys-
tems. One intriguing question one may ask is how order melts,
or forms, when an isolated many-particle system is driven
across a phase transition. Related questions have been studied
in solids, but there one essentially deals with open quantum
systems and has access to very different observables (see, e.g.,
Refs. [19–21]). The basic setup we have in mind is as follows.
Let us consider a system of quantum spins with Hamiltonian
H that is initially prepared in a state with density matrix ρ(0).
In this state there is long-range order characterized by an
order parameter O = ∑L

j=1 Oj , where j runs over the sites
of the lattice and Oj is a local operator. We are interested
in the probability distribution function (PDF) PA of the order
parameter OA in a contiguous subsystem of linear size |A|,

PA(m, t ) = Tr[ρ(t )δ(OA − m)]. (1)

Here, ρ(t ) is the density matrix of the system at time t and
PA(m, t ) is the probability that the subsystem order parameter
OA takes the value m in the state ρ(t ). We are interested in
cases where the system is initially well ordered at all length
scales and PA(m, t ) is therefore narrowly peaked around the
average OA. Under time evolution the order melts and at
late times and large subsystem sizes PA(m, t ) is believed
to approach a Gaussian distribution centered around zero
[22–28]. The question of interest is how PA(m, t ) evolves as
a function of time and subsystem size |A|. Varying the latter

provides information about how well the system is ordered at
length scale |A|.

We find that when the initially ordered system is quenched
well into the unbroken symmetry phase of the Hamiltonian,
the (local) order quickly disappears and the PDF acquires a
simple Gaussian shape. In contrast, when the quantum quench
is to an energy density where Hamiltonian eigenstates retain
short-range order [29], the PDF exhibits a complex structure
both at finite times and in the stationary state. In the following
we focus on the example of the spin-1/2 Heisenberg XXZ
chain, but note that the picture we put forward is general and
has a wide range of applicability.

Model and setup. We investigate the time evolution of anti-
ferromagnetic (short-ranged) order after a quantum quench in
the spin-1/2 XXZ chain,

H� =
∑

j

Sx
j S

x
j+1 + Sy

j S
y
j+1 + � Sz

jS
z
j+1. (2)

Here, Sα
j are spin-1/2 operators acting on the site j and we

restrict our analysis to the range � > 0. The phase diagram
of (2) is well established: At T = 0 there is a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition at � = 1 that sep-
arates a quantum critical phase at � < 1 and an antiferromag-
netically ordered phase at � > 1. At any finite temperature
the antiferromagnetic order melts. The Hamiltonian (2) is
invariant under rotations by an arbitrary angle around the
z axis, translations by one site, and rotations around the x
axis by 180◦. In the thermodynamic limit at � > 1 and zero
temperature the last symmetry gets broken spontaneously and
one of the two degenerate ground states |GS±

�〉, characterized
by equal but opposite expectation values of the staggered mag-
netization per site, gets selected. In the Ising limit � → ∞ the
ground states become the classical Néel states, i.e., |GS+

∞〉 =
| · · · ↑↓↑↓ · · · 〉 and |GS−

∞〉 = | · · · ↓↑↓↑ · · · 〉. In order to
investigate the melting of antiferromagnetic order we con-
sider the following quantum quench protocol: (i) We prepare
the system in the classical Néel state |�0〉 = |GS+

∞〉, which
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FIG. 1. Density plot of P̃�(m, t ) with m ∈ [−�/2, �/2] and t ∈
[0, 12] for a subsystem size � = 15, after a quench from the Néel
state |GS+

∞〉 to � = 0, 1, 2, 3. The solid line represents the expecta-
tion value m̄(t ), and the dashed lines are the standard deviation from
the average, namely m̄(t ) ± σ (t ).

exhibits saturated antiferromagnetic long-ranged order. (ii)
We consider unitary time evolution with Hamiltonian H�. The
state of the system at time t is thus |�t 〉 = exp(−iH�t )|�0〉.
This quench is integrable [30–32] and exact results on the
stationary state are available [28,33–37]. We employ the
infinite time-evolving block-decimation (iTEBD) algorithm
[38,39] to obtain a very accurate description of |�t 〉 in the
thermodynamic limit. However, the growth of the bipartite
entanglement entropy limits the time window accessible by
this method. Retaining up to χmax = 1024 auxiliary states,
we are able to reach a time tmax 	 12 without significant
error (�10−3).

