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Electron energy loss spectroscopy in the low-loss regime is widely used to access to the screening of
the Coulomb potential as a function of the momentum transfer. This screening is strongly reduced for low-
dimensional materials and this spectroscopy is a technique of choice to study the resulting quantum confinement.
Time-dependent density-functional theory within an ab initio formalism is particularly suited to simulate
angular-resolved electron energy loss spectra, taking benefit from the reciprocal space description. For an isolated
object, the standard procedure based on the supercell approach dramatically fails for the out-of-plane optical
response of the surface and we have proposed a scheme called Selected-G [N. Tancogne-Dejean, C. Giorgetti,
and V. Véniard, Phys. Rev. B 92, 245308 (2015)], leading to a slab potential. In this paper, we show that the
standard procedure also affects the in-plane components of the EEL spectra. Applying the Selected-G procedure,
we show that the full expression of the slab potential is crucial to describe slabs of finite thickness. We compare
our formalism to other cutoff procedures, and show that if they provide spectra with the correct spectral weight,
allowing the good description of plasmon dispersion, the amplitude of the peaks depends on the choice of the
supercell. Our results, which provide spectra independent of vacuum, will have a strong impact on the calculation
of properties such as quasiparticle corrections.
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I. INTRODUCTION

Electron energy loss (EEL) spectroscopy is a widely used
technique to measure electronic properties of materials. In
particular, in the low-loss regime, it gives access to plasmons,
leading to the screening of the Coulomb interaction [1].
Therefore, it has been applied to low-dimensional objects
like nanospheres [2], nanotubes [2–5], and thin-layer systems
[6–12], where the screening is strongly modified as compared
to the bulk counterpart.

A dedicated framework for the theoretical description of
spectroscopy in bulk materials is based on reciprocal space, as
it is intimately associated to the crystalline nature of materials
described historically by solid-state physics. Indeed, the 3D
periodicity of the crystal and the Bloch theorem naturally
suggest the use of a plane-wave basis set. Therefore, time-
dependent density functional theory (TDDFT) in reciprocal
space is a tool of choice to calculate angular-resolved electron
energy loss spectra, within an ab initio formalism [13,14].
It allows the transformation of the equations describing the
response of the matter to a perturbation, which are originally
integrals over space variables, into matrix equations, which
can easily been solved numerically. This is the reason why
this formalism is so powerful.

When dealing with 1D or 2D isolated objects, one loses the
periodicity in at least one direction. A way to treat this situa-
tion is to use a mixed-space formalism: For example, in the 2D
case, the reciprocal space in the plane and the real space out
of plane (z) [10,12,15,16]. It is nevertheless computationally
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very demanding, since it requires small integration steps along
the z axis [17,18].

The remaining periodicity justifies the use of 3D-reciprocal
space codes. The standard procedure is to build a supercell,
which plays the role of the unit cell, repeated in the three
real-space directions. The supercell is composed of matter and
vacuum to isolate the artificial replicas [19–22]. Ground-state
properties are well described within this framework [20,23].
For spectroscopic properties like plasmons for in-plane mo-
mentum transfers, such a formalism has been applied and can
reproduce experimental results, under the condition that the
supercell is large enough [24]. A work dealing with excitons
has recently been published [25]. In this framework, cutoff
procedures have been developed to isolate repeated slabs at
much shorter distance [26,27] and the definition of the 2D
macroscopic constant has also been reconsidered [28–30].

Nevertheless, we have shown recently that such a formal-
ism fails for the absorption spectrum of surfaces, in partic-
ular for the out-of-plane component when one accounts for
the local fields [18]. We have demonstrated that the result
given by the standard supercell approach is equivalent to an
effective medium theory with vacuum, and leads nonphysical
results. To cure this vacuum problem, we have proposed,
within TDDFT, a formalism called Selected-G, where (i)
the response functions are expanded on a new set of 3D
reciprocal lattice vectors: The new set is defined according
to the thickness of the matter rather than the thickness of
the supercell; (ii) due to the finite thickness of the slabs,
the Coulomb interaction in the Dyson equation has to be
modified (slab potential). This formalism was applied in the
limiting case of surfaces, where due to the infinite thickness
of the slab, the slab potential tends toward the standard 3D
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potential and successfully simulates the absorption spectra
as well as second-harmonic-generation spectra for different
silicon surfaces [18,31].

In this paper, we apply the Selected-G formalism, using the
slab potential, to simulate EEL spectra of thin slabs of stacked
graphene. In the first section, we summarize the procedure
used to calculate the EEL spectra within TDDFT. In the
second section, we show that the in-plane components of the
EEL spectra are also affected by the vacuum introduced in
the supercell, when calculated with the standard supercell ap-
proach. The Selected-G method is used to solve this spurious
dependence on vacuum, and we emphasize the importance of
the slab potential to account for the finite thickness of the
slabs. In the third section, we compare our method with other
formalisms using cutoff procedures [26,27] or slab potentials
[16,32]. In the last section, we compare our results to the
pioneering EEL measurements of Eberlein et al. [6] obtained
for graphene slabs of a few layers, and show that, within
this framework, our numerical results reproduce the measure-
ments and do not depend on the amount of vacuum introduced
in the supercell, in contrast to previous calculations.

