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Inelastic light scattering experiments on low-energy intrasubband spin-density excitations (SDEs) are per-
formed in (001)-grown modulation-doped GaAs-AlGaAs single quantum wells in in-plane external magnetic
fields. The investigated samples possess balanced linear Bychkov-Rashba («) and Dresselhaus (8) spin-orbit
strengths in two different configurations, « = 8 and o« = — . Both configurations lead to an extreme anisotropy
of the spin splitting of the conduction band, where the in-plane directions of maximum spin splitting for both
configurations are perpendicular to each other. The spin splitting asymmetry can be directly detected via the
SDE by breaking of the time-reversal symmetry due to transfer of a momentum q in the quantum-well plane.
In addition, the application of an in-plane magnetic field By, L q allows us to modulate the effective magnetic
field. Via a numerical line-shape analysis of the experimental SDE spectra, we determine the relevant parameters
of the samples. We find that the linear spin-orbit strength || = B is comparable for both samples, while the
electron g factors are markedly different. Furthermore, we experimentally quantify the values of the maximum
internal spin-orbit fields, which are as high as By, ~ 18 T for both samples.

DOLI: 10.1103/PhysRevB.101.035427

I. INTRODUCTION

Resonant inelastic light scattering (RILS) is a very pow-
erful tool for the investigation of electronic excitations in
semiconductor nanostructures. In fact, more than two decades
ago, the first experimental proof of the interplay of the so-
called Bychkov-Rashba [1] and Dresselhaus [2] spin-orbit
interaction in two-dimensional electron systems (2DES) in
GaAs-AlGaAs quantum wells was made by RILS in the
pioneering experiments of Jusserand and Richards et al. [3-6].
The collective electronic excitations in such systems are co-
herent density oscillations of the 2DES, either oscillations
of the charge density, so-called charge-density excitations
(CDE), or oscillations of the spin density, so-called spin-
density excitations (SDE). Due to direct Coulomb interac-
tion, the CDEs are typically blue-shifted with respect to
the corresponding SDEs [7]. The electronic excitations can
either be excitations between different subbands of the 2DES
(intersubband excitations), or excitations within a subband
(intrasubband excitations). In crystals with zinc blende struc-
ture, CDEs and SDEs can be separated in RILS experiments
by polarization selection rules [8]: CDEs are visible for
parallel polarizations of the incoming and scattered light,
while SDEs require perpendicular linear polarizations. Under
conditions of extreme resonance, also excitations which show
characteristics of single-particle excitations (SPEs) can be

“christian.schueller @ur.de

2469-9950/2020/101(3)/035427(9)

035427-1

observed [9,10]. These excitations do not obey polarization
selection rules. It is assumed that they are incoherent density
oscillations with no fixed phase relation between individual
electrons, and, hence, their energies are close to the excitation
energies of noninteracting particles, i.e., they can be regarded
as SPEs [11,12].

Typically, spin-orbit interaction in low-dimensional semi-
conductor systems has been considered as an effective,
k-dependent spin-orbit field acting on individual electrons.
Generally, for electrons in quantum wells with zinc blende lat-
tice, the spin-orbit field consists of a Dresselhaus contribution
with linear strength 8, due to the bulk inversion asymmetry
of the host crystal, and a Bychkov-Rashba term (with linear
strength «), which is present if there is an asymmetry of
the structure, caused by, e.g., external electric fields and/or
space charges due to asymmetric modulation doping. The
effect of this single-particle-like Bychkov-Rashba and Dres-
selhaus spin-orbit interaction on the propagation of intrasub-
band CDEs (plasmons) in quantum wells was theoretically
considered by Badalyan et al. [13]. On the other hand, on the
basis of RILS experiments on intersubband and intrasubband
SDEzs, it was suggested by Baboux er al. [14,15] that—due to
collective effects—the spin-orbit field in the coherent SDEs
may be enhanced by up to a factor of five [14], compared to
the spin-orbit interaction of individual electrons, e.g., inside
a spin packet. Furthermore, in Ref. [14] it was shown that
the intersubband SDE, which microscopically is a triplet
excitation with spin S = 1, splits in the collective spin-orbit
field into three components with magnetic quantum numbers
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mg = 0, =1 if a finite wave vector q is transferred to the SDE,
allowing a break of time-reversal symmetry. In this work we
show that for intrasubband SDEs in two comparable GaAs-
AlGaAs quantum-well structures, the sample parameters can
be consistently described by the well-known Bychkov-Rashba
and Dresselhaus spin-orbit terms. This may be due to the fact
that the intrasubband SDEs are strongly Landau damped, and,
hence, are dominantly of single-particle character. However,
we observe significantly different g factors in our two samples,
which may be taken as indicative of weak collective contribu-
tions to the SDEs.

