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Electronic structure of semiconductor nanostructures: A modified localization landscape theory
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In this paper we present a modified localization landscape theory to calculate localized/confined electron and
hole states and the corresponding energy eigenvalues without solving a (large) eigenvalue problem. We motivate
and demonstrate the benefit of solving Ĥ 2u = 1 in the modified localization landscape theory in comparison to
Ĥu = 1, solved in the localization landscape theory. We detail the advantages by fully analytic considerations
before targeting the numerical calculation of electron and hole states and energies in III-N heterostructures. We
further discuss how the solution of Ĥ 2u = 1 is used to extract an effective potential W that is comparable to
the effective potential obtained from Ĥu = 1, ensuring that it can for instance be used to introduce quantum
corrections to drift-diffusion transport calculations. Overall, we show that the proposed modified localization
landscape theory keeps all the benefits of the localization landscape theory but further improves factors such as
convergence of the calculated energies and the robustness of the method against the chosen integration region
for u to obtain the corresponding energies. We find that this becomes especially important for here studied
c-plane InGaN/GaN quantum wells with higher In contents. All these features make the proposed approach very
attractive for calculation of localized states in highly disordered systems, where partitioning the systems into
different subregions may be difficult.
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I. INTRODUCTION

Over the past two decades the calculation of the electronic
structure of semiconductor nanostructures such as quantum
wells (QWs) and quantum dots (QDs) has attracted enor-
mous attention [1–10]. This stems on the one hand from
understanding and tailoring their fundamental electronic and
optical properties. On the other hand, insight gained into
the fundamental properties are also key for optimizing or
designing devices with new or improved characteristics and
capabilities. Energy efficient light emitting diodes (LEDs)
are among such devices [11–13]. However, from an atom-
istic standpoint, to model the single-particle states of QDs,
multi-QW (MQWs), or even full LED structures, the (time-
independent) Schrödinger equation (SE) has to be solved for
systems that can easily contain up to several million atoms
[10,14]. Given the large number of atoms, standard density
functional theory cannot be applied and empirical models
have been widely used [7–10]. Even when employing these
more empirical models, in general, large eigenvalue problems
have to be solved, which can numerically still be demand-
ing. The numerical effort is even further amplified when
calculations have to be performed self-consistently, as for in-
stance when describing transport properties of LED structures
[15].

Recently, and originally used to describe Anderson lo-
calization in disordered systems, a new approach has been
introduced in the literature, which circumvents solving a large
eigenvalue problem to obtain (ground state) wave functions
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and energies of, for instance, a QW. This approach is the
so-called localization landscape theory (LLT) [16–18]. Here,
instead of solving the time-independent SE, Ĥψ = Eψ , and
thus a (large) eigenvalue problem, the idea is to solve

Ĥu = 1. (1)

The benefit of this approach is that only a set of linear equa-
tions needs to be evaluated, which reduces the computational
load significantly, while giving results in very good agreement
with the solution of the time-independent SE [18]. A detailed
analysis of the computational benefit of LLT can be found
in Ref. [15], where “standard” self-consistent SE-Poisson
calculations for transport properties in InGaN/GaN-based
LEDs are compared to the results of a model that utilizes drift
diffusion in combination with LLT. A speed up by a factor of
order 50 has been reported in Ref. [15] by the use of the LLT
based framework.

However, LLT is not only attractive from a numerical point
of view, it allows us also to predict and capture physics that
may be missing in, for instance, semiclassical approaches.
An example that was mentioned already above and will be
discussed in more detail below is that it allows us to es-
tablish quantum corrections to drift diffusion models [15].
Furthermore, LLT can be used to describe Urbach tail energies
observed in absorption spectra of InGaN/GaN QW systems
[12]. Recently it has also been employed to study localized
vibrational modes in enzymes [19]. Finally, a recent devel-
opment is also to apply it to the Dirac equation for studying
properties of graphene or topological insulators [20].

Taking all this together, LLT has several attractive advan-
tages and can give good agreement with the direct solution
of the SE. However, care must be taken when calculating
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energies and eigenfunctions from u. As described in Ref. [18],
the zero of energy (reference energy) has to be carefully cho-
sen to obtain good agreement between energies E calculated
via LLT and SE. Additionally, the region over which u is
integrated to obtain E has to be selected carefully, as also
demonstrated in Ref. [18] for a single c-plane GaN/AlGaN
QW. From this, complications may arise in highly disordered
systems, such as InGaN wells with local variations in In con-
tent, where the system has to be partitioned into “appropriate”
regions to obtain energies and wave functions that match
closely the results obtained by solving the SE.

Keeping all this in mind, here we describe a modified LLT
(MLLT), which keeps the benefits of the LLT, but has several
advantages as we will discuss and demonstrate below. Our
starting point for the MLLT is

Ĥ2u = 1. (2)

Obviously the MLLT keeps the advantage of the LLT that
instead of solving a (large) eigenvalue problem, one is left
with evaluating a system of linear equations. Additionally, we
will show that when compared to LLT, the MLLT provides in
general a better description/faster convergence of the ground
state energy with respect to the SE results. This is especially
true for higher In contents. Also, we will demonstrate, by
solving the SE, LLT, and MLLT numerically for electron and
hole ground state energies in c-plane InGaN/GaN QWs that
the results of the MLLT are less sensitive to the choice of
the region over which u is integrated to obtain these energies.
Finally, we will discuss how to extract an effective potential
W from MLLT that reflects and possesses similar features as
the effective potential obtained from LLT. This is important,
given that W is for instance used in drift-diffusion studies
of InGaN/GaN QW-based LEDs, to account for quantum
corrections in the transport calculation frame [15]. All this
makes the MLLT approach very attractive for studying for
instance Anderson localization or carrier transport in III-N
based LEDs where partitioning of the potential landscape in
these highly disordered systems might be difficult. We note
that the MLLT approach was discussed briefly in Ref. [16]
but no detailed study has yet been presented comparing the
two approaches.

The paper is organized as follows. In Sec. II we briefly
summarize aspects of the theoretical background of the LLT
which helps us to motivate the idea underlying the MLLT.
In Sec. III we apply LLT and MLLT to a particle-in-a-box
problem, since this allows us to flesh out fundamental aspects
of the LLT and MLLT approach. To further investigate fun-
damental aspects and differences of LLT and MLLT, in an
Appendix we briefly investigate the solution of an infinite
triangular well. This analysis reveals that LLT diverges for this
problem while MLLT converges, but to a ground state energy
that is noticeably different from the SE solution. To apply
LLT, MLLT along with the SE to systems with a triangular
but finite potential profile, we study c-plane InxGa1−xN/GaN
single QWs. To do so, we first introduce basic properties of
III-N heterostructures in Sec. IV. In Sec. V the results from
LLT and MLLT for c-plane InxGa1−xN/GaN single QWs are
presented and compared to the solutions from the SE. We
conclude and summarize our work in Sec. VI.