II. TDDFT FORMALISM: FROM 3D TO 2D SYSTEM

A. Dielectric function evaluated in TDDFT

In the case of bulk (3D) materials, the reciprocal space
basis vectors are built using the volume of the unit cell,
while the volume of the supercell is used for low-dimensional
materials.

The Dyson equation [14], in reciprocal space, is a matrix
equation and reads in the random phase approximation:

χGG′ (q; ω) = χ0
GG′ (q; ω)

+
∑
G1

χ0
GG1

(q; ω) vG1 (q) χG1G′ (q; ω). (1)

Atomic units are used throughout unless otherwise stated. q is
a reciprocal lattice vector which spans the first Brillouin zone,

and ω the frequency. χ is the full susceptibility, corresponding
to the response to the external potential and χ0 is the so-
called independent-particle (Kohn-Sham) response function,
describing the response to the total (external + induced)
potential. The difference between these two quantities arises
from the microscopic structure of the material, as the macro-
scopic external perturbation leads to a microscopic electronic-
induced density. This phenomenon describes the so-called
local-field effects linked to the microscopic components (G �=
0) of the the Coulomb potential [33–35]:

vG(q) = 4π

|G + q|2 . (2)

Once χGG′ (q; ω) is calculated, the microscopic inverse
dielectric function is evaluated, according to

ε−1
GG′ (q; ω) = δGG′ + vG(q)χGG′ (q; ω), (3)

and the loss function is proportional to the imaginary part of
the inverse dielectric function −�(ε−1).

We have shown that, for 2D materials described within
a supercell approach, this formalism behaves as an effective
medium theory and provides nonphysical absorption spectrum
for the out-of-plane component of the surface [18].

B. Selected-G approach

To avoid this problem, we can solve the matrix Dyson
equation in the 3D-reciprocal space, but using a reduced set of
reciprocal lattice vectors G̃ = (G‖, G̃z ), where G̃z is defined in
terms of 2π/Lmat

z , Lmat
z being the height of the matter and not

the supercell. This formalism has been developed in Ref. [18]
and is summarized in Appendix A. Equation (1) becomes

χ̃G̃G̃′ (q; ω) = χ0
G̃G̃′ (q; ω)

+
∑
G̃1G̃2

χ0
G̃G̃1

(q; ω) ṼG̃1G̃2
(q) χ̃G̃2G̃′ (q; ω).(4)

Due to the finite extension of the matter, the Fourier transform
of the Coulomb potential depends on two variables, G̃1, G̃2,
which have the same in-plane projection:

ṼG̃1G̃2
(q) = 4π

|G̃1 + q|2 δG̃1G̃2
+ ξ 4π δG1 ||,G2 ||

|q + G̃1|2|q + G̃2|2
(5)

×
{
−(2qz + G̃z1 + G̃z2)

e−|G1 ||+q|||Lmat
z sin

(
qz Lmat

z

)
Lmat

z

+ |G1|| + q|||2 − (qz + G̃z1)(qz + G̃z2)

|G1|| + q|||
e−|G1 ||+q|||Lmat

z cos
(
qz Lmat

z

) − 1

Lmat
z

}
.

q‖ and qz are, respectively, the in-plane and out-of-plane
projection of q in the first Brillouin zone. ξ is a phase
factor, defined as ξ = 1 if the matter is located in [−Lmat

z , 0]
or [0, Lmat

z ] inside the supercell and ξ = (−1)n1+n2 if it is
located in [−Lmat

z /2, Lmat
z /2], ni being related to G̃zi by G̃zi =

ni2π/Lmat
z , (see Appendix A 1).

The first term of the slab potential [Eq. (5)] is the usual 3D
Fourier transform of the Coulomb potential. The second term,
nondiagonal for G̃zi, is a correction accounting for the finite
thickness of the matter, as can be seen from the 1/Lmat

z factor.
When one deals with surfaces, one considers the limit Lmat

z →

∞, and the potential is reduced to the first (3D) diagonal
term.

For the case of finite thickness slabs, the expression of the
microscopic inverse dielectric matrix must be modified with
respect to Eq. (3) and now reads

ε−1
G̃G̃′ (q; ω) = δG̃G̃′ +

∑
G̃z1

ṼG̃G̃1
(q)χ̃G̃1G̃′ (q; ω). (6)

Similar expressions have been obtained both for the slab
potential [Eq. (5)] and for the microscopic inverse dielectric
matrix [Eq. (3)] in Refs. [16,32].
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TABLE I. Parameters used to calculate EEL spectra of the four-
layer graphene slab as a function of the supercell.

Parameters 4L (R2) 4L (R3) 4L (R4) 4L (R5)

npwwfn 3451 5191 6931 8659
nbands 192 192 192 192
npwmatxy 19 19 19 19
npwmatz 49 73 97 121
npwmatz (SG) 25 25 25 25

A potential built to suppress the influence of the neighbor-
ing layers, applied to the result of the standard 3D calculation,
was proposed in Ref. [30]. The off-diagonal correcting term
is similar to the one proposed in Refs. [16,32], but with a
different expression for the inverse dielectric function.

The fundamental difference between these frameworks and
ours is the choice for the reciprocal space basis vectors. They
keep the basis built on the full supercell when we use the
Selected-G one. This point will be discussed later in Sec. III D.