Two-dimensional systems with balanced Rashba and Dres-
selhaus spin-orbit strength, i.e., « = £8, have moved into
the focus of spintronic research, motivated by a theoretical
work of Schliemann et al. [16], who proposed a nonballistic
spin field-effect transistor, and, later, of Bernevig et al. [17],
where the authors proposed a new spin rotational SU(2)
symmetry, which should lead to the formation of a persistent
spin helix (PSH). The PSH was subsequently experimentally
demonstrated by different groups [18-20]. In an earlier work,
some of the authors and others have investigated the spin-
orbit spin splitting of a 2DES with balanced Rashba and
Dresselhaus spin-orbit strengths, « = 8, by RILS from the
intrasubband SDE [21]. In these experiments, a wave vector ¢
was either transferred parallel to the [110] in-plane direction
of the GaAs-AlGaAs quantum well, where the two contri-
butions of spin-orbit interaction add up, or parallel to [110],
where they cancel each other. Furthermore, in the presence of
external magnetic fields, we could show that a superposition
of the intrinsic spin-orbit field and the external magnetic field
occurs [22].

In this work, we use RILS measurements to obtain further
understanding of spin-orbit field parameters for samples with
balanced Rashba and Dresselhaus spin-orbit contribution. In
particular, we compare the two different configurations, o =
B and @ = —B. By rotating the samples on a rotary stage, we
precisely map the anisotropic spin splitting, and, depending
on the configuration @ = B (sample A) or « = —f (sample
B), we show that the maximum spin splitting occurs parallel
to [110] or parallel to [110], respectively. Furthermore, by
applying in-plane external magnetic fields, we directly deter-
mine the g factors of the samples and the absolute maximum
strengths of the intrinsic spin-orbit fields. Surprisingly, the
g factors turn out to be significantly different, though the
nominal quantum-well widths and compositions are the same
for both samples. On the other hand, the maximum spin-orbit
field By, ~ 18T is almost identical for both samples. It is
governed by the relation kg /g(|a| + B), with g the electron g
factor and kr the Fermi momentum. All extracted parameters
can be consistently described and verified on a single-particle
basis. Thus, we detect no significant influence of many-
particle interaction on the strength of the spin-orbit field in
SDEs, as was reported in Refs. [14,15]. However, we observe
a ~50% difference in the g factors.

II. EXPERIMENTAL DETAILS

The two investigated samples were grown via molecular-
beam epitaxy and contain (001)-oriented, n-modulation-
doped GaAs-Al,Ga;_,As (x = 0.30 for sample A, x = 0.33
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FIG. 1. (a) Asymmetric conduction-band profile of sample A.
(b) Same for sample B. (c) Sketch of the experimental configuration
for the RILS experiments (see text).

