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Negative absolute conductivity in photoexcited metals
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We show that in a model of a metal photoexcited by a transient pump pulse resonant with a phonon mode, the
absolute dc conductivity may become negative, depending on the interplay between the electronic structure,
the phonon frequency, and the pump intensity. The analysis includes the effects of inelastic scattering and
thermal relaxation. Results for the time evolution of the negative conductivity state are presented; the associated
nonequilibrium physics may persist for long times after the pulse. Our findings provide a theoretical justification
for previously proposed phenomenology and indicate new routes to the generation and exploration of intrinsically
nonequilibrium states.
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Introduction. The dc electrical conductivity σ (ratio of cur-
rent j to applied field E ) is a fundamental property of materi-
als. In thermal equilibrium the linear response conductivity is
non-negative because an applied electric field creates entropy
via Joule heating σE2 and the entropy production rate must be
non-negative. Beyond the linear response regime new effects
may occur. For example, negative differential conductivity
σdiff ≡ d j/dE|E �=0 < 0 has been extensively studied [1–3] and
is typically related to runaway heating at current driven metal-
insulator transitions. This Rapid Communication is concerned
with the less commonly realized situation of negative abso-
lute conductivity (NAC), σ ≡ j/E < 0. A negative absolute
conductivity state is possible away from thermal equilibrium
because the entropy decrease implied by the σE2 term can
be compensated by other sources of entropy production, and
would lead to remarkable phenomenological consequences
including novel response properties [4–6], spontaneously gen-
erated internal electric fields [7], and new collective modes [8]
that might be relevant to recent experimental studies of the
transient optical properties in photoexcited K3C60 [9]. It is
therefore important to understand the circumstances under
which a negative absolute conductivity can occur.

Insight into the origin of the NAC state may be obtained
from the expression σ = ∫

dε σ̃ (ε)(−∂ε f ), with σ̃ (ε) =
e2〈v2(ε)〉D(ε)τtr(ε), where e is the electron charge, 〈v2〉 is
a suitably averaged electron velocity, D is the density of
states, τtr is the transport scattering time, and f is the electron
distribution function. σ̃ is always positive and in equilibrium
−∂ε f > 0. However, out of equilibrium −∂ε f may become
negative in some energy regions; we refer to this situation
as a local (in energy) population inversion. If the energy
regions where −∂ε f < 0 coincide with maxima of σ̃ , then the
total conductivity may become negative. Regions of −∂ε f <

0 were shown to occur and to lead to negative absolute
conductivity in the two-dimensional electron gas subject to a
perpendicular magnetic field and to a steady state microwave
radiation [10–12], and more recently in a steadily photoex-
cited correlated insulator [13]; for example, in the first system
the peaked energy structure in σ̃ was caused by Landau level

quantization and the regions of local inversion were produced
by the drive at a frequency that matched the Landau level
spacing.

In this Rapid Communication we show that a local popu-
lation inversion can occur in a system of electrons coupled to
strongly pumped phonons, and that this inversion can lead to a
NAC state, even when the pumping is not continuous; indeed,
the effect can be induced by transiently pumped phonons and
can persist for long times after the pump is removed. We show
how the NAC state depends on the intensity of the driving
pump and that the effect is maximized if the phonon frequency
is approximately commensurate with the distance from Fermi
energy to the band edges; we provide information on which
forms of the electron and phonon density of states create the
most likely conditions for the effect to occur. We estimate
the coupling constant from the phenomenological theory of
Ref. [8] and explicate the effects of internal electric fields and
energy relaxation mechanisms.

The model. We study a metallic system, initially in equi-
librium at temperature T , characterized by a dispersionless
phonon mode with energy ωp; a weak dispersion is important,
as discussed below. We assume (as in the usual theory of
electron-phonon coupling) that the electrons and phonons can
be described in a quasiparticle picture. Introducing the oper-
ators ck, c†

k and aq, a†
q for electron and phonons, respectively,

the Hamiltonian can be written as

H =
∑

k

εkc†
kck +

∑
q

ωpa†
qaq + Hel-ph, (1)

where Hel-ph = ∑
k,q Mq(a†

−q + aq)c†
kck−q, with Mq the

electron-phonon interaction matrix element, and εk is the
electron energy dispersion.