III. RESULTS AND DISCUSSION

The ground-state properties are calculated within density-
functional theory in the local density approximation, using
the ABINIT code [36]. We used a norm-conserving Troullier-
Martins pseudopotential, with a cutoff energy of 31 Ha. The
independent-particle response function χ0 is calculated as the
sum over Kohn-Sham states, using the DP code [37]. This
code also solves the Dyson equations Eqs. (1) or (4) and
evaluates the microscopic inverse dielectric matrix ε−1 using
Eqs. (3) or (6), accordingly. For small momentum transfer q,
the EEL spectrum is given by −�[ε−1

00 (q; ω)].
The system chosen is a AB stacking of four graphene

layers. The thickness of the stacked graphene layers is defined
as N × Lgraph

z , where N is the number of layers and Lgraph
z

the thickness of the graphene sheet [38]. Lgraph
z usually corre-

sponds to half of the graphite unit cell along the c axis, which
gives 3.354 Å. In this paper, we consider the height of the
supercell after atomic relaxation, leading to Lgraph

z = 3.331
Å= 6.294 Bohr. Note that this value is close to the van der
Waals atomic radius [39]. However, since the numerical value
of this important quantity cannot be assigned unambiguously
within a range smaller than a few percent, we have checked
that it has a negligible influence on our results within a
variation of Lgraph

z up to 17% (see Appendix B).
The thickness of the four-layer-graphene is then Lmat

z =
25.18 Bohr. This slab is introduced in supercells of different
heights LSC

z , defined as a multiple of the height of the matter
Lmat

z . R refers to the ratio between the height of the supercell
and the height of the matter: R = LSC

z /Lmat
z . The k-point

grid is 40 x 40 x 1, with parameters given in Table I. EEL
spectra are calculated for an in-plane vanishing momentum
transfer.

A. Standard supercell calculations

The results calculated using the standard supercell ap-
proach, including LF [Eqs. (1) and (3)], are presented in

FIG. 1. Comparison of EELS spectra, including LF, for a slab of
four graphene layers introduced in different supercells (see inset),
using the standard supercell approach [Eqs. (1) and (3)]. R refers to
the ratio between the height of the supercell and the height of the
matter: R = LSC

z /Lmat
z . Orange: R2—solid line with +. Cyan: R3—

solid line with ×. Green: R4—solid line with open circle. Magenta:
R5—solid line with up triangle. The spectra are calculated within
TDDFT, for an in-plane q‖ = 10−2 a.u.

Fig. 1: it is clear that the spectra, energy position, and am-
plitude of the π and π + σ plasmons depend on the amount
of vacuum introduced in the supercell.

This is a noticeable difference with the results obtained for
the absorption spectra of silicon surfaces [18]. In that case,
the energy position of the absorption peaks were unchanged
for the in-plane components and the amplitude was scaled
by the factor 1/R. For the out-of-plane component, a shift
in energy and a reduction of the amplitude were present,
leading to a nonphysical absorption spectrum. These results
are explained by the fact that absorption can also be evalu-
ated by a slightly different Dyson equation [35], where the
long-range component of the Coulomb potential in Eq. (1)
is suppressed (v0 ≡ 0). Therefore, in-plane absorption, with
small LF effects, is given by χ0, which is just proportional to
1/LSC

z .
The situation is different for the EEL spectra, since they

are governed by the susceptibility given in Eq. (1). In that
case, the long-range component of the Coulomb potential is
always present and dominates for small momentum transfer.
The difference between χ and χ0, resulting from the presence
of v0 [35], explains why the shift in energy also occurs for
the in-plane components and is almost independent of the
inclusion of LF for the considered momentum transfer q‖ =
10−2 a.u. Indeed, the EEL spectra without LF (not shown) are
very similar to the ones of Fig. 1.

The EEL spectrum for the largest supercell (R5) in Fig. 1
is quite close to the experimental results presented in Ref. [6].
Such a behavior was also observed when simulating the EEL
spectra of graphene in the supercell formalism. Once the
supercell is large enough, all the spectra are similar, apart
from a normalization factor 1/LSC [24]. In that case, the good
agreement of the plasmon energy compared to experimental
results explains the success of this framework to study 2D
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FIG. 2. Comparison of EELS spectra, including LF, for a slab of
four graphene layers introduced in the same supercells as in Fig. 1,
using the Selected-G method with only the first term (V3D) of the slab
potential. Orange: R2—solid line with +. Cyan: R3—solid line with
×. Green: R4—solid line with open circle. Magenta: R5—solid line
with up triangle. The spectra are calculated within TDDFT, for an
in-plane q‖ = 10−2 a.u. Black: Bulk graphite for reference.

materials, even if the large size of the supercells required to
isolate the replicas has motivated the further developments.

Nevertheless, even if the energy position of the peaks can
be considered correct, the amplitude of the calculated spectra
depends strongly on the size of the supercell. For this reason,
it is interesting to apply the Selected-G formalism for the case
of EELS.