II. LOCALIZATION LANDSCAPE THEORY:
THEORETICAL BACKGROUND

In this section we present the theoretical background of our
studies. As already discussed in the Introduction, the standard
approach to calculate the electronic states and energies of
semiconductor heterostructures is based on solving the time-
independent SE:

Ĥψi = Eiψi. (3)

Here Ĥ is the Hamilton operator, ψi is the wave function
of state i, and Ei is the corresponding energy eigenvalue. To
calculate Ei and ψi for a system described by Ĥ , Eq. (3) can
be treated as an eigenvalue problem. To do so, the Hamil-
tonian matrix, corresponding to the Hamilton operator Ĥ in
Eq. (3), has to be constructed. The exact form of this matrix
depends on the choice of the underlying electronic structure
theory [21], which for semiconductor heterostructures usually
ranges from empirical pseudopotential methods (EPM) [9],
to empirical tight-binding models (ETBM) [22], over to k · p
[2] or single-band effective mass approximations (EMA) [23].
The dimension of the Hamiltonian matrix depends on several
factors; in an atomistic framework, such as EPM or ETBM,
for instance on the number of atoms in the system. Taking a
Stranski-Krastanov grown QD as an example, where both the
dot and also the barrier material region have to be taken into
account in the theoretical modeling of its electronic structure,
several million atoms have to be considered [24]. As a conse-
quence, one is left with a large scale eigenvalue problem. Even
though efficient numerical routines are available, calculating
the eigenstates and energies is still demanding. The numerical
burden further increases if self-consistent calculations for
optical properties, such as self-consistent Hartree or Hartree-
Fock calculations, are required [25,26].

To circumvent solving large eigenvalue problems, but at
the same time to gain insight into wave functions and corre-
sponding energies of a quantum system, the LLT was intro-
duced in 2012, especially focusing on Anderson localization
in highly disordered systems [16]. Recently this approach
gained strong interest for calculating the electronic structure
of nitride-based QW systems [12,15,18]. Instead of evaluating
the SE, Eq. (3), LLT targets solving Eq. (1), where Ĥ is again
the Hamiltonian operator of the system under consideration.
As shown by Filoche et al. [18], and as we will briefly outline
below, the function u can be used to calculate the ground state
energy and wave functions of the system described by Ĥ . This
summary of the LLT allows us also to motivate the MLLT.

As discussed in Ref. [18], the function/state u can be
expressed in the basis formed by the eigenfunctions ψi of Ĥ :

|u〉 =
∑

i

αi|ψi〉, (4)

with

αi = 〈u|ψi〉 =
∫∫∫

u(r)ψi(r) d3r. (5)

Due to the self-adjointness of Ĥ , αi can be obtained via

αi = 〈u|ψi〉 = 1

Ei
〈u|Ĥψi〉 = 1

Ei
〈1|ψi〉. (6)
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From Eq. (6) one can see that contributions from energetically
higher lying states to u, Eq. (4), depend on the factor 1/Ei.
Therefore, if the energy separation between state i and i + 1
is small, for example between the ground state (i = 1) and
the first excited state (i = 2), several states may contribute
significantly to the expansion in Eq. (4). This is obviously un-
desirable when u should approximate for instance the ground
state wave function ψ1 obtained from the SE.

Furthermore, assuming as an example a QW system, so
that electron and hole wave functions are localized in a
subregion of the full well-barrier system, the energetically
lowest states contributing to u in Eq. (4) are basically the
fundamental, local quantum states in this subregion. In many
cases, for example when looking at radiative recombination
of carriers at low temperatures, these are the states one is
interested in. Therefore, in each localization subregion �m,
u can be estimated from [18]

|u〉 �
〈
1
∣∣ψm

1

〉
Em

1

∣∣ψm
1

〉 = α1

∣∣ψm
1

〉
, (7)

where |ψm
1 〉 is the local fundamental state in the subregion �m.

Following Ref. [18], |ψm
1 〉 can be assumed to be proportional

to u in subregion �m: ∣∣ψm
1

〉 ≈ |u〉
||u|| . (8)

Finally, using Eq. (8) one can approximate the
fundamental/ground state energy in subregion �m from

Em
1 = 〈

ψm
1

∣∣Ĥ ∣∣ψm
1

〉 ≈ 〈u|Ĥ |u〉
||u||2 = 〈u|1〉

||u||2

=
∫∫∫

�m
u(r)d3r∫∫∫

�m
u2(r)d3r

. (9)

Thus, from this equation it is clear that the function u(r) =
〈r|u〉 provides a direct estimate of the (ground state) energy.

However, u(r) is not only connected to the ground state en-
ergy and wave function, it also defines an “effective confining
potential,” which is given by W = 1/u [16,18]. One can show
that W is related to the exponential decay of localized states
away from their (main) localization subregion. This decay of
the wave function is then connected to tunneling effects, as
shown for instance by the Wenzel-Kramers-Brillouin (WKB)
approximation. Therefore, the effective confining potential W
has attracted interest for drift-diffusion calculations, given that
W then introduces quantum corrections into these semiclassi-
cal transport models [15].

Taking all this together, several points can be concluded
from the above. First, to obtain u and for instance Em

1 , the
system has to be partitioned into subregions �m so that Eq. (8)
is a good approximation. Second, the reference energy or
zero of energy should be chosen so that the expansion of |u〉,
Eqs. (4) and (6), respectively, is dominated by the expansion
coefficient α1. In other words contributions from energetically
higher lying states to u are then of secondary importance.

The last aspect motivates the MLLT, Eq. (2), and is trig-
gered by two factors. First, when calculating eigenvalues and
eigenfunctions of for instance semiconductor QDs, very often
the so-called folded spectrum method (FSM) is applied to

turn an interior eigenvalue problem into finding the lowest
energy eigenvalue [27]. More precisely, in the FSM, instead
of solving the eigenvalue problem Ĥψ = Eψ , one evaluates
(Ĥ − ε1)2ψ = Ẽψ . Here 1 is the unit operator and ε is
the so-called reference energy around which the spectrum
is folded. In case of ε = 0, Ẽ = E2. Working with Ĥ2 for
the LLT, thus resulting in MLLT, has now the following
advantages for the expansion of u in terms of |ψi〉. Using
Eq. (4) the expansion coefficients αi are given by

αMLLT
i = 〈u|ψi〉 = 〈u|Ĥ2ψi〉

E2
i

= 〈Ĥ2u|ψi〉
E2

i

= 〈1|ψi〉
E2

i

. (10)

Therefore,

|u〉 =
∑

i

〈1|ψi〉
E2

i

|ψi〉. (11)

As one can see from this equation, the contributions from
higher lying energy states come in with 1/E2

i instead of
1/Ei as in the standard LLT. Therefore, the here proposed
MLLT should lead to an even better approximation of the
fundamental wave function in a subregion and therefore a
better approximation of the corresponding energy.