We assume that the system is photoexcited by radiation
that induces a highly nonequilibrium state of the phonons
and we assume that the phonon coherence and momentum
relax very quickly, so we may characterize the nonequilibrium
phonon population by a diagonal, momentum-independent
distribution function 〈a†

qaq〉 = ζ + b, which is the sum of the
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thermal distribution b = (eωp/T − 1)−1 and a nonequilibrium
component ζ . Because of the momentum independence of ζ

we can average all the relevant electronic properties over k
and characterize the system by ζ , the electron distribution
f (ε), the density of states D(ε), the average velocity squared
v2(ε), and the transport scattering time τtr [14].

We study the nonequilibrium dynamics of the system using
the Keldysh formalism within Migdal-Eliashberg theory; the
Supplemental Material provides a detailed treatment. We find
as in equilibrium that the electron density of states (retarded
part of the Green’s function) and the phonon frequency are
only slightly renormalized by the nonequilibrium drive [15].
We therefore focus on the electron distribution function f and
on the nonequilibrium part of the phonon population ζ , which
are the solution of two coupled kinetic equations:

∂t f + StE{ f } = Stin{ f } + Stel{ f , ζ }; (2)

∂tζ = Stph{ f , ζ } + Ip(t ) − ζ/τph, (3)

where StE is the effect of the dc electric field E , Stin is the
inelastic scattering term, Stel and Stph are the contributions
of the electron-phonon interaction to the collision integrals of
f and of ζ , respectively, Ip(t ) a phonon source term arising
from the pump and the initial decoherence processes, and
τph is the decay time for ζ , due to inelastic scattering with
other phonons [15]. Notice that in general the pump pulse also
affects the electrons, but it has essentially the same effects as
phonons, since it drives the same electronic transitions; for
simplicity we neglect this effect, since it would not affect the
steady state electronic distribution and would just accelerate
the initial evolution of the electrons in the transient regime.

Neglecting for simplicity the q dependence of Mq, we
evaluate the collision integral for electrons and phonons

Stel = 	eph

D0

{
Dε−ωp

[
(ζ + b)

(
fε−ωp − fε

) − fε
(
1 − fε−ωp

)]

+ Dε+ωp

[
(ζ + b)

(
fε+ωp − fε

) + fε+ωp (1 − fε )
]}

,

(4)

Stph = 	eph

D0

∫
D(ε)D(ε + ωp){ f (ε + ωp)[1 − f (ε)]

+ (ζ + b)[ f (ε + ωp) − f (ε)]}dε, (5)

where 	eph ≡ 2π |M|2D0 is the electron-phonon scattering
rate and D0 is the average electron density of states. Equa-
tion (4) has an evident periodicity in energy, which at ζ � 1
induces a periodic distribution f (ε) with period ωp; for such
distribution, both Stel and Stph approximately vanish.

We model the inelastic scattering as arising from the
coupling to a thermal bath at temperature T ; if the energy
is exchanged in small amounts, the scattering is an energy
diffusion process with effective rate 	in:

Stin = 	in

DF

1

D(ε)
∂ε{D2(ε)[T ∂ε f + f (1 − f )]}, (6)

Stin makes the electrons relax to a Fermi-Dirac distribution
with temperature T .

It will also be important to consider an applied dc electric
field. As shown in the Supplemental Material, this causes a

diffusion in energy space

StE = −E2

3

1

D(ε)
∂ε[σ̃ (ε)∂ε f (ε)], (7)

where σ̃ (ε) = e2v2(ε)D(ε)τtr. We see from Eq. (7) that the
electric field smooths out the steepest regions in f , creating a
pseudothermal distribution [16,17] with effective temperature
Teff ∼ T + e2E2v2

F τtr/	in, where vF is the Fermi velocity.
Equations (2)–(7) are a complete system that can be solved

for f (ε, t ) and ζ (t ) given a source term Ip(t ). We consider
two limiting cases: (i) a steady state drive; and (ii) a short
pump pulse occurring over a time τpulse much smaller than the
relaxation time of the transient state.

Population inversion for steady state drive. In equilibrium
(ζ = 0, E = 0) Eq. (2) is solved by the thermal Fermi-
Dirac distribution fT (ε). To gain a first understanding of
the nonequilibrium physics, we neglect inelastic scattering
of electrons (Stin → 0), electric field, and phonon dynamics;
we assume the system to be in equilibrium at temperature
T for t < 0 and that at t = 0 the phonon distribution is
instantaneously switched to a state with ζ > 0. We then solve
Eq. (2) for fixed ζ and consider the long-time limit.