B. Selected-G scheme in the limit Lmat
z → ∞

Before testing the influence of the off-diagonal corrections
of the slab potential, we will first analyze the EEL spectra
calculated using the Selected-G formalism, with only the first
term of the slab Coulomb potential [Eq. (5)], as it is the
case for surface or thick slab calculations. Since it is equal
to the usual expression of the 3D Fourier transform of the
Coulomb potential, it will be denoted V3D. The results are
shown in Fig. 2. In that case, the double summation appearing
in the Dyson equation [Eq. (4)] is reduced to a single sum
like in Eq. (1), and the expression of the microscopic inverse
dielectric matrix [Eq. (6)] recovers the expression of Eq. (3).
The only difference with the standard supercell formalism lies
in the fact that all the quantities are defined on the reduced set
of {G̃} vectors.

The results are presented in Fig. 2, using the same su-
percells as in Fig. 1 with the same color code. Note that
when using the 3D expression for the Fourier transform of the
Coulomb potential, the number of bands has to be increased
up to 240 bands for convergence above 35 eV. As already
shown for the optical response of surfaces, all the spectra
are superimposed, confirming that the Selected-G procedure
leads to EEL spectra independent of the amount of vacuum.
Nevertheless, the resulting spectrum does not correspond to
the EELS of the four-graphene-layer slab. Indeed, the spectra
are very different from the ones measured by Eberlein et al.
[6], where the π + σ plasmon is strongly depressed above

0 10 20 30 40
Energy (eV)

0

0.5

1

1.5

EE
L 

(q
//)

R2 Selected-G + Vslab
R3 Selected-G + Vslab
R4 Selected-G + Vslab
R5 Selected-G + Vslab

FIG. 3. Comparison of EELS spectra, including LF, for a slab
of four graphene layers introduced in the same supercells as in
Fig. 1, using the Selected-G method with the slab potential [Eq. (5)].
Orange: R2—solid line with +. Cyan: R3—solid line with ×. Green:
R4—solid line with open circle. Magenta: R5—solid line with up
triangle. The spectra are calculated within TDDFT, for an in-plane
q‖ = 10−2 a.u.

20 eV. In the present case, the resulting spectrum corresponds
actually to the bulk graphite, which is plotted in black circles
in Fig. 2 for comparison.

C. Selected-G scheme with the slab potential

We will now show the EELS for these four supercells, us-
ing the Selected-G procedure with the slab potential [Eqs. (4)–
(6)]. Results are presented in Fig. 3, using the same color code.

As expected from the previous section, the spectra in
Fig. 3 are all superimposed, leading to a result independent
of the vacuum introduced in the supercell, but the resulting
spectrum does not correspond anymore to the EELS of bulk
graphite. The π plasmon located above 5 eV in the bulk case,
is slightly shifted below 5 eV for the four-layers slab, but
has a similar amplitude. The major difference comes from
the π + σ plasmon. It is strongly depressed for the energy
ranging between 20 and 40 eV, leading to a maximum around
15 eV, when it is located around 27 eV for the bulk case
(see Fig. 2). The spectrum calculated for the slab, using the
Selected-G procedure with the slab potential, exhibits the
strong reduction of the screening expected for a thin slab of
matter, as compared to the bulk. This spectrum compares also
very well with the EELS spectra of Eberlein et al. [6], as will
be studied in detail in Sec. III E.

D. Comparison with cutoff procedures

The slab potential used in the present paper has been
obtained by Fourier transform of the Coulomb potential along
a finite distance, restricted to the size of the material slab
and can be seen, in a way, as a cutoff potential. It is thus
interesting to compare our results with other standard cutoff
procedures, built to tackle the problem of isolating objects in
a 3D periodic formalism. In 2006, two papers simultaneously
proposed to cutoff the Coulomb interaction at some distance
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between the repeated objects [26,27]. In these two papers,
the authors considered a diagonal expression of the Fourier
transform of the 3D Coulomb potential. Note that it cannot
be used for q‖ + G‖ = 0, which is also the case for the slab
potential we have developed.

The important point we want to focus on is the choice of
the cutoff distance. In Ref. [27], the cutoff distance zc has
to be larger than the extension of the electronic density. The
size of the supercell is then deduced from this cutoff distance
zc, to avoid interaction between replicas. The minimum value
corresponds to LSC

z = 2zc for the 2D geometry. In Ref. [26],
the same value was proposed, as this choice allows to cancel
a divergence in the expression of the cutoff potential.

In 2013, simultaneously with our development of the
Selected-G procedure, leading to the slab potential [Eq. (5)]
[18], a similar expression has been proposed [16,32]. It re-
sults also from the finite integration in the z direction when
calculating the Fourier transform of the Coulomb potential
considered as a two-variable quantity [v(r, r′) instead of
v(r − r′)].

However, in these approaches, the reciprocal space vectors
are built considering the supercell volume. For this reason, the
results still depend on the amount of vacuum introduced in
the calculation, as can be seen from Fig. 4. The parameters
used for the calculations are the ones reported in Table I.
In this figure, we plot the results of the cutoff procedure
proposed in Refs. [26,27] (top panel), the cutoff procedure
proposed in Refs. [16,32] (center panel), and the results of
the Selected-G with the slab potential formalism (bottom
panel). The left column corresponds to spectra calculated for
an in-plane momentum transfer of q = 1. 10−2 a.u. and the
right column for q = 0.157 a.u. The black continuous curves
correspond to the four-layer graphene slab in the supercell R2,
and the red crosses to the spectra for the four-layer graphene
slab in the supercell R4.