While this clearly shows the benefit of using MLLT in
calculating wave functions and energies, the question is how
to obtain the effective potential W from MLLT? Here care
must be taken since u itself has now the dimension inverse
energy squared. To obtain WMLLT from MLLT one can define
WMLLT = (EluMLLT)−1, where El is for example the ground
state energy of the systems under consideration. However,
as we see from Eq. (11), several different energies may
contribute to the expansion of u. Another option is for in-
stance to define the effective potential WMLLT via WMLLT =
(
√

uMLLT)−1. Given the importance of the effective potential
W for describing localized states and also tunneling effects,
it is therefore important to analyze the effective potential in
more detail and compare it to WLLT obtained from standard
LLT.

To highlight and demonstrate the benefits of the MLLT
further for wave functions and energies, but also to gain
insight into WMLLT, we first study a simple particle-in-a-box
problem with infinitely high barriers in the next section. This
calculation can be done fully analytically and offers therefore
a very transparent test case for the two methods and to com-
pare the results directly with the results from solving the SE.

III. LOCALIZATION LANDSCAPE THEORY AND
MODIFIED LOCALIZATION LANDSCAPE THEORY:

APPLICATION TO A SQUARE WELL WITH INFINITELY
HIGH BARRIERS

In this section we apply both LLT and MLLT to the
simple one-dimensional (1D) particle-in-a-box problem with
infinitely high barriers, since here fully analytic solutions can
be derived. The benefit of this is twofold: (i) it sheds light
onto general features of the LLT and (ii) it demonstrates the
advantages of the proposed MLLT. We compare the results
obtained from LLT and MLLT with those from the SE.

We start with the SE and its solution for this problem.
Assuming the well boundaries to be at z = 0 and z = L, and
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choosing the potential energy to be zero for 0 < z < L, the SE
in this region reads

− h̄2

2m

d2

dz2
ψn(z) = Enψn(z). (12)

For z � 0 and z � L the potential energy is infinitely large.
Due to the boundary conditions ψn(0) = 0 and ψn(L) = 0, the
eigenvalues En and the normalized eigenstates ψn(z) are given
by [28]

En = n2π2h̄2

2mL2
(13)

and

ψn(z) =
√

2

L
sin

(nπz

L

)
. (14)

The ground state energy eigenvalue E1 = π2h̄2/2mL2 will
now serve as a reference for our calculations using LLT and
MLLT, respectively.

A. LLT solution

Following Eq. (4), u(z) can be expressed as a linear com-
bination of the eigenfunctions ψn(z), Eq. (14), which form a
complete basis set for the Hilbert space:

u =
∑

n

αnψn. (15)

Now, exploiting the LLT equation Ĥu = 1 and using Eq. (14),
from Eq. (15) we obtain

Ĥu =
∑

n

Enαnψn = 1

⇒
∑

n

αnE1n2

√
2

L
sin

(nπz

L

)
= 1. (16)

Here we recall that the constant function 1 can be represented
by [29]

4

π

∞∑
nodd

1

n
sin

(nπz

L

)
= 1. (17)

Thus, combining Eqs. (16) and (17), the coefficients αn are
zero for even n and for the odd values of n they read

αn = 2
√

2L

E1πn3
. (18)

Using this expression for αn [Eq. (18)], u [Eq. (15)] is there-
fore given by

u(z) =
∞∑

nodd

2
√

2L

E1n3π
ψn(z)

= 2
√

2L

E1π

∞∑
m=1

ψ2m−1(z)

(2m − 1)3

= λ

(
ψ1(z) + 1

27
ψ3(z) + 1

125
ψ5(z) + · · ·

)
, (19)

where λ = 2
√

2L
E1π

. From this equation it follows that the series
expansion of u converges as 1/n3 with significantly lesser
contributions from the higher order terms. Furthermore, only
every second basis state of the infinite square well eigenstates
contributes. Thus, for this problem, the LLT gives a very good
approximation of the ground state wave function ψ1(z), but,
since for instance ψ2(z) is missing in the expansion, the first
excited state cannot be described by u(z) in general. However,
we highlight here that when applying LLT to disordered
systems where several minima/subregions �m can be defined,
LLT can be applied to the different �m and one can find the
fundamental state for each subregion. While locally this is
the ground state, globally these states will be excited states
[30]. In addition, an analysis based on Weyl’s law has shown
that the LLT can give a very good estimate of the integrated
density of states over a significant energy range, despite that
it cannot be used to estimate individual higher state energies
in a given local minimum [30]. Turning back to our problem
here, u gives a very good description of the fundamental state
in the subregion �m = [0, L]. It is important to remember
that the 1/n3 convergence resulted directly from Ĥu = 1.
So the MLLT approach, utilizing Ĥ2u = 1, should lead to
an even faster convergence of the series expansion of u in
terms of the eigenstates ψn(z) in the subregion �m = [0, L].
Before discussing this in more detail, we turn and calculate
the ground state energy of the 1D infinite square well potential
problem within LLT.

Using Eq. (9), and keeping in mind 〈ψn|ψm〉 = δn,m, the
energy Em

1,LLT is given by

Em
1,LLT = 〈u| H |u〉

||u||2 = 〈u |1〉
||u||2

= 2λ
√

2L

πλ2

∑∞
m=1

1
(2m−1)4∑∞

m=1
1

(2m−1)6

= 2
√

2L

λπ

10

π2
. (20)

Substituting the value of λ = 2
√

2L
E1π

into Eq. (20) one is left
with

Em
1,LLT ≈ 1.0132 · E1. (21)

Thus, the ground state or fundamental energy Em
1,LLT in the

subregion �m = [0, L] is in excellent agreement with the
result obtained directly from the SE; Em

1,LLT is just over 1%
larger than the ground state energy eigenvalue E1. However, as
we will discuss below and in an Appendix, it is not guaranteed
that always such a good agreement is achieved and that LLT
might even fail for certain confinement potentials.

Having discussed energy eigenvalues, we turn now to
consider the effective potential WLLT resulting from the LLT.
This is given by WLLT = u−1 and shown in Fig. 1 by the red
solid line along with the potential of a square well (black
dashed dotted line) of width 50 Å and with infinitely high
barriers. Figure 1 shows that WLLT softens the potential near
the boundaries. As we will discuss further below, this effect is
also seen in a well with finite barriers, where it provides the
above discussed quantum corrections to transport simulation
[15]. Therefore, it is important that the MLLT captures these
pertinent aspects as well, to be of use for such simulations. In
the following section we discuss the MLLT for a square well
with infinitely high barriers.
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FIG. 1. Comparison of the effective potentials for a 1D square
well with infinitely high potential barriers. The infinite square well
potential is given by the (black) dashed dotted line. The effective
confining potential calculated via LLT is given by the red solid line.
Effective confining potentials obtained from MLLT via two different
approaches (see main text) are given by the (blue) dashed and (green)
dotted line.