for sample B) single quantum wells with 12-nm well width.
Their parameters were designed for equal strengths of the
linear Rashba and Dresselhaus coefficients, o and S, respec-
tively. Sample A is from the same wafer which was used
in Refs. [19,21,22]. In Ref. [19], the PSH in this sample
was imaged for the first time by direct spatial mapping,
using time-resolved Kerr microscopy. The wafer was grown
with a so-called inverted doping profile, where the dominant
doping layer is grown before the quantum-well layer. This was
done in order to induce an electric field across the quantum
well in growth direction ([001] direction). Figure 1(a) is a
schematic of the conduction-band potential profile of this
sample. The space charges inside the quantum well and in the
doping regions lead to an electric field in [001] direction [23].
The 2DES has an electron carrier density and mobility of
n~50x10°m2and u ~ 33m? V-'s7!, respectively, as
determined from transport experiments [19]. From the line-
shape analysis of our RILS experiments (see below), we
determine a reduced carrier density of n~ (2.7 +0.3) x
10" m~2, which is on the one hand due to the redistribution of
electrons from the quantum well to the ionized donors in the
barriers via laser illumination. On the other hand, fluctuations
in the donor distribution may contribute to this quite large
difference since a different piece of the wafer was used. For
our further analyses, we use this value of n, since it follows
directly from the spectroscopic data. The effective mass of the
electrons, m* ~ 0.075myg, was determined from Raman exper-
iments on cyclotron-resonance excitations in a perpendicular
magnetic field (not shown). The measured effective mass is
larger than the band-edge mass of GaAs, m* = 0.067my, for
two reasons. (i) The first is the nonparabolicity of the con-
duction band: The electrons that contribute to the intraband
and cyclotron-resonance excitations are close to the Fermi
energy, which is about 10-20 meV above the conduction-band
edge. (ii) The second is the penetration of the electron wave
function into the barrier material (AlGaAs), which has a larger
effective mass.
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Sample B is n-modulation-doped only on the surface side
of the quantum-well layer. So the built-in electric field points
along the [001] direction, which leads to the configuration of
o ~ —f, with B being positive [23]. A sample of the same
wafer was used in Ref. [24], where the existence of a PSH
was shown via time-resolved Kerr microscopy. Figure 1(b)
shows a schematic picture of the conduction-band profile of
the quantum well in this sample. The 2DES of the sam-
ple has an electron density of n ~ 5.9 x 10" m~2 and mo-
bility of x4 ~ 84 m?>V~!'s~!, as determined from magneto-
transport measurements. Again, from our spectroscopic data
(see below) we extract a slightly lower electron density of
n~ (5.84+0.7) x 10" m~2. The effective electron mass of
m* ~ 0.079m was also determined from cyclotron resonance
Raman experiments. The slightly larger effective mass of
sample B, as compared to sample A, may be due to the larger
carrier density in this sample and, hence, larger Fermi energy.

For the RILS experiments, a tunable continuous-wave
Ti:Sapphire laser was used, which was tuned slightly above
the band gap of the quantum well for near-resonant excitation.
For the experiments presented in this manuscript, the samples
were mounted in a He flow magnetocryostat at a nominal
temperature of 7 = 1.8 K. However, from the line-shape
analysis of our spectra we extract a temperature of the 2DES
of about 7 = 12 K, which is due to heating of the 2DES
by the incident laser. All experiments were performed in
backscattering geometry. By tilting the sample normal with
respect to the direction of the incoming and scattered light
by an angle 6, a finite wave vector q can be transferred to
the 2DES, as shown in Fig. 1(c). For this configuration, the
wave-vector transfer g is given by g ~ 4w /A sin 6, where A
is the wavelength of the laser light. Tilting angles of 6 = 35°
and 40° were used in our experiments. For the transfer of q
into arbitrary in-plane crystal directions ¢, the samples were
mounted on an Attocube piezo-driven rotary stage with re-
sistive position encoder. Optional in-plane external magnetic
fields B with magnitudes of up to 6 T were generated by a
superconducting split coil magnet. The direction of q with
respect to B was fixed at 90° [see Fig. 1(c)]. The scattered light
was analyzed in a triple Raman spectrometer and detected by
a liquid-nitrogen-cooled charge-coupled-device camera. For
all experiments, a depolarized scattering geometry was used,
i.e., crossed linear polarizations of incident and scattered light
in order to be sensitive for SDEs. The asymmetric line shapes
of the experimental spectra were analyzed via a computational
line-shape analysis, based on the Lindhard-Mermin line shape
of intrasubband excitations [25,26].

III. THEORETICAL CONSIDERATIONS

The effect of relativistic spin-orbit interaction on an elec-
tron, moving in a periodic crystal potential, can be described
in terms of an effective magnetic field B,. For a superposition
of the linear Bychkov-Rashba and the linear Dresselhaus
contributions with strengths « and S, respectively, the intrinsic
effective magnetic field in a (001)-grown quantum well is
given by

By, = ——((aky + Bke, — (ke + o). (1)
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FIG. 2. (a) Schematic picture of the unidirectional effective spin-
orbit field By, of a 2DES with balanced Bychkov-Rashba and
Dresselhaus spin-orbit strengths o = B (sample A). The angle ¢
is measured clockwise with respect to the [110] in-plane direction.
(b) Fermi contour for spins parallel and antiparallel to By, for sample
A. (¢) Schematic picture of B, for sample B (¢« = —f). (d) Fermi
contour for sample B.