In the top and center panels, the calculations using either
the R2 or R4 supercells lead to the same peak positions, but
the amplitude of the peaks can be strongly affected. See, for
instance, the case q = 0.157 a.u., where the ratio between the
two curves is almost equal to 2, which corresponds to the ratio
of the supercell’s heights.

For small q, the local-field effects are vanishingly small
and the spectra can be evaluated from ε−1,NLF

00 = 1 +
V00χ

0
00/[1 − V00χ

0
00], where V00 is replaced by the long range

term v̂0 for the diagonal cutoff case [26,27]. For vanishing in-
plane q‖, V00( or v̂0) → 2πLSC

z /q‖. Since χ0
00 is proportional

to 1/LSC
z , one has an exact compensation of the dependence

in LSC
z .

The influence of the microscopic terms will play a role for
larger momentum transfer. When q‖ increases, the compensa-
tion does not occur anymore, and the amplitude of the spectra
evolves gradually towards a scaling factor corresponding to
the ratio of the supercell’s height. Finally, the bottom panel
of Fig. 4 shows the results of the Selected-G procedure with
the use of the slab potential: The results are independent of
vacuum, not only for vanishing q, as was already evidenced
in Fig. 3, but also for nonvanishing q (Fig. 4—bottom right).
Interestingly, the shape of the spectra obtained with the three
different methods is quite similar. Only the amplitude is
affected.
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4l_R4 Selected-G
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4l_R2 (Ref [32,17]) |q||| = 1. 10-2 a.u.
4l_R4 (Ref [32,17])

4l_R2 (Ref [32,17]) |q||| = 0.157 a.u.
4l_R4 (Ref [32,17]) 
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1.5

EE
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4l_R4 Cutoff_2d

4l_R2 Cutoff_2d |q||| = 0.157 a.u.
4l_R4 Cutoff_2d

FIG. 4. Illustration of the vacuum effect for the different cutoff
procedures on a four-layer-graphene slab introduced into two super-
cells: ratio 2 (black continuous line) and ratio 4 (red crosses). Top
panel; cutoff proposed in Refs. [26] or [27]; center panel: cutoff
procedure proposed in Ref. [32] or [16]; bottom panel: Selected-G +
slab potential formalism. In-plane momentum transfer: (left column)
q‖ = 1. 10−2 a.u. and (right column) q‖ = 0.157 a.u.

The different cutoffs proposed previously [16,26,27,32]
allow a correct description of the spectral weight of the EELS,
which explains their success when following the dispersion
of the π and π + σ plasmons, in particular in Refs. [16]
or [32,40]. The common feature of all these methods is the
strong reduction of the Coulomb potential, in particular of
the long-range term, due the cutoff procedures. Consequently,
it reduces the amplitude of the dielectric function through
Eq. (6). This effect is also obtained by increasing the size of
the supercell LSCz , which normalizes χ0, when the calculation
is done without the truncation of the Coulomb interaction.

Nevertheless, the question of the absolute amplitude of the
spectrum is still open and cannot be clarified by comparing
with the experimental results since, to our knowledge, they
are shown in arbitrary units. This point was already raised for
the case of the diagonal cutoff, where a different definition
of ε−1 for the EELS was proposed [24], as discussed in
Appendix C 1.

However, the accurate determination of the amplitude is an
important issue for the calculation of the screened Coulomb
potential used, for example, in the self-energy, at the basis of
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TABLE II. Parameters used to calculate the spectra of the slabs
of different thicknesses.

Parameters 1L (R5) 2L (R4) 3L (R3) 4L (R2) 5L (R2) 8L (R2)

npwwfn 2143 3451 3895 3451 4339 6931
nbands 48 96 144 192 280 384
npwmatxy 19 19 19 19 19 19
npwmatz 7 13 19 25 31 49

quasiparticle corrections, as well as for the absorption spectra
with the Bethe-Salpeter equation formalism. Our formalism is
the only one to provide quantities independent of the choice
of the supercell.

E. Slabs of different thicknesses

After having discussed and solved the dependence of the
spectra on the size of the vacuum in the supercell and taking
into account the finite thickness of the matter, we turn now
to a detailed comparison of our results with the experimental
spectra obtained in Ref. [6]. Using the Selected-G method
with the slab potential, we have simulated the EEL spectra
for slabs of few-layer-stacked graphene, according to Eq. (6).
The parameters used in the calculations are given in Table II.
We remind the reader that the choice of the supercell is
meaningless, as our calculations do not depend on vacuum.