PDF dynamics. Detailed information on how the anti-
ferromagnetic order melts as the system evolves in time is
provided by the PDF of the staggered magnetization M� ≡∑�

j=1(−1) jSz
j of a subsystem of � neighboring sites,

P�(m, t ) ≡ 〈�t |δ(M� − m)|�(t )〉
=

∑
r∈Z

P̃�(m, t )δ(m − r − [1 − (−1)�]/4), (3)

where the second line follows from the fact that the eigenval-
ues of M� are half-integer numbers. We note that the probabil-
ities satisfy the normalization condition

∑�/2
m=−�/2 P̃�(m, t ) =

1. The initial Néel state is an eigenstate of the staggered sub-
system magnetization M� and concomitantly the probability
distribution is a delta function P�(m, 0) = δ(m − �/2). This
reflects the long-range magnetic order in the initial state. In
Fig. 1 we show the evolution of P�(m, t ) in time obtained
by iTEBD for subsystem size � = 15 and several values of
the interaction strength � in the “postquench” Hamiltonian
(2). We observe that the probability distribution depends
strongly on �: For small values of � the antiferromagnetic
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FIG. 2. Snapshots of the rescaled PDF in Fig. 1 at fixed times
t = 2, 12. The numerical data (symbols/dashed lines) are compared
to the Gaussian approximation (4) (solid lines).

short-ranged order melts quickly and P�(m, t ) is narrowly
peaked around its average, which exhibits a damped oscil-
latory behavior around zero [40]. The behavior for � � 2
is very different: Short-ranged order persists for some time
while the probability distribution broadens and becomes more
symmetric in m. This nicely chimes with the expectation (see
below) that in the stationary state reached at late times the
probability distribution becomes symmetric in m. In Fig. 2 we
plot the weights of P�(m, t ) at several times and compare them
to a Gaussian approximation based on the first two moments
m̄(t ) = 〈�t |M�|
t 〉, σ 2(t ) = 〈�t |M2

� |
t 〉 − m̄2(t ),

P�(μ, t ) = 1√
2πσ 2(t )

exp

{
− [μ − m̄(t )]2

2σ 2(t )

}
. (4)

We see that at � = 0 the probability distribution is
approximately Gaussian at all times, while for � = 2, 3
it exhibits a pronounced even/odd structure at short times
and even at the latest times shown is strongly non-Gaussian.
As we are dealing with a one-dimensional system at a finite
energy density relative to the ground state, we expect |�t 〉
to exhibit a time-dependent but finite correlation length. This
is borne out by a computation of 〈�t |Sz

jS
z
j+n|�t 〉, which

exhibits exponential decay in the distance n. At time t = 6
the correlation lengths ξ (t,�) for the values shown in Fig. 1
are ξ (6, 0) = 0.424 091, ξ (6, 1) = 0.925 666, ξ (6, 2) =
3.396 16, and ξ (6, 3) = 8.852 59, respectively. The qualita-
tive dependence of ξ (t,�) on � is expected as the energy
density imposed by the quench increases with decreasing �.