Here x, y, and z are parallel to the [100], [010], and [001]
directions, respectively. g is the effective g factor and ug
the Bohr magneton. For balanced Rashba and Dresselhaus
interactions, « = £, Eq. (1) reduces to

o] + B
Bso =
8B

This situation is schematically displayed in Fig. 2(a) for o« =
B: By, is either parallel or antiparallel to the [110] in-plane
direction, which leads to a spin splitting for in-plane spins,
as schematically shown in Fig. 2(b) for the Fermi contour
of the 2DES. The two energy paraboloids for spins parallel
and antiparallel to [110] are shifted in k space by a maximum
value of Ak relative to each other. For arbitrary in-plane
directions, denoted by the angle ¢ in Figs. 2(a) and 2(b), the
magnitude of the shift of the two parabolas in this direction is
given by

(kx £ ky)(ex F ey). @)

Ak, = Akyjol sing]. 3)

For the situation « = —p, the patterns in Figs. 2(a) and 2(b)
are rotated clockwise by 90° and time reversed, i.e., By, is
then parallel or antiparallel to the [110] in-plane direction [see
Figs. 2(c) and 2(d)].

We turn now to the discussion of intrasubband SDEs,
as investigated in this work via RILS. For simplicity, we
discuss here explicitly the case @« = B (sample A) only. The
discussion for « = —f is exactly the same, except that ¢ = 0°
then has to be replaced by ¢ = 90°, because of the clockwise
rotation of the relevant spin and field patterns. In the follow-
ing, the terms “spin up” and “spin down” refer to the two
different in-plane spin orientations [21]. In the backscattering
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FIG. 3. (a) Single-particle continua for intrasubband spinflip
excitations for in-plane directions of the wave-vector transfer g
corresponding to ¢ = 0° and ¢ # 0°, as valid for « = B (sample A).
(b) Cut through the energy paraboloids [from Fig. 2(b)]: Spinflip
transitions (arrows), which correspond to the high-energy cutoffs of
the single-particle continua for ¢ # 0°. (c) Same as (b), for ¢ = 0°,
where the spin splitting is zero.

geometry, only spinflip intrasubband transitions are allowed
(cf. Ref. [21]), i.e., for the intrasubband SDE, spinflip tran-
sitions between states of different in-plane spin orientations
have to be considered only. Consequently, this means that
the SDE is a triplet excitation with magnetic quantum num-
bers m; = £1 only and m; = 0 does not contribute [14]. In
Fig. 3(a), the gray-shaded areas are displaying the single-
particle continua for intrasubband spinflip excitations. For
¢ = 0°, the spin-up and spin-down states are degenerate [see
Fig. 3(c)], i.e., the two excitations with m; = £1 are degen-
erate. The high-energy cutoff of the corresponding single-
particle continuum for wave-vector transfer in this direction
is given by E, = Z—ikpq, indicated by an orange dashed line
in Fig. 3(a) [central dashed line in Fig. 3(a)]. For ¢ # 0°,
the spinflip excitations with m; = 41 and m; = —1 are no
longer degenerate, i.e., there are two spinflip transitions with
different energies for a given wave-vector transfer g [see
Fig. 3(b)] with high-energy cutoffs of E;“ = AEs, + Z—iqu,

and E~ = %kp(q — Ak,) [blue and green dashed lines in
Fig. 3(a) and solid arrows in Fig. 3(b), i.e., right and left
dashed lines in Fig. 3(a) and long and short curved arrows
in Fig. 3(b)]. Here AEg, is the maximum spin splitting at the
Fermi level for in-plane direction ¢. For a given wave-vector
transfer g, the difference between E ; and E " is just twice the

spin splitting, E(;r — E,; =2AEjy, [see Fig. 3(b)], since

> .
AEg, = %kFAkw = 2(a + B)kr|sing|. )

For sample B, the right-hand side of Eq. (4) becomes
AEs, = 2(la| + B)kr| cos ¢l )