The dispersionless phonon approximation means that an
electronic state at energy ε is coupled to the discrete set of
states at energy ε + jωp, with j an integer such that ε + jωp

is within the band of allowed states. Since the scattering con-
serves particles number,

∑
j D(ε + jωp) f (ε + jωp) is time

independent and thus equal to the initial value
∑

j D(ε +
jωp) fT (ε + jωp). In the large ζ limit, f (ε) must be periodic
in ε so that Stel = 0, i.e., f (ε + ωp) = f (ε), implying

f (ε) =
∑

j D(ε + jωp) fT (ε + jωp)∑
j D(ε + jωp)

. (8)

The particular shape of f (ε) depends on the density of
states (DOS) and on ωp. In the T → 0 limit, the ε structure
of f is controlled by the energy dependence of D in the range
between the chemical potential μ and the lower band edge,
except for down steps at ε + jωp = μ or steps of either sign
when ε + jωp matches a singularity in the DOS. Since f
is periodic, the down steps must be matched by an average
increase of f .

Results of a numerical solution of Eq. (2) are shown in
Fig. 1 for a trial density of states. Here D is an increasing
function of ε between the lower band edge and μ and we see
that f is characterized by regions of smooth increase separated
by downward jumps at ε = μ − jωp; the distribution arising
from an alternative DOS (with singularities at the band edges)
is shown in the Supplemental Material. Panels (a) and (b)
of Fig. 1 show the Stin → 0 limit at different doping levels.
Panels (c) and (d) show the effects of including the inelastic
scattering (c) and a dc electric field (d); both these terms lead
to diffusion in energy space, smoothing out f similarly to
raising T .

We also analyze the consequences of a dispersive phonon
frequency with typical width δω. This leads to an additional
diffusionlike term in Stel [15], which renormalizes the temper-
ature T → Teff = T + ζ δω and smooths the local population
inversion when Teff ≈ ωp, i.e., δω/ωp � 1/ζ [Fig. 1(e)]. In the
rest of the Rapid Communication, we neglect the effects of a
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FIG. 1. Nonequilibrium steady state electron distribution f (blue
solid lines), obtained from solution of Eq. (2) for a steady state
phonon population ζ = 20, trial DOS D(ε) (cyan dashed-dotted
lines) normalized to the Fermi DOS DF , initial distribution given by a
Fermi-Dirac fT (red dashed) at chemical potential μ and temperature
T/W = 0.003 (a), (b), (d), (e) and T/W = 0.02 (c). The phonon
frequency is ωp/W = 0.5 (a) and ωp/W = 0.36 (b)–(e). Panel (c) in-
cludes a stronger inelastic scattering Stin/Stel ∼ 0.05; in panel (d) we
use the parameters of (b) but with field eEvF

√
τtr/	inωp = 0.4; in

panel (e) we use the parameters of (b) and a dispersive phonon with
typical width δω/ωp = 0.01, 0.03.

dispersive band, but allow for a small inelastic scattering and
for nonzero dc fields.

Steady state conductivity. An analysis of the Keldysh equa-
tions yields for the conductivity [15]

σ =
∫

σ̃ (ε)(−∂ f /∂ε)dε. (9)

The sign of σ depends on how regions with large and small
values of σ̃ (ε) are matched to the regions of normal and
inverted population. An expression for σ can be derived by
approximating −∂ε f as the sum of delta functions at ε = μ +
jωp and smooth terms; for the DOS of Fig. 1, −∂ε f ∼ −1/ωp

and we obtain

σ ∼
∑

j

σ̃ (μ + jωp) − 1

ωp

∫
dε σ̃ (ε). (10)

From Eq. (10) we see that when ωp is such that μ + jωp

corresponds to a band edge [where σ̃ (ε) is small] for some
j, the positive term in σ may be outweighed by the negative
contribution of the integral. This is most likely to happen
when ωp is commensurate with the distance of either of the
band edge energies from the chemical potential, as confirmed
by numerical calculations of σ (ωp) performed in the limit of
constant v2τtr [18] (see Fig. 2); indeed the effect is enhanced
when the chemical potential is such that ωp is commensu-
rate with both band edges energies at the same time [see
Figs. 1(a) and 2(a) (1/2-filling)]. A similar criterion holds for
more complicated density of states, such as a double-peaked