B. MLLT

Having solved the particle-in-a-box problem within the SE
and LLT, we target it now within MLLT by employing

Ĥ2u = 1. (22)

Using Eq. (4) in the case of the MLLT, one is left with

Ĥ2u =
∑

n

E2
n αnψn = 1.

Following the steps outlined above for the LLT, the expansions
coefficients αn, again taking only odd n values, are given by

αn = 2
√

2L

E2
1 πn5

. (23)

Comparing the above equation with Eq. (18), we find here
already that αn scales as 1/n5 instead of 1/n3. With this u
reads

u(z) = 2
√

2L

E2
1 π

∞∑
nodd

1

n5
ψn(z)

= λ′
∞∑

m=1

ψ2m−1(z)

(2m − 1)5

= λ′
(

ψ1(z) + 1

243
ψ3(z) + 1

3125
ψ5(z) + · · ·

)
, (24)

with λ′ = 2
√

2L/E2
1 π . When comparing this result with

the expansion of u in the LLT frame, Eq. (19), it
is evident that the MLLT yields an even faster/better
convergence/approximation of u(z) with respect to the ground
state/fundamental state ψ1. Thus, within the MLLT approach
the approximation ψm

1 ≈ u/||u||, Eq. (8), should be even
better justified.

The square of the energy eigenvalue (Em
1,MLLT)2 is given by(

Em
1,MLLT

)2 = 〈u| H2 |u〉
||u||2

= 2
√

2L

πλ′

∑∞
m=1

1
(2m−1)6∑∞

m=1
1

(2m−1)10

≈ 1.001 · E2
1 . (25)

Therefore, Em
1,MLLT ≈ 1.0005 · E1 yields an even better ap-

proximation of the true ground state energy, when compared
to the LLT result discussed above (Em

1,LLT ≈ 1.0132 · E1).
Again, the reason for this improvement can be traced back
to the series expansion of u where the expansion coefficients
αn decrease rapidly in magnitude with increasing n.

Having seen the improved ground state energy conver-
gence in MLLT, we now turn our attention to the calculation
of the effective confining potential WMLLT within MLLT.
In the previous section we have already discussed two ap-
proaches to obtain WMLLT from uMLLT, namely W̃MLLT = (El ·
uMLLT)−1 or WMLLT = (

√
uMLLT)−1. From Eq. (24) it is clear

that W̃MLLT = (El · u)−1 with El = E1 will give an effective
potential W̃MLLT that will be in excellent agreement with WLLT,
given that λ′ = 2

√
2L/(E2

1 π ). This is confirmed in Fig. 1,
where W̃MLLT (green dotted line) matches almost perfectly
WLLT, thus keeping the feature of softening the potential at the
infinitely high barriers. Also the second approach WMLLT =
(
√

uMLLT)−1(blue dashed line in Fig. 1) gives a reasonable
description of the potential, however, with a less pronounced
softening near the barrier.

Overall, we see for the infinite square well potential that
W̃MLLT = (E1u)−1 gives an effective potential that matches
closely WLLT, reflecting that each expansion coefficient αn,
cf. Eq. (23), only depends on the ground state energy E1.
However, as indicated already in Sec. II, Eq. (10), this might
not be the case for other potentials. We discuss this further
briefly in the Appendix, where we apply the MLLT to a
triangular-shaped well with infinitely high barriers. For such
a potential we find that LLT does not converge to give a
finite estimate of the ground state energy E1; MLLT does
converge but to an energy that is noticeably different from
the solution of the SE. Given that both LLT and MLLT have
difficulties in dealing with a triangular-shaped potential with
infinite barriers, we investigate a triangular-shaped well with
finite barriers in the following. Such a system is relevant for
studying electronic and optical properties of III-N-based QW
systems, as we describe in the next section.

IV. BACKGROUND ON NITRIDE-BASED
HETEROSTRUCTURES AND InGaN QUANTUM WELL

III-N materials, such as InN, GaN, and AlN have attracted
considerable interest for optoelectronic devices, since their
alloys are in principle able to cover emission wavelengths
from infrared to deep ultraviolet [34]. InGaN heterostructures,
such as QWs, are of particular interest for emission in the
visible spectral range [34]. When compared to other III-V
materials, such as InAs or GaAs, III-N materials preferentially
crystallize in the wurtzite crystal phase while InAs and GaAs
crystallize in the zinc blende phase. The wurtzite crystal
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structure, due to its lack of inversion symmetry, allows for a
strain-induced piezoelectric polarization vector field but also
a spontaneous polarization vector field, which is even present
in the absence of any strain effects [35]. Discontinuities in
the polarization vector fields lead to very strong electrostatic
built-in fields (MV/cm) in InGaN/GaN QW systems grown
along the wurtzite c axis, which is the standard growth direc-
tion for these systems [26,36]. Often these systems, especially
when dealing with transport properties of InGaN/GaN MQW-
based LED structures, are treated as 1D systems in which
the conduction and valence band profiles are modified by
the presence of the intrinsic electrostatic built-in potentials
[31,36]. It should be noted that this is a simplified description
of these systems; more recently it has been shown that the
alloy microstructure of InGaN QWs significantly affects the
electronic structure, so that local potential fluctuations play
an important role [10,37]. However, for the analysis here, a
simplified 1D model is a good starting point for comparing
LLT and MLLT and to highlight the benefits of the MLLT in
terms of convergence and “robustness” of the solution against,
for instance, the choice of the subregion �m over which u
is being evaluated to obtain the ground state energy in the
given region. Since the methodology of the MLLT is the
same as that of the LLT, MLLT can directly be applied to a
landscape with energy fluctuations due to alloy fluctuations.
However, as discussed already above, further consideration
must then be given as to how best to calculate W within
MLLT, which we will do below. To flesh out the benefits
of the MLLT, we focus on the often used 1D description
of the electronic structure of c-plane InxGa1−xN/GaN QWs
with different In contents x. As mentioned above, due to the
underlying wurtzite crystal structure and growth along the c
axis, c-plane InGaN/GaN QW systems exhibit very strong
electrostatic built-in fields. This electrostatic field arises from
discontinuities in spontaneous and piezoelectric polarization
vector fields at the interfaces between the well (InGaN) and
the barrier (GaN) materials. The corresponding total built-in
potential φQW, assuming that the wurtzite c axis is parallel to
the z axis of the coordinate system, can be expressed as [31]

φQW(z) = φQW
sp (z) + φQW

pz (z)

=
{(

PW
sp − PB

sp

) + PW
pz

2ε0εW
r

}
(|z| − |z − h|). (26)