In Fig. 3(a), the Lindhard-Mermin-type line shapes [25,26] of
intrasubband spinflip excitations for a given g are schemati-
cally indicated as solid green, orange, and blue curves. In the
underlying formalism, the excitation spectrum is calculated
on the basis of single-particle transitions by evaluating the
imaginary part of the dielectric response function yo(w, g, T)
of a system of noninteracting particles and taking into account
a finite single-particle scattering time t and the temperature
T. The four parameters, which determine the line shape, are
the magnitude of the wave-vector transfer g, the electron
density n, the electron temperature 7', and the single-particle
scattering time t [26]. Since g is adjusted in the experiment
and therefore known, there are only three free parameters.
The maxima of the excitations are around the high-energy
cutoffs of the corresponding single-particle continua, which
are proportional to the Fermi wave vector kr. Therefore, via
the relation kp = ~/2mn, the electron density n of the 2DES
is determined very accurately by the energetic positions of
the high-energy cutoffs of the spectra. As mentioned above,
for in-plane spin orientations, only spinflip transitions of elec-
trons are Raman allowed in depolarized scattering geometry,
i.e., excitations with m, = £1. Therefore, for directions of
the wave-vector transfer g with ¢ # 0° (sample A) or ¢ #
90° (sample B), we expect a superposition of the green and
blue spectra of Fig. 3(a) (cf. Ref. [21]), corresponding to
two maxima. By contrast for the particular cases of ¢ = 0°
(sample A) or ¢ = 90° (sample B),i.e.,q || [110]org | [110],
respectively, there should be a single maximum, only [orange
curve in Fig. 3(a)]. For the two extreme cases, ¢ = 0° and 90°,
this was experimentally confirmed in Ref. [21] for sample A.

So far, we have discussed the intrasubband SDE in terms
of single-particle spinflip excitations. It is well known that
the intrasubband SDE is a collective excitation of the 2DES
due to exchange Coulomb interaction. However, since the
exchange interaction leads to a redshift of the collective
SDE [9], its energy lies within the single-particle continua,
which are displayed in Fig. 3(a). Hence, the collective SDE
is strongly Landau damped due to the decay into uncorrelated
spinflip excitations of individual electrons. For this reason, the
collective shift of this excitation due to exchange interaction
is known to be rather small [27]. It can be deduced from
the comparison of RILS spectra in polarized geometry (see
Supplemental Material [28]), where intrasubband nonspinflip
single-particle excitations can be observed, with spectra mea-
sured in depolarized geometry, where the intrasubband SDE
is visible [27].

IV. EXPERIMENTS AND RESULTS

With these considerations we are now ready to discuss the
first set of experiments. Figure 4(a) shows a waterfall plot of
depolarized RILS spectra of sample A for a tilt angle of 8 =
35°, i.e., a fixed wave-vector transfer of ¢ = 9.1 x 10® m~!.
Then, via the rotary stage, the sample is rotated in steps
of 15° between positions ¢ = 0° and ¢ = 360°. For each
position, a RILS spectrum of the low-energy SDE is taken.
The normalized spectra are displayed with vertical offsets for
better comparison in Fig. 4(a). The gray shaded area indicates
the cutoff of the triple Raman spectrometer. The evolution
of the spectra from a Lindhard-Mermin spectrum at ¢ = 0°

035427-4



INELASTIC LIGHT SCATTERING BY INTRASUBBAND ...

PHYSICAL REVIEW B 101, 035427 (2020)

—_
Q
~
S
—~
Q.
[0
HQa
~
—_
(=2
~

Intensity (norm., shifted)
Intensity (norm., shifted)

0 1 2 3 0 1 2

Raman shift (meV) Raman shift (meV)

FIG. 4. (a) Waterfall plot of depolarized RILS spectra of sample
A at a tilt angle of & = 35°, corresponding to a wave-vector transfer
of ¢ =9.1 x 10° m™! for different in-plane directions ¢ (relative to
[110]) at zero external magnetic field. The gray shaded area marks
the spectrometer cutoff. The positions of the maxima are traced by
the gray dashed lines. (b) Lindhard-Mermin line-shape analysis of
measured spectra (black solid lines) exemplarily for minimum spin
splitting at ¢ = 0° (bottom spectrum) and maximum spin splitting at
@ = 90° (top spectrum).

to a superposition of two spectra with two different maxima
(indicated by gray dashed lines) can clearly be recognized.
When rotating ¢ by 360°, a periodic pattern for the shift
of the maxima can be found, which resembles the expected
spin splitting due to the effective spin-orbit field, shown in
Fig. 2(b). To accurately extract the positions of the maxima in
the spectra, i.e., the cutoff energies of the spinflip transitions,
all measured spectra were reproduced via a computational
line-shape analysis implemented in Python, based on the
Lindhard-Mermin line shape [25,26], where xo(w, g, T) is
calculated [8,29] by numerically integrating over all possible
spinflip single-particle transitions in k space.