The results are presented in Fig. 5. They are in excellent
agreement with the measured spectra of Ref. [6], unlike the
spectra calculated with the untruncated external perturbation
(see Appendix C 2). The energy position of each plasmon
peak corresponds to the measured one. The progressive shift
in energy when increasing the thickness and the spectral
weight of the π + σ plasmon are well reproduced. It shows
a steep decrease above 14 eV for the thinner samples, which
shifts toward higher energy with increasing thickness, leading
to a plateau, as observed in the experiment. Nevertheless, the
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FIG. 5. Comparison of EELS spectra, including LF, for slabs of
N graphene layers (N= 1, 2, 3, 4, 5, and 8). Magenta with ×: N = 1;
blue with +: N = 2; red with right triangle: N = 3; green with left
triangle: N = 4; black with diamond: N = 5; cyan with open square:
N = 8. In-plane component for q‖ = 10−2 a.u.
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FIG. 6. Comparison of EELS spectra, for one-layer (magenta),
two-layer (blue), and five-layer (black) slabs. Calculations within
Selected-G and slab potential framework for an in-plane momentum
transfer q‖ = 2.10−2 a.u.

plateau is visible for the eight-layer slab and not for the five-
layer one. To improve the agreement with the experimental
results, we calculated EEL spectra for an in-plane momentum
transfer of q|| = 0.02 a.u., for one-layer, two-layer, and five-
layer slabs. Calculated spectra are shown in Fig. 6, where the
measurements extracted from Ref. [6] are plotted in the inset.
The agreement is very good. The remaining difference appear-
ing in the width of the spectra can be due either to the presence
of the out-of-plane plasmon excitation, which is not included
in our calculations, or, more probably, to the fact that, due to
the collection angle, the experimental spectra come from the
superposition of plasmons with different in-plane momentum
transfers. Indeed, the plasmon dispersion leads to a blueshift
of the spectra when the momentum transfer increases.

IV. CONCLUSION

In this paper, we calculated the EEL spectra for thin slabs
of stacked graphene using TDDFT in reciprocal space in a
supercell scheme. We evidenced that, unlike the absorption
case, the influence of the vacuum, when using the standard
supercell formalism, is dramatic for in-plane components.
To solve this vacuum problem, we applied the Selected-G
approach with a slab potential.

We obtained results independent of the vacuum introduced
in the supercell and in very good agreement with available
measurements.

This independence of the spectra with respect to the vac-
uum can only be achieved thanks to the Selected-G approach,
where reciprocal lattice vectors are defined according to the
thickness of the matter and not the supercell, as is usually done
within the standard supercell formalism. This scheme is not
limited to TDDFT, and could be applied to any other method
involving the solution of a Dyson-type equation, such as the
Bethe-Salpeter equation, for instance. While the Selected-G
scheme is enough for the calculation of surface excitation
spectra, as was shown in Ref. [18], we emphasize here that
the full expression of the slab potential must be taken into
account to describe the EEL spectra of thin slabs.
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We compared our formalism with other cutoff procedures
developed earlier, showing that they can reproduce the shape
of the spectra but with an amplitude depending on the choice
of the supercell.

Our Selected-G formalism, together with a slab potential,
allows the accurate numerical simulations of EEL spectra
using the efficient supercell-based formalism in reciprocal
space. The question of the amplitude is a crucial issue,
since the inverse microscopic dielectric matrix is also the key
quantity for the calculation of the self-energy in quasiparticles
corrections.
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APPENDIX A: SELECTED-G APPROACH

As the results presented in this paper are based on the
Selected-G approach, we briefly sketch the main points of the
derivation. For more details, one can refer to Ref. [18].

Assuming that the electronic density is localized in the z
direction between −Lmat

z and 0, we introduce two auxiliary
periodic functions χ̃0 and χ̃ . χ̃0 and χ̃ are, respectively,
identical to χ0 and χ for (z, z′) in [−Lmat

z , 0] × [−Lmat
z , 0],

but the period is Lmat
z , instead of Lz. Their Fourier transform is

given by

χ̃G̃,G̃′ (q; ω) = 1

Lmat
z

∫ 0

−Lmat
z

dz
∫ 0

−Lmat
z

dz′e−i(qz+G̃z )z

× χ̃G||,G′ || (q||, z, z′; ω)ei(qz+G̃′
z )z′

, (A1)

where G̃z is defined according to the size of the material slab:
G̃z = n 2π

Lmat
z

, n ∈ Z.

1. Modified Dyson equation

The Dyson equation linking the independent-particle re-
sponse function and the microscopic susceptibility for an
isolated slab is given by

χG‖G′
‖ (q‖, z, z′; ω) = χ0

G‖G′
‖
(q‖, z, z′; ω) +

∑
G′′

‖

∫ ∞

−∞

∫ ∞

−∞
dz1dz2 χ0

G‖G′′
‖
(q‖, z, z1; ω) vG′′

‖ (q‖, z1, z2) χG′′
‖G′

‖ (q‖, z2, z′; ω), (A2)

where the Fourier transforms for the periodic in-plane coordinates (‖) has already been done. vG|| (q||, z, z′) =
2πe−|q||+G||||z−z′ |/|q|| + G||| is the 2D Fourier transform of the 3D Coulomb potential.

Since (i) χ0
G‖G′

‖
(q‖, z, z′; ω) and χG‖G′

‖ (q‖, z, z′; ω) are equal to zero outside [−Lmat
z , 0] × [−Lmat

z , 0], and (ii) equal, respec-

tively, to χ̃0 and χ̃ in this range, Eq. (A2) can be restricted to

χ̃G‖G′
‖ (q‖, z, z′; ω) = χ̃0

G‖G′
‖
(q‖, z, z′; ω) +

∑
G′′

‖

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1 dz2 χ̃0
G‖G′′

‖
(q‖, z, z1; ω) vG′′

‖ (q‖, z1, z2) χ̃G‖G′
‖ (q‖, z2, z′; ω)

(A3)

for (z, z′) ∈ [−Lmat
z , 0] × [−Lmat

z , 0].
By Fourier-transforming Eq. (A3), one gets after some algebra:

χ̃G̃G̃′ (q; ω) = χ̃0
G̃G̃′ (q; ω) +

∑
G̃1G̃2

χ̃0
G̃G̃1

(q; ω)ṼG̃1G̃2
(q)χ̃G̃2G̃′ (q; ω), (A4)

with G̃ = (G||, G̃z ), q = (q||, qz ) and where qz, G̃z are vectors along the z axis, defined according to G̃z = nz
2π

Lmat
z

, with nz ∈ Z.