Here h is the height/width of the QW with well barrier
interfaces at z = 0 and z = h. The dielectric constant of the
QW material is denoted by εW

r and PW
sp (PB

sp) is the spontaneous
polarization in the well (barrier). Assuming that the barrier
material is strain-free, a strain field is only present in the
InGaN QW, since InGaN has a larger lattice constant than
GaN [38]. Thus one is left with a piezoelectric polarization
component in the well PW

pz , which in the 1D case can be written
as [39]

PW
pz = 2ε11eW

31 + ε33eW
33. (27)

Here eW
i j and εi j are the (well) piezoelectric coefficients and

the strain tensor components. The strain tensor components
are given by ε33 = (−2CW

13/CW
33 )ε11 and ε11 = (aB − aW )/aW ;

aW (aB) is the in-plane lattice constant of the well (barrier)

TABLE I. Band gap Eg [31], lattice constants a, c [31], sponta-
neous polarization Psp [31], piezoelectric coefficients ei j [31], elastic
constants Ci j [31], and effective electron me [32] and hole mh mass
for wurtzite InN and GaN. The hole mass has been determined
from the equations given in Ref. [33], using the Ai parameters from
Ref. [32].

Parameters GaN InN

Eg (eV) 3.44 0.64
a (Å) 3.189 3.545
c (Å) 5.185 5.703
Psp (C/m2) −0.034 −0.042
e31 (C/m2) −0.45 −0.52
e33 (C/m2) 0.83 0.92
C13 (GPa) 106 92
C33 (GPa) 398 224
me (m0) 0.209 0.068
mh (m0 ) 1.876 1.811

material and CW
i j are the elastic constants of the well material.

The material parameters used in this study are summarized in
Table I. When calculating the electrostatic built-in potential
of InxGa1−xN/GaN QWs as a function of the In content
x, a linear interpolation of the involved material parame-
ters is applied. We neglect contributions from second-order
piezoelectric effects [26]. Using Eq. (26) and the material
parameters from Table I, the resulting built-in potential is
similar to that of a capacitor [31].

Since we are interested in a general comparison between
LLT and MLLT results, we calculate the electronic structure
of the above discussed InxGa1−xN/GaN QW systems in the
framework of a single-band effective mass approximation
for electrons and holes. The confining potential for electrons
and holes is then given by the conduction band (CB) and
valence band (VB) edge alignment between GaN and InGaN.
In Eq. (28) below we assume that the VB edge of bulk GaN
(no built-in field) denotes the zero of energy in our system;
the GaN CB edge, in the absence of the built-in field, is at the
band gap energy EGaN

g of bulk GaN. The InxGa1−xN CB edge,
E InGaN

CB , and the VB edge, E InGaN
VB , are calculated as a function

of the In content x as follows [22]:

E InGaN
CB = x

(
E InN

g + 
EVB
) + (1 − x)EGaN

g

− bCBx(1 − x),

E InGaN
VB = x
EVB − bVBx(1 − x). (28)

Here 
EVB is the natural VB offset between pure InN and
GaN, which has been taken from HSE-DFT calculations
[40]. The (composition dependent) CB and VB edge bowing
parameters are denoted by bCB and bVB [22]. In combination
with the built-in potential from above, the band edge profile
shows the well known triangular-shaped profile, leading to
the situation that electrons and holes are spatially separated
along the growth direction (c axis/z axis). This situation is
also know as the quantum confined Stark effect (QCSE) [41].

Building on this potential profile we use a single-band
effective mass approximation to construct the Hamiltonian
matrix of this system. Here we use different effective masses
for electrons and holes, with the values given in Table I. A
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linear interpolation between the effective masses of InN and
GaN has been applied to obtain the corresponding masses
for InGaN. However, differences in the effective mass inside
and outside the well are not considered. Given that we are
interested in ground state energies and more generally in a
comparison between results obtained from the SE, LLT, and
MLLT, applying a constant effective mass should be sufficient
for our purposes here. To numerically solve Ĥψ = Eψ , Ĥu =
1, and Ĥ2u = 1 we use the finite difference method and
assume a well of width of Lw = 35 Å with a barrier width
of Lb = 100 Å on each side of the well; the discretization step
size is 
 = 0.05 Å.

V. RESULTS FOR c-PLANE InxGa1−xN/GaN
QUANTUM WELLS

In this section we compare and discuss ground state ener-
gies, wave functions, and the effective potential W of c-plane
InxGa1−xN/GaN QWs obtained by solving SE, LLT, and
MLLT in the numerical framework discussed above. Special
attention is paid to the impact of the In content x on the
results, given that with increasing In content the piezoelectric
contribution to the built-in potential, and thus the “tilt” in
the band edge profiles, increases. More specifically, we study
here In contents x ranging from 5% up to 50%, even though
the very high In contents (x > 25%) are experimentally very
difficult to achieve for fully strained c-plane wells. Such an
analysis will help us to compare the impact of strong asym-
metries in the potential landscape on the results of the LLT
and MLLT, respectively. Strong fluctuations in the potential
landscape may occur locally in InGaN QWs with higher In
contents (e.g., 25% In) due to random alloy fluctuations.

Several aspects of the following analysis are to be
noted. First, the solution of the SE represents the
reference/benchmark for the results of LLT and MLLT. Sec-
ond, since we are using a single-band effective mass approx-
imation in the framework of a finite difference method, we
treat electrons and holes separately. In doing so, especially for
LLT and MLLT, care must be taken when defining the zero
of energy. As discussed in Sec. II, the expansion coefficients
αn for constructing u from the eigenstates of the system are
inversely proportional to the corresponding state energies.
Ideally, the zero of energy should be chosen close to the “true”
ground state energy of the system in a given subregion �m.
By doing so, the expansion coefficient α1 is then large as
compared to higher order terms that have lesser contributions.
As a consequence u is then a very good approximation of the
ground state wave function, resulting also in a good estimate
of the corresponding energy. Here we always choose the zero
of energy as the minimum energy in the band edge profile of
the confining potential for electrons and holes. An illustration
of this situation is displayed in Fig. 2.

Finally, following Eq. (9), when calculating the ground
state energy from u, the subspace region �m over which u is
integrated has to be chosen. To illustrate the impact of �m on
the results, three different subregions have been considered for
electrons and holes. For electrons these are labeled as �e

m,1,
�e

m,2, and �e
m,3. The first electron subregion �e

m,1 corresponds
to the entire simulation cell (−10 to 13.5 nm). The subregion
�e

m,2 considers slightly more than the QW region, i.e., −1.5 �

FIG. 2. (a) Electron ECB (black solid line) and (b) hole EVB

(black solid line) confining potentials in a c-plane InGaN/GaN QW
with 25% In. The effective potentials calculated from LLT, WLLT, and
MLLT, WMLLT, are given by the green dashed lines and the red dotted
lines, respectively. More details on the calculation of WMLLT are given
in the main text.

z � 5 nm. For the last subregion �e
m,3 we just consider it

to be 0 � z � 4.5 nm, meaning that this region starts at the
well-barrier interface at z = 0 and extends 1 nm into the
barrier region above the upper QW interface at z = 3.5 nm.
This asymmetry in �e

m,3 accounts for the tilt in the band edges
and that therefore the electron wave function is expected to
leak further into the barrier region on the +z side of the well.
For holes, the subregions one �h

m,1 and two �h
m,2 are identical

to the first two electron cases. Only subregion �h
m,3 is different

from �e
m,3. For �h

m,3 we have chosen −1 � z � 3.5 nm, which
reflects that the tilt in the band edges shifts electron and hole
states in opposite directions.