FIG. 2. (a),(b) Plot of normalized conductivity σ/σ0 (where σ0 ≡
v2

F τtrDF ) as a function of ωp for three values of ζ at T/W = 0.003,
E = 0 for the DOS of Fig. 1; the filling is 1/2 (μ = 0) in (a) and
1/3 (μ ≈ −W/6) in (b); the arrows indicate the values of ωp corre-
sponding to the commensurability criteria, i.e., ωp/W = 1/4, 1/2 in
(a) and ωp/W = 1/3, 2/3 in (b). (c) Plot of σ/σ0 for a different DOS
(modeling p-like electrons in cubic symmetry) as a function of ωp

at T/W = 0.003 and half-filling; the inset shows the corresponding
DOS D and distribution f for the frequency ωp marked with a dot on
the graph. (d),(e) Plot of σ/σ0 at half-filling as a function of ωp at ζ =
20 and E = 0 for three different temperatures (d) and as a function
of the normalized electric field E at ωp/W = 0.53 and T/W = 0.003
(e). Calculations were performed for 	in 
 	eph assuming constant
v2τtr and the system was evolved for a time 10	−1

eph.

structure modeling p-like electrons in a cubic lattice; in this
case σ (ωp) < 0 also when ωp is commensurate with the
distance from Fermi level to the minimum of D(ε) [Fig. 2(c)].

Figure 2 shows that when plotted as a function of the
phonon frequency, the conductivity minima generally occur
at frequencies slightly bigger than the values of ωp satisfying
the commensurability criteria. The dependence on ζ (pump
strength) saturates rapidly as ζ is increased above 1.

From these results we conclude that a system can exhibit
a negative conductivity when (i) the DOS is on average an
increasing function of ε in the region of equilibrium occupied
states; (ii) the pump is strong enough to induce a sizable
population inversion of the electrons; and (iii) the phonon
frequency ωp is roughly commensurate with a relevant energy
scale in the density of states, e.g., the distance from the Fermi
level to the edges of the band or to a minimum of σ̃ .

In Figs. 2(d) and 2(e) we report the dependence of σ (ωp)
on temperature and dc field, for the trial DOS of Fig. 1.
We find that the negative conductivity is suppressed at high
temperatures [Fig. 2(d)] and by an electric field [Fig. 2(e)].
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FIG. 3. (a) Plot of σ/σ0 (blue) and ζ/ζ0 (red) as a function of
time 	epht at 1/3-filling, ζ0 = 10, ωp/W = 2/3 eV, T/W = 0.003
(solid) and T/W = 0.08 (dashed) for 	ephτpulse = 0.3 and 	ephτph =
5. (b) Upper panel: plot as a function of time 	epht of σ/σ0 (blue)
for the two scenarios with (solid) and without (dashed) considering
the σ < 0 instability; bottom panel: plot as a function of time of
E �(t ), for the same parameters as (a); the inset shows the parameter
ωE (t ) normalized to σ0. (c) Plot of D(ε) and of the distribution f at
	epht = 5; the red dashed curve refers to the scenario with no σ < 0
instability (E � = 0), while the solid blue curve takes the instability
into account. We used the trial DOS from Fig. 1 and modeled the
pulse as a decaying exponential Ip(t ) = ζ0τ

−1
pulsee

−t/τpulse for t > 0.

In particular, Joule heating dominates the entropy production
at high fields, so σ (E ) must become positive as E increases;
thus, if σ (E = 0) < 0, there exists a field E � for which the
conductivity vanishes, σ (E �) = 0. The value of E � is set by
the scattering length vF

√
τtr/	in and depends on the details

of the system. Roughly, σ > 0 when either Stin or StE are
large enough to smooth out the local population inversion,
i.e., when the effective temperature gets of the order of ωp,
or E � ∼ √

ωp	in/τtr/evF . This rough estimate agrees with
Fig. 2(e).

Short photoexcitation pulse. We now consider a short pump
pulse and study the subsequent evolution of f and ζ . We show
that the system may develop a transient NAC state that persists
after the drive is switched off. We describe the pump pulse
with a characteristic strength ζ0 [19] and a duration τpulse;
we consider a pulse much shorter than the relaxation time,
so that the timescales involved are well separated. We also
assume that the inelastic scattering is small Stel � Stin (or
	in 
 	eph).