The slab potential Ṽ is defined as

ṼG̃1G̃2
(qz ) = 1

Lmat
z

∫ 0

−Lmat
z

∫ 0

−Lmat
z

dz1dz2 e−i(G̃1+qz )z1 v(z1, z2)ei(G̃2+qz )z2 . (A5)

We finally get for the slab potential

ṼG̃1,G̃2
(q) = 4π

|q + G̃1|2
δG̃1,G̃2

+ 4π ξ δG1 ||,G2 ||

|q + G̃1|2|q + G̃2|2
[

− e−|q||+G1 |||Lmat
z sin

(
qzLmat

z

)
Lmat

z

(2qz + G̃z1 + G̃z2)

+ e−|q||+G1 |||Lmat
z cos

(
qzLmat

z

) − 1

Lmat
z |q|| + G1|||

(|q|| + G1|||2 − (qz + G̃z1)(qz + G̃z2)
)]

. (A6)
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We assumed here that the matter is located between −Lmat
z

and 0. The same derivation can be conducted if the matter is
located between −Lmat

z /2 and Lmat
z /2. In that particular case, a

phase factor appears in the second term of the right-hand side
of Eq. (A6). This is accounted for by ξ , which can take the
value 1 or (−1)n1+n2 , depending on the way the supercell is
constructed. As before, ni ∈ Z is defined according to G̃zi =
ni2π/Lmat

z .
This modified Dyson equation links the independent-

particle response function and the susceptibility for the iso-
lated slab, by means of the associated quantities of the peri-
odic system. The modifications appear at two levels: (i) it re-
quires a modified expression for the Coulomb potential (called
slab potential) and (ii) the basis vector for the reciprocal space
along the z direction is G̃z = 2π

Lmat
z

instead of Gz = 2π
LSC

z
. For this

reason, we called it Selected-G, where the selected G vectors
are the ones of the matter and not the supercell.

2. Inverse dielectric function

Once we have defined the auxiliary functions, we can
express the inverse dielectric function ε−1 in terms of χ̃ .

By reducing the range of integration to [−Lmat
z , 0], in the

following expression:

ε−1
G||G′

||
(q||, z, z′; ω)

= δ(z − z′) +
∫ ∞

−∞
dz1 vG|| (q||, z, z1) χG||G′

|| (q||, z1, z′; ω),

(A7)

and using χ̃ instead of χ , we finally get

ε−1
G̃G̃′ (q; ω) = δG̃G̃′ +

∑
G̃z1

ṼG̃G̃1
(q)χ̃G̃1G̃′ (q; ω), (A8)

which corresponds to Eq. (6).

APPENDIX B: INFLUENCE OF THE VALUE OF
THICKNESS OF THE MATTER

The definition of the thickness of matter is a very delicate
point for an atomically thin layer. Nevertheless, since it is
a key quantity of our formalism, we have studied to which
extend its value could influence the numerical results. Figure 7
show the extension of the electronic density of the graphene
sheet introduced in a cell of 31.47 Bohr. The red lines indi-
cate the limits the thickness we have chosen (6.294 Bohr),
resulting from the usual procedure, namely, half of the c
parameter in the bulk graphite unit cell (after relaxation).
This definition is closely related to the van der Waals atomic
radius [41]. According to Tables 1, 7, 8, and 9 of Ref. [39],
the van der Waals radius of carbon atom spans in a range
going from 1.5 to 1.96 Å. The blue lines in Fig. 7 show the
thickness corresponding to the largest van der Waals radius
RvdW = 1.96 Å (Lgraph

z = 7.408 Bohr), which corresponds to
an increase of 17% of the value used in our calculations.

To evaluate the influence of the thickness of the slab
in our formalism, we have calculated the EELS spectra of
the graphene layer using Selected-G and the slab potential,
considering three different values of Lmat

z : the two extreme
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6.294 a.u.
7.408 a.u.

FIG. 7. Black line: Extension of the electronic density of one
sheet of graphene, in a cell of 31.47 Bohr. Dashed red line: Limits
of Lmat

z = 6.294 Bohr. Dashed dotted blue line: Limits of Lmat
z =

7.408 Bohr.

ones (6.294 Bohr, 7.408 Bohr) and a intermediate value,
6.992 Bohr. It corresponds to RvdW = 1.67, 1.96, and 1.85 Å,
respectively. The results are shown in Figs. 8 and 9 for q‖ =
10−2 a.u. and q‖ = 0.157 a.u., respectively.