The aim of using these three different subregions is
twofold. First, as mentioned already above, it will allow us
to analyze the impact of the subregion choice on the ground
state energies obtained from LLT and MLLT in comparison to
the result obtained from solving the SE. Second, this analysis
also enables us to study if the choice of �m affects differently
the results obtained from LLT and MLLT. This insight is for
instance of interest when treating (random) potential fluctua-
tions, where partitioning the system may be difficult. Thus, a
method where results are less dependent on the �m choice is
in general preferred.

A. Electron ground state energies, wave functions, and
effective potential

In a first step we focus on the results for the electron
ground state energy as a function of the In content x for
the above discussed c-plane InxGa1−xN/GaN QWs. The data
are presented in Fig. 3, upper row, for the three different
integration regions �e

m,i. The results obtained by solving the
SE Ee

SE are given by the black squares. The green circles show
the results from LLT Ee

LLT, while the red triangles denote
MLLT data. Before looking at the results in detail, one can
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FIG. 3. Upper row: Electron ground state energies for c-plane InxGa1−xN/GaN QWs as a function of the In content x. The results are
shown for the three different subregions �e

m,i discussed in the main text. The electron ground state energy is computed by solving the SE (black
squares), LLT (green circles), and MLLT (red triangles). Lower row: Deviation of Ee

LLT (green circles) and Ee
MLLT (red triangles) with respect

to the solution of the SE for the different subregions �e
m,i.

already infer from Fig. 3 that when using subregion �e
m,3, cf.

Fig. 3(c), a very good agreement between LLT, MLLT, and SE
is achieved. Clearly larger deviations are observed for LLT
and MLLT with respect to the SE result when using the full
simulation cell �e

m,1, cf. Fig. 3(a).
The lower row of Fig. 3 displays the deviations (in %)

between LLT (MLLT) and the solution of the SE as a function
of the In content x for the three different subregions �e

m,i. The
green circles show the data for the comparison between the
SE and LLT, while the red triangles do so for the comparison
between SE and MLLT. Starting with �e

m,1, Fig. 3(d), we
observe that for both LLT and MLLT the deviations increase
with increasing In content x in the well. However, LLT shows
noticeably larger deviations when compared to MLLT for In
contents x exceeding values of 15% (x = 0.15). Turning to
�e

m,2, Fig. 3(e), deviations are in general strongly reduced.
Nevertheless, still a noticeable difference between LLT and
MLLT is observed. More specifically, while LLT produces
errors of above 5%, the MLLT results are a good approxi-
mation of the true ground state energy, independent of the
In content x (errors below 2% are found). When restricting
the integration region further (�e

m,3), Fig. 3(f), deviations in
LLT are further reduced and only in the very high In content
regime (x > 0.4) more pronounced deviations are observed.
The error in the MLLT result is below 1% over the range of In
composition considered. This analysis shows that the MLLT
produces a better approximation of the electron ground state
energy, independent of the In content x and chosen subregion
�e

m,i. This makes it therefore very attractive for calculations
of the fundamental state in a subregion of an energy landscape
which shows strong fluctuations so that the system cannot be
easily partitioned into different subregions.

This begs the question why the energy obtained from
MLLT is more robust against changes in �m. To address

this point, Fig. 4 shows the (normalized) electron ground
state wave function calculated from the SE (black solid
line) and the (normalized) u functions obtained from LLT
(green dashed line) and MLLT (red dotted line) using the
full simulation box �e

m,1. The results are displayed for the
c-plane In0.25Ga0.75N/GaN QW. The electron ground state
wave function ψe

SE shows the expected behavior of having
the highest value in the QW region, with the wave function
amplitude then decaying rapidly in the GaN barrier region.
Turning to the result from LLT (green dashed line) first, we
find that u has a maximum in the well, however, it has also a
constant finite value in the GaN barrier region, especially for
z > 5 nm. Thus when changing the integration region �e

m, a

FIG. 4. Comparison of the (normalized) electron ground state
wave functions of a c-plane InGaN/GaN QW with 25% In and a
width of 3.5 nm. The wave functions are obtained by solving the SE
(solid black line), LLT (dashed green line), and MLLT (dotted red
line). The blue dashed-dotted box and the solid magenta box indicate
the subregions �e

m,2 �e
m,3, discussed in the main text.

035430-8



ELECTRONIC STRUCTURE OF SEMICONDUCTOR … PHYSICAL REVIEW B 101, 035430 (2020)

FIG. 5. Upper row: Hole ground state energies for c-plane InxGa1−xN/GaN QWs as a function of the In content x. The results are shown
for the three different subregions �h

m,i discussed in the main text. The hole ground state energy is computed by solving the SE (black squares),
LLT (green circles), and MLLT (red triangles). Lower row: Deviation of Eh

LLT (green circles) and Eh
MLLT (red triangles) with respect to the

solution of the SE for the different subregions �h
m,i.

strong impact on the obtained energy ELLT could be expected
since contributions from u in the barrier are removed when
reducing the subregion �e

m. This is exactly the situation we
observe in Fig. 3. More specifically changing the subregion
from �e

m,1 (full system) to �e
m,3 (mainly QW region), the error

in ELLT when compared to ESE, reduces from 9.8% to 1.3% for
the In0.25Ga0.75N/GaN QW.

The situation is different in the MLLT approach. Here
ue

MLLT, at least for z < 0 nm, gives a better approximation of
ψe

SE, with the magnitude of ue
MLLT being very small, similar to

ψe
SE but in contrast to ue

LLT. However, for z > 5 nm the magni-
tude of ue

MLLT is comparable to that of ue
LLT and therefore much

larger than ψe
SE in this region. Thus, given that the magnitude

of ue
MLLT is small in the region z < 0 nm and shows to be a

good approximation of ψe
SE in the QW region, the analysis

confirms the observation that Ee
MLLT is less dependent on �e

m
than Ee

LLT.
Finally, we discuss here the effective confining potential

for electrons obtained both within LLT (W e
LLT) and MLLT

(W e
MLLT). In case of LLT it is obtained via W e

LLT = (ue
LLT)−1,

and given in Fig. 2(a) by the green dashed line for an
InGaN/GaN QW with 25% In. The potential reveals a soften-
ing at the QW barrier interface, which, as discussed above, is
an important feature for quantum corrections in drift-diffusion
calculations using W e

LLT for the energy landscape. The here
observed potential profile is consistent with the results re-
ported previously [18]. To obtain the effective confining po-
tential from MLLT that reflects the behavior of W e

LLT, we find
that W e

MLLT = (
√

ue
MLLT)−1 works here best, while W̃ e

MLLT =
(Ee

1 ue
MLLT)−1 results in a very different effective potential from

W e
LLT (not shown). Figure 2(a) confirms that W e

MLLT (red dotted
line) is in very good agreement with W e

LLT (green dashed line).
We note that this holds over the full In content x range studied
here.