“Small”-� regime. At small values of � and short
and intermediate times we can use a time-dependent self-
consistent mean-field approximation to determine the evo-
lution of P�(m, t ). We first map the Hamiltonian (2) to a
model of spinless fermions by means of a Jordan-Wigner
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FIG. 3. P̃�(m, t ) for � = 20 at times t = 0.2, 0.5, and 1 after a
quench from the classical Néel state to a Heisenberg chain with � =
3. Lines are obtained by the self-consistent fermionic mean-field
approximation and the symbols are iTEBD results.

transformation, where we use the positive (negative) z direc-
tion in spin space as the quantization axis for even (odd) sites
[41]. This results in a spinless fermion Hamiltonian

H� =
∑

j

1

2
[c†

j c
†
j+1 + H.c.] + � n j (1 − n j+1), (5)

where n j = c†
j c j and {c j, c†

k} = δ j,k . The staggered subsystem

magnetization maps to M� = ∑�
j=1(1/2 − n j ), while the ini-

tial Néel state maps to the fermion vacuum |
0〉 = |0〉. Our
self-consistent approximation corresponds to the replacement

njn j+1 → [〈c†
j c

†
j+1〉t c j+1c j − 〈c†

j+1c j〉t c
†
j c j+1 + H.c.]

+〈n j〉t n j+1 + 〈n j+1〉t n j, (6)

which leads to an explicitly time-dependent Hamiltonian
HMF(t ) (cf. Ref. [42]). The expectation values in (6) are
calculated self-consistently 〈·〉t = 〈
t | · |
t 〉, where

|
t 〉 = T exp

[
−i

∫ t

0
dt ′HMF(t ′)

]
|0〉. (7)

Following Ref. [43] we can express the characteristic function
of P�(m, t ) as a determinant of a 2� × 2� matrix [41], which
is easily evaluated numerically. This provides us with exact
results at � = 0 for all times [41], and a highly accurate short-
time approximation even for � = 3, as is shown in Fig. 3.

Late times. We now turn to the behavior at late times
after the quench. The stationary state is characterized by a
finite correlation length ξ (�). On length scales � � ξ (�)
we expect short-ranged antiferromagnetic order to remain,
while it will have melted at scales � > ξ (�). We also expect
the spin-rotational symmetry by π around the x axis to be
restored in the stationary state as we are dealing with a one-
dimensional system with short-range interactions. The situa-
tion is completely analogous to that at finite temperatures—in
fact, adding a very small integrability-breaking term to the

FIG. 4. Density plot of the PDF for the XXZ chain at finite
temperature 1/β for subsystem size � = 50 and � = 4 (left panel);
� = 1 (right panel).

Hamiltonian would result in a steady state that is very close
to the thermal state of the XXZ chain [34]. In contrast to the
steady state after our quench, the probability distribution of
the staggered subsystem magnetization at finite temperature
P�(m, β ) can be computed by matrix product state methods
and for the aforementioned reasons it is instructive to consider
it. Results for two values of � are shown in Fig. 4. We
see that the probability distributions are symmetric in m,
reflecting the unbroken symmetry of rotations by π around
the x axis. At � = 4 we further observe that when the
subsystem size exceeds the thermal correlation length ξ�(β ),
antiferromagnetic short-ranged order melts and we obtain a
Gaussian probability distribution centered around m = 0. On
the other hand, for � � ξ�(β ) the probability distribution is
very broad and peaked at the maximal values ±�/2, signaling
the presence of both kinds of antiferromagnetic short-ranged
order. For � = 1 the thermal correlation length is smaller
than one lattice site in the temperature regime shown, which
is why no traces of short-range order are visible and the
probability distribution is a Gaussian centered around m =
0. The large-� regime is characterized by a low density
of excitations and it is therefore possible to understand the
behavior observed above by combining a 1/� -expansion with
a linked-cluster expansion [44–52]. As the physics we wish
to describe is not tied to integrability, and the nonintegrable
case is easier to discuss, we focus on the latter [53]. We
consider the regime �  1 and break integrability by adding
a small perturbation to the Heisenberg Hamiltonian, e.g.,
consider time evolution under H = H� + �−nV , where n is
a positive integer and V some perturbation involving short-
ranged spin-spin interactions that has the same symmetries as
H�. We define linked clusters following the general formalism
of Ref. [44] and then implement a 1/� expansion through a
unitary transformation H̃ = eiSHe−iS [41,54]. The result is an
expansion of the stationary state density matrix of the form