Our line-shape analysis procedure is exemplarily shown
in Fig. 4(b) for the two extreme cases ¢ = 0° and ¢ = 90°
for sample A. For ¢ = 0° the measured single-peak spectrum
(black solid line) in the lower part of Fig. 4(b) can nicely
be reproduced by the simulation (orange open dots), using
the following material parameters: Electron temperature of
T =12 K, single-particle scattering time of t =3 ps and
electron density of n = (2.7 £ 0.3) x 10 m~2. We assume
that the short lifetime of 3 ps is due to the strong Landau
damping of the intrasubband SDE, since its energy is in-
side the single-particle continuum. The smaller electron den-
sity here, as compared to the transport measurements from
Ref. [19], may arise from the strong laser illumination in our
experiments. The experimental spectrum for ¢ = 90° [solid
black line in the upper part of 4(b)] is nicely reproduced by the
superposition of two simulated curves I{;r and I, [green and
blue open dots in Fig. 4(b)], which are obtained by varying
Ak, [see Egs. (3) and (4)] until the simulation matches the
measured spectra [red crosses in Fig. 4(b)]. The extracted peak
splittings are just twice the spin splitting, AEg ,, for the corre-
sponding in-plane direction, as explained in the considerations
above.

(@)  AEg, (meV) (b)

N N
Qr'b Qr}/Q’ Q'Q Q- Q(’l' Qr’b

AEg , (meV)

N N
Qr’b Q(‘LQ' Q’Q Q- Q(']/ Qr’b

o 0T e 6T Measured

Sample A

- - - Calculated

FIG. 5. (a) Polar plot of extracted peak splittings versus angle
@ (relative to [110] in-plane direction) for sample A at zero external
magnetic field (inner open circles) and for external in-plane magnetic
fields of 6 T (outer solid circles). The gray lines show the calculated
sin ¢ dependence of the peak splitting. (b) Same as (a) but for sample
B at a tilt angle of & = 40°, corresponding to a wave-vector transfer
of ¢ =10.2 x 10° m~'. The increased peak splitting is due to the
higher electron density of this sample.

The results of this analysis for sample A, i.e., for the
condition « = B, are summarized in Fig. 5(a). The inner open
symbols in Fig. 5(a) are showing the spin splittings AEg , ver-
sus the angle ¢ (relative to [110] in-plane direction), derived
via the above discussed line-shape analysis procedure for all
measured spectra at zero external magnetic field. At ¢ = 90°
and 270° a maximum splitting of AEg = (0.19 £ 0.01) meV
can be extracted for sample A, whereas for ¢ = 0° and 180°
no spin splitting is observable (cf. Ref. [21]). The solid gray
line shows the computed values for the spin splitting, based
on the above discussed sin ¢ dependence [see Eq. (3)]. For
the intrinsic spin-orbit parameters o and 8 [after Eq. (4)], we
receive for (o + B)/2 =a = = (3.50 £ 0.25) meVA the
best agreement with the experimental data, when using n =
2.7 x 10" m~2 for the 2DES density, as determined from the
line-shape analysis (see above). The parameters o and 8, as
deduced from the experiments in Ref. [19] on a different piece
of the same wafer, are somewhat smaller. Those experiments
were conducted at a higher temperature of 7 = 40 K. Addi-
tionally, in Ref. [19] a transient in Ak due to a finite excitation
spot size [30] has not been included in the analysis. Similarly,
the RILS experiments in Ref. [21] delivered slightly smaller
values for o and B. In these experiments, a different laser
excitation energy was used, leading to different resonance
conditions and, hence, a different electron density in the
optical experiment, corresponding to a different electric field
across the quantum well.