B. Hole ground state energies, wave functions, and
effective potential

Having discussed the results for the electron ground state
energies, wave functions, and the effective confining potential,
we now turn and present the results for holes, again as a
function of the In content x for the above discussed c-plane
InxGa1−xN/GaN QWs. The upper row of Fig. 5 presents
the comparison between the energies obtained from SE (Eh

SE,
black squares), LLT (Eh

LLT, green circles), and MLLT (Ee
MLLT,

red triangles). The results are shown for the three different
subregions �h

m,i over which u is integrated to obtain the
corresponding energy. The lower row of Fig. 5 depicts for
�h

m,i the deviation (in %) of LLT (green circles) and MLLT
(red triangles) from the SE solution. Looking at Fig. 5(a)
first, one can clearly see that when integrating over the full
simulation region (�h

m,1), both Eh
LLT and Eh

MLLT deviate from
Eh

SE with increasing In content x. However, deviations are
larger for LLT than for MLLT. A similar behavior was also
observed for the electron ground state energies when the full
simulation box �e

m,1 is considered, cf. Fig. 3. But, trends
for electrons and holes are quite different. For electrons, the
deviation in the ground state energies with respect to the SE
solution increase with increasing In content x, cf. Fig. 3(d).
For the holes, deviations in the ground state energy also start
to increase with increasing In content x but deviations saturate
at around 18% and 8% for LLT and MLLT, respectively,
when the In content exceeds 15% (x > 0.15). This analysis
shows, similar to the results for the electrons, that when
using the full simulation cell (�h

m,1), MLLT provides a better
description of Eh

SE when comparing errors with LLT. When
adjusting/reducing the subregion �h

m, cf. Figs. 5(b) and 5(c),
to calculate Eh

LLT and Eh
MLLT, the agreement with Eh

SE clearly
improves. This is in particular true for Eh

MLLT, as Figs. 5(e)
and 5(f) show; deviations from Eh

SE close to 3% or less are
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FIG. 6. Comparison of the (normalized) ground state hole wave
functions for a c-plane InGaN/GaN QW with 25% In content and
a width of 3.5 nm. The wave functions are obtained by solving the
SE (solid black line), LLT (dashed green line), and MLLT (dotted red
line), using the simulation box �h

m,1. The blue dashed-dotted box and
the solid magenta box represents the two integration regions from
−1.0 to 5 nm (�h

m,2) and −1.0 to 3.5 nm (�h
m,3).

observed over the full In content range x. More specifically,
for a well with 25% In, the error in Eh

MLLT reduces from 8%
to 1.8% [see Figs. 5(d) and 5(f)] when changing from �h

m,1

to �h
m,3. Looking at Eh

LLT for the same situation, we observe
that the deviations are reduced from 18.4% (�h

m,1) to 8%
(�h

m,3). However, the values are still noticeably higher when
compared to EMLLT. This shows that MLLT results are robust
against changes in the In content x, while LLT exhibits larger
deviations from the SE data, especially for higher In contents.

Following our investigations on the electron ground state
energies and wave functions, we study here also the hole
ground state wave functions. Again we use as a test system the
c-plane In0.25Ga0.75N/GaN QW. The wave functions calcu-
lated from SE (black solid line), LLT (green dashed line), and
MLLT (red dotted line) are shown in Fig. 6. Before looking
at the fine details, independent of the model used, the wave
functions are localized inside the well and “decay” in the GaN
barrier region. However, how the wave functions decay in the
barrier region strongly depends on the model. While the hole
ground state wave function ψh

SE rapidly decays in the barrier
material, this situation is only true for uh

LLT and uh
MLLT along

the +z direction. Even though in the +z direction uh
LLT and

uh
MLLT are similar, there are also differences. While uh

MLLT is
very close to 0 in the barrier region, uh

LLT is small, but has a
noticeable finite constant value in the GaN barrier for z > 0
nm. This effect is amplified for z < 0 nm. Again and similar
to the electrons, we attribute differences in the hole ground
state energies to differences in u calculated from MLLT and
LLT, given that deviations in the ground state energy increase
as the integration region �h

m,i is increased.
In the last step we turn our attention to the effective

potential for holes, W h, calculated within LLT and MLLT.
The results are shown in Fig. 2(b). The confining potential
from LLT, W h

LLT = (uh
LLT)−1, is given by the green dashed line

and shows again a softening of the potential near the well
barrier interface. Also for holes we have tested calculating the

effective potential from MLLT via W h
MLLT = (

√
uh

MLLT )
−1

and

W̃ h
MLLT = (Eh

1 uh
MLLT)

−1
. The conclusion that is drawn from

this is similar to that for electrons, meaning that W̃ h
MLLT gives

a potential profile very different from W h
LLT (not shown), while

W h
MLLT is in good agreement with W h

LLT. This is confirmed by
Fig. 2(b), showing that the confining potential obtained from
MLLT (red dotted line) captures the same effects as W h

LLT
(green dashed line). Again this result holds over the full In
content range investigated here.

VI. CONCLUSIONS

In this work we have proposed, motivated, and analyzed a
modified localization landscape theory (MLLT). In the MLLT
approach we solve Ĥ2u = 1 instead of Ĥu = 1, as in the
LLT. We demonstrate the improvements resulting from using
Ĥ2u = 1 in predicting ground state energies for a 1D particle-
in-a-box (infinite square well) potential. Since this problem
can be solved fully analytically in LLT and MLLT, the solution
confirms that u obtained from MLLT will in general give a
better approximation of the true ground state wave function
when compared to the result from LLT. We have also shown
that this can be traced back to the energy dependence of the
expansion coefficients of u in terms of the particle-in-a-box
eigenstates. Given that u obtained from MLLT provides a very
good description of the ground state wave function, it also
provides an improved estimate of the ground state energy and
therefore the error in this quantity is reduced in comparison to
the LLT obtained value. Here we also have provided insight
into the calculation of the effective confining potential W
within MLLT. While this is straightforward in the case of
a particle-in-a-box problem with infinitely high barriers, we
highlight that care must be taken when extracting the effective
confining W from MLLT in general. We have discussed two
strategies to obtain W from MLLT that lead to results similar
to those obtained from LLT, which is important when applying
MLLT for instance in drift-diffusion transport calculations to
account for quantum corrections.