The spectra are superimposed for each value of q. This
shows that our results are not sensitive to the thickness used
to define the matter in a range as large as 17% of Lmat

z . This
shows that, even though there is no perfectly unambiguous
definition of the thickness of the layer, one can safely use
standard definitions such as half of the c parameter in the bulk
unit cell or the van der Waals atomic radius. As a consequence,
even though there is no perfectly unambiguous definition
of the thickness of the layer, one can safely use standard
definitions such as half of the c parameter in the bulk unit
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FIG. 8. Comparison of EELS spectra, including LF, within
Selected-G and slab potential framework, for one graphene layer
depicted as a slab with different thicknesses. Red with circle: Lmat

z =
6.294 Bohr. Blue with square: Lmat

z = 6.992 Bohr. Turquoise with
down triangle: Lmat

z = 7.408 Bohr. In-plane component for q‖ =
10−2 a.u.
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FIG. 9. Comparison of EELS spectra, including LF, within
Selected-G and slab potential framework, for one graphene layer
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6.294 Bohr. Blue with square: Lmat

z = 6.992 Bohr. Turquoise with
down triangle: Lmat

z = 7.408 Bohr. In-plane component for q‖ =
0.157 a.u.

cell or the van der Waals atomic radius. For a stacking of
several layers, the uncertainty on the thickness will have even
less impact. However, note that for some specific cases such
as molecules adsorbed on a surface, some ambiguity remains
and the definition of the thickness of the slab is still an open
question. It deserves further studies to avoid the introduction
of an empirical parameter.

APPENDIX C: TRUNCATED OR UNTRUNCATED
EXTERNAL PERTURBATION TO CALCULATE EELS?

1. Influence of the vacuum for untruncated external
perturbation

For the case of the cutoff based on a diagonal expression of
Fourier transform of the Coulomb potential (v̂), [26,27], it has
been suggested [24] that the EEL spectra should not be calcu-
lated by taking the imaginary part of ε−1

00 (q) = 1 + v̂0χ̂00(q),
as it results naturally from the evaluation of the screening,
but by considering an expression where the factor multiplying
the response function is replaced by the untruncated external
perturbation, leading to ε−1

00 (q) = 1 + v0χ̂00(q), where v0 =
4π/q2. The Dyson equation giving χ̂ is solved with the cutoff
potential v̂ [26,27].

Since the purpose of Sec. III D was to compare spectra
calculated with the cutoff potential v̂, [26,27] with the ones
calculated with Eq. (6) where the modified Coulomb potential
is used, we plotted in Sec. III D spectra calculated according
to ε−1

00 (q) = 1 + v̂0χ̂00(q). In this Appendix, we want to show
that the spectra calculated with ε−1

00 (q) = 1 + v0χ̂00(q) also
exhibit the vacuum problem.

The corresponding quantity for the nondiagonal form of
the Fourier transform of the Coulomb potential would be

ε−1
00 (q) = 1 + v0χ̃00(q), (C1)

where χ̃ is the solution of Eq. (4).
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FIG. 10. Illustration of the vacuum effect for the different cutoff
procedures on a four-layer-graphene slab introduced into two super-
cells: ratio 2 (black continuous line) and ratio 4 (red crosses). Top
panel: Cutoff proposed in Refs. [26,27] with untruncated external
potential in the factor of the response function. Bottom panel:
Selected-G + slab potential formalism. In-plane momentum transfer:
(left column) q = 1. 10−2 a.u. and (right column) q = 0.157 a.u.

The spectra are presented in Fig. 10. The top panel corre-
sponds to the diagonal case, the bottom panel to the nondiag-
onal one. The spectra are larger than in Fig. 4. The spectra of
the top panel are still dependent of the vacuum introduced in
the supercell. The factor coming from the ratio of the height
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FIG. 11. Comparison of EELS spectra, including LF, for slabs
of N graphene layers (N = 1, 2, 3, 4, 5, and 8). Magenta with
× : N = 1; blue with + : N = 2; red with right triangle: N = 3;
green with left triangle: N = 4; black with diamond: N = 5; cyan
with open square: N = 8; orange with circle: graphite AB. In-plane
component for q‖ = 10−2 a.u.
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of the corresponding supercells occurs for the two ranges of
q. It demonstrates that the effect is contained at the level of
χ̂ , and confirms the origin of the cancellation at vanishing q
shown in Fig. 4—top panel. The spectra calculated using the
Selected-G procedure (Fig. 10—bottom) to solve the Dyson
equation are again independent of the vacuum introduced in
the supercell.

Such results confirms that the Selected-G procedure is the
only method which provide spectra independent of vacuum.
But they do not clarify if the external perturbation should
be truncated or not, namely, if one should calculate EELS
according to Eqs. (C1) or (6).

2. Dependence with the thickness of the matter

To remove the ambiguity concerning the use of the untrun-
cated or truncated external perturbation, i.e., if one should use
Eq. (C1) or Eq. (6) to calculate EELS, we will consider the
EEL spectra calculated for slabs of different thicknesses, as in
Sec. III E.

The spectra, calculated with Eq. (C1), are shown in Fig. 11.
The evolution of the EEL spectra as the function of the
thickness of the slab of matter is clearly nonphysical: The
thinner the slab, the more intense the plasmon. This result
allows us to confirm that the spectra must be calculated with
Eq. (6), as shown in Sec. III E.
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