ρSS =
∑
j�0

ρ
( j)
SS , ρ

( j)
SS = O(e−βeff j�/2), (8)

where ρ
( j)
SS are given as a power series in 1/�. The leading

term in the expansion is ρ
(0)
SS = 1

2

∑
σ=± |GSσ

�〉〈GSσ
�|, where

|GSσ
�〉 are the two ground states of the model at anisotropy

�. The small parameter e−βeff �/2 is proportional to the density
of domain-wall excitations over the ground states at large �.
The expansion (8) of the steady-state density matrix leads to a
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FIG. 5. Weights P̃�(m, t ) for � = 10 and a quench from the
classical Néel state to a Heisenberg chain with � = 6. We observe
a linear growth (decrease) in time of the weights for m = −�/2
(m = �/2), indicating that the symmetrization of the PDF is driven
by ballistic propagation of quasiparticles.

corresponding expansion of the probability distribution of the
staggered subsystem magnetization P�(m,∞) = ∑

j P( j)
� (m)

[41],

P(0)
2� (m) = δ(� − |m|)

[
1

2
− 2� + 1

8�2

]
+ δ(� − 1 − |m|) 1

4�2

+ δ(� − 2 − |m|)2� − 1

8�2
+ o(�−2), (9)

P(1)
2� (m) = e− βeff �

2 I0(βeff )

⎡
⎣1 − �

2
δ(� − |m|)

+
�∑

j=1

δ(� − j − |m|)
⎤
⎦ + · · · , (10)

where the dots denote subleading terms in 1/�. The expan-
sions (10) hold as long as the subsystem size 2� is small
compared to the correlation length in ρSS and establish that for
large anisotropies � the probability distribution in the steady
state is symmetric in m and close to the average over the two
ground states. In addition there is an exponentially suppressed
“background” contribution arising from a dilute gas of domain
walls.

“Symmetrization” of the PDF in time. A characteristic
feature of the time evolution of P�(m, t ) is that it becomes
increasingly symmetric in m. In order to ascertain the as-
sociated timescale in the most interesting large-� regime it

is useful to compare the probabilities for M� to be maximal
(�/2) or minimal (−�/2), respectively. Results for � = 6 are
shown in Fig. 5. We see that P�(−�/2, t ) grows linearly
in time, while P�(�/2, t ) shows a corresponding linear de-
crease. For the integrable XXZ chain the associated velocity
is expected to be the maximal group velocity of elementary
excitations over the stationary state [55]. In the presence of
weak integrability-breaking interactions in the large-� regime
we expect qualitatively similar prethermal behavior [56].

Conclusions. We have considered the full quantum me-
chanical order parameter probability distribution P�(m, t ) in
a subsystem of size � after a quantum quench from a classical
Néel state to the spin-1/2 Heisenberg XXZ chain. We have
shown that P�(m, t ) provides detailed information on how
short-range antiferromagnetic order melts and have shown
how to understand our numerical findings by analytical ap-
proaches valid in certain limits. Our setup should be realizable
in cold-atom experiments such as the ones by the Harvard
group [18]. Our findings can be understood in terms of a
simple physical picture based on (i) the initial presence of
long-ranged order, (ii) the principle of local relaxation after
quantum quenches, and (iii) the presence of two length scales,
namely a finite, time-dependent correlation length ξ (t ) and the
subsystem size � in our problem. Initially, order is present on
all length scales. At sufficiently late times short-ranged order
remains on scales � < ξ (t ) and is clearly visible in P�(m, t )
even though the latter reflects the eventual restoration of the
initially broken symmetry. On the other hand, the order has
melted for larger scales � > ξ (t ) and P�(m, t ) is essentially
Gaussian. We expect that this physical picture applies quite
generally to the melting of long-range order and in particular
is not restricted to one-dimensional systems as long as the
time-evolving density matrix is characterized by a finite, time-
dependent correlation length. This is generically the case in
D = 1, but equally applies to higher-dimensional systems at
energy densities that correspond to temperatures above any
phase transitions. It would be interesting to study the case of
quenches that correspond to energy densities corresponding to
temperatures below a phase transition.
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