The particle-in-a-box problem provided the ideal testbed
to study the basic properties of the LLT and MLLT. How-
ever, further analysis is required to consider more realistic
potentials. LLT has recently been used to evaluate the elec-
tronic structure of III-N heterostructures, where the confining
potential is triangular shaped with barriers of finite height.
Motivated by this, we have studied and compared ground
state energies from the Schrödinger equation (SE), LLT and
MLLT for c-plane InxGaxN/GaN QWs as a function of the
In content x. Special attention was paid to the impact of the
choice of the integration region of u when evaluating the
ground state energies. Our calculations reveal that for both
electron and hole ground states, MLLT always gives a better
description of the true ground state energy when compared
to the LLT result. We also find that the subregion over which
u is being integrated to obtain this energy is less important
for MLLT than it is for LLT. Over the composition range
from 5% to 50% In in the well and when integrating over
a region close to the QW, errors in the ground state energy
from MLLT never exceeds 4%. While similar numbers are
obtained for LLT in the lower In content range (<15% In)
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and when choosing appropriate subregions, especially for
holes at higher In contents (>25% In), errors in the range of
5% to 10% are observed. Looking at the calculated effective
potential W for electrons and holes, and independent of the
In content x, we find that using WMLLT = (

√
uMLLT)−1 gives

in general results that match closely the effective potential
WLLT obtained from LLT. Since W plays an important role in
quantum corrected drift-diffusion simulations, it is useful to
see that MLLT produces an energy landscape similar to LLT,
so that it can be used in such simulations.

Taking all this together the proposed MLLT keeps all the
benefits of the LLT, such that only a system of linear equations
has to be solved instead of a large eigenvalue problem to
obtain ground state energies. At the same time the MLLT
provides the following aspects: (i) “faster convergence” of
the calculated ground state energies with integration region,
(ii) a more “robust” behavior of the method against changes in
the integration region, (iii) better agreement with results from
SE, especially for higher In contents, and (iv) an effective
confining potential comparable to that of LLT. All these
features make the MLLT method attractive for calculations
of localized states in highly disordered systems, where for
instance partitioning the systems into different subregions is
not trivial.
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APPENDIX: INFINITE TRIANGULAR WELL

Having discussed in the main text the fully analytic so-
lution of the particle-in-a-box problem with infinitely high
barriers, we study here another problem that can be inves-
tigated fully analytically, which is a triangular well with
infinitely high barrier at z = 0; the potential increases from
0 at z = 0 with a slope F in the +z direction. The aim of
this study is twofold: it will illustrate (i) that in contrast to the
particle-in-a-box problem, discussed in Sec. III, the expansion
coefficients of u can depend on multiple energies En and
(ii) that there are potentials where LLT and MLLT could fail to
give a good approximation of (ground state) energies or even
diverge. Regarding (i), this finding is important for calculating
the effective confining potential, showing that it might not
always be guaranteed that calculating W̃MLLT = (E1uMLLT)−1

will give a good approximation of WLLT obtained from the
standard LLT approach.

For the infinite triangular potential, the SE reads

− h̄2

2m

d2

dz2
ψn(z) + Fzψn(z) = Enψn(z)

⇔ d2

dz2
ψn(z) − 2mF

h̄2

(
z − En

F

)
ψn(z) = 0. (A1)

Setting a = (2mF/h̄2)1/3 and using γ = a(z − En/F ), one is
left with

a2

[
d2 f (γ )

dγ 2
− γ f (γ )

]
= 0. (A2)

The general solution to the above differential equation can
be obtained as a linear combination of the Airy functions
A(z) and B(z). These functions are defined as the improper
Riemann integrals [42]

A(z) = 1

π
lim

c→∞

∫ c

0
cos

(
t3

3
+ zt

)
dt, (A3)

B(z) = 1

π
lim

h→∞

∫ h

0

[
exp

(
t3

3
+ zt

)
+ sin

(
t3

3
+ zt

)]
dt .

(A4)

For z > 0, the function A(z) shows exponential decay,
whereas B(z) diverges to infinity. Given that the confined wave
functions have to decay as z → ∞, the function B(z) has to
be discarded. Thus, the solutions of the SE for a triangular-
shaped potential with infinitely high barriers, cf. Eq. (A1), are
given by

ψn(z) = αnAi

[(
2mF

h̄2

)1/3(
z − En

F

)]
. (A5)

The fact that the wave function has to go to zero at the
infinitely high barrier at z = 0 can be used to determine the
energy eigenvalues En. To do so, the nth zero of the Airy
function is approximated and the corresponding eigenvalue
then reads

En ≈
[

3πF h̄

8m2

(
n − 1

4

)]2/3

. (A6)

Equipped with this solution we turn now and discuss the
infinite triangular well first in the framework of LLT and
then of MLLT. To find a series expansion for u, we first
need an expansion for the constant function 1 in terms of the
eigenfunctions, over the interval [0, ∞) [43]:

∞∑
n=1

bnψn = 1. (A7)

We recall here that u = ∑∞
n=1 anψn, Eq. (4), so that when

using LLT, Ĥu = 1, one is left with

Ĥu = Ĥ

( ∞∑
n=1

anψn

)
=

( ∞∑
n=1

anEnψn

)
= 1 =

∞∑
n=1

bnψn.

(A8)
Due to the orthonormality of the wave functions, we can thus
express the expansion coefficients an as

an = bn

En
. (A9)

Thus, within LLT, u can be expressed as

uLLT(z) = b1

E1
ψ1(z) + b2

E2
ψ2(z) + b3

E3
ψ3(z) + · · · . (A10)

In contrast to the infinite square-well potential, one can show
that the sum of the an’s does not converge for the triangular
well considered and thus the energy E (u), Eq. (9), does not
converge. First, we note that the energies En, Eq. (A6), in-
crease with increasing n as n2/3; numerical analysis we have
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undertaken indicates that bn decays approximately as n−α ,
where α ≈ 0.20; hence an in LLT decays approximately as
n−(α+ 2

3 ), where α + 2
3 < 1, which results in a divergent series

for u, Eq. (4).
Turning to the MLLT, and following the same procedure as

for the LLT, we find here that the coefficients an are given by

an = bn

E2
n

. (A11)

Successive terms in the series Eq. (A11) decay as n−(α+ 4
3 ).

Therefore, higher order term contributions are reduced in the
MLLT case. Numerical studies confirm that MLLT converges
with increasing system size, in contrast to the LLT. However,
MLLT converges to a ground state energy that is noticeably
larger than the ground state energy obtained from SE. All
this highlights benefits but also potential shortcomings or
problems in both LLT and MLLT for certain potentials.
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