We solve numerically Eqs. (2)–(7) for the trial DOS of
Fig. 1 and plot the behavior of σ and ζ as a function of
time for 	ephτph = 5 in Fig. 3(a). After the pump is switched
on, ζ (t ) grows rapidly (t ∼ τpulse) and the system develops
a negative σ (t ∼ 	−1

eph); ζ then relaxes back to equilibrium
(t ∼ τph) and σ returns positive. The NAC state occurs if it
can develop before the system relaxes, i.e., if 	−1

eph 
 τph; its
lifetime is ∼τph � τpulse, showing the persistence of the NAC
state long after the driving pulse is removed, and exhibits a
slight decrease at higher T or lower ζ0, as expected.

We can see from Eq. (3) why the relaxation timescale is
∼τph and not 	−1

eph. This occurs because, after an initial energy
transfer from the phonon mode to the electrons, the system
attains an approximate steady state in which there is no further
energy transfer between electrons and phonon, because f is
ωp periodic leading to Stel ≈ 0 and Stph ≈ 0. In this situation
the phonon mode can relax either through the other phonons
(scale ∼τph) or indirectly because of the inelastic scattering
of the electrons (scale ∼	−1

in ); in our framework, both these
timescales are longer than 	−1

eph, leading to a rather long-lived
nonequilibrium state.

The results in Fig. 3(a) neglect the instability associated
to a negative conductivity: for σ < 0 any charge fluctua-
tion grows exponentially with a characteristic time τ−1

M =
4π |σ | [7,8]; for a typical metal τM � 1 fs. This time is much
smaller than the typical values of τpulse, so we can assume
that the system instantaneously tunes itself to a state with a
spontaneous polarization | �E | = E � such that σ (E �) = 0. We
take into account the instability by including the contribution
of Eq. (7) to the collision integral, with E �(t ) chosen so that if
the solution of Eq. (2) predicts σ (t ) < 0, σ [t, E �(t )] = 0.

In Fig. 3(b) we plot σ (t ) and E �(t ); the value of the
field is comparable with the steady state values found pre-
viously in Fig. 2(e). The field grows very rapidly in a short
time ∼τM and then decays following the relaxation of ζ (t );
notice that E �(t ) goes to zero in a finite time and with
a nonzero derivative, because the conductivity turns back
positive when ζ (t ) decays below a certain threshold. This
internal field does not affect the decay of ζ , but smooths
out the regions of inverted population in f , as observed in
Fig. 3(c): the nonequilibrium distributions at equal times
are compared for the cases E � = 0 and E � �= 0 finding a
weakening of the local population inversions. This leads
to a faster relaxation towards equilibrium, so that the zero
conductivity state has a shorter lifetime than the NAC state
[Fig. 3(b)].

Finally to make a connection to the phenomenological
analysis of Ref. [8], we estimate the parameter ωE , i.e., the
sensitivity of entropy production to perturbations of the total
energy. Notice that in Ref. [8] the total energy of the system is
conserved after the pulse, while in this Rapid Communication
we allow for energy relaxation through Stin and τph. Therefore,
although the connection would be technically imprecise, we
can still estimate ωE as the derivative of the Joule heating
contribution to entropy production with respect to fluctuations
of the electric field energy: ωE ∼ ∂σ/∂E2|E � (E �)2; ωE (t )
depends on time and goes to zero as E �(t ) → 0 [see inset in
Fig. 3(b)].

Conclusions. We have studied a minimal microscopic
model for the transient conductivity of a photoexcited metal,
in which the pump drives a strong nonequilibrium phonon
distribution, that may induce an inverted electron population.

We found the conditions for the occurrence of the pop-
ulation inversion and studied the dynamics of this transient
state, considering the relaxation of phonons and electrons. We
found that for certain pump energies (dependent on the band
structure and the doping level), the photoexcited system devel-
ops an absolute negative conductivity state. Ideal systems that
may exhibit such state have electron-phonon coupling strong
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enough so that the related scattering time is faster than the
relaxation time of the system; they also have a commensurate
ratio between phonon frequency and bandwidth, which is
easily achieved in the case of narrow bandwidth and/or high-
frequency phonons. The negative conductivity state is unsta-
ble and evolves into a state with zero conductivity and a spon-
taneous electric polarization. We showed that this transient

state persists even after the pump has been removed and that
the spontaneous electric field does not immediately destroy
the zero conductivity state, but rather reduces its lifetime.
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