Next we discuss the experiments in external magnetic
fields. As indicated in Fig. 1(c), the externally applied field
B.x: lies in-plane with the effective spin orbit field By,
[Figs. 2(a) and 2(c)] and, for each position of ¢, perpendicular
to the transferred wave vector (B¢ L q). This generally
leads to a disturbance of the unidirectionality of the effec-
tive magnetic field acting on an electron, since the intrinsic
and the external fields superimpose. The above described
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measurement series, i.e., recording depolarized RILS spectra
of the intrasubband SDE, while rotating the sample stepwise
with respect to the fixed direction of q, is repeated for both
samples with a fixed external magnetic field of By = 6T,
and By L q. The blue solid dots in Fig. 5(a) display the
extracted spin splittings for sample A. A global increase of
the spin splittings can be found with maxima AEg = (0.24 £+
0.01) meV at ¢ = 90° and 270°, where the external magnetic
field B¢y is oriented parallel to the intrinsic spin-orbit field
B, so that they add up. For the orthogonal in-plane axis
along ¢ = 0° and 180°, a finite splitting of AEg = 0.15 meV
appears. Because of the unidirectional character of By, this
splitting can only stem from the Zeeman splitting due to the
applied external magnetic field Bey. The measured values
of AEg, are in good agreement with the computed values
[gray dashed line in Fig. 5(a)], which were calculated via the
relation AEg p(¢) = giup|Biot(¢)|, where the superposition of
B and By, leads to a total effective magnetic field Byy.
Using a |g| factor of 0.16 £ 0.04, and the same values for
o = B and n as for the Bex; = 0 measurement analysis above,
the computed values [dashed gray line in Fig. 5(a)] fit best
with the measured spin splittings. This g factor, which would,
according to Ref. [31], correspond to a symmetric GaAs
quantum well with width of about 8 nm, will be discussed
in more detail below.

We now turn to measurements on sample B with negative
Bychkov-Rashba spin-orbit parameter « = —f. The intrin-
sic spin-orbit field B, is still unidirectional according to
Eq. (2), but, compared to sample A, now parallel or an-
tiparallel to the orthogonal in-plane direction. Figure 5(b)
shows the spin splittings AEg,, as extracted from the line-
shape analysis of depolarized RILS spectra, for zero external
magnetic field (inner open dots) and for an external magnetic
field of By =6 T (green solid dots). The maximum spin
splitting now emerges for ¢ = 0° and 180° with a magni-
tude of AEg = (0.20 = 0.01) meV for zero external magnetic
field and AEg = (0.34 4= 0.01) meV for By, = 6 T. From the
Lindhard-Mermin line-shape analysis we obtain an electron
temperature of T = 12K, a single-particle scattering time
of T =3 ps and an electron density of n = (5.8 £0.7) x
10'5 m~2. For the calculation of the spin splittings [gray solid
and dashed lines in Fig. 5(b)], the density of the 2DES is
kept fixed at n = 5.8 x 10" m~2 (see above), and the spin-
orbit parameters [see Eq. (5)] are chosen to be ¢« = —f =
(—3.25 £ 0.25) meV A. The measured data points for By =
0 T in Fig. 5(b) show a deviation from the calculated values.
This could be due to inhomogeneities of the donor distribution
in the sample, resulting in an inhomogeneity of the electron
density n: By rotating the sample during a ¢ series, the laser
spot may vary locally on the sample surface if the rotation
axis is not perfectly aligned to the laser-spot position. For
Bexy = 6 T, the measured data points are much closer fitting
to the calculated values. Compared to sample A, the enlarged
spin splitting [solid gray line in Fig. 5(b)] can be explained
by the higher electron density, which, due to the relation kr =
~/27n and Eq. (4), leads to an increase of AEg . From this
measurement, an effective |g| factor of 0.23 £ 0.07 can be
determined for sample B. Surprisingly, this g factor is almost
50% larger than the above presented g factor for sample A.
According to Ref. [31], it would correspond to a symmetric
GaAs quantum well with a width of about 10 nm.

We note here that in our analysis we have assumed
an isotropic in-plane g factor. Actually, for GaAs-AlGaAs
quantum wells with an asymmetric quantum-well potential,
the in-plane g factor should be anisotropic [32-35], and the
strength of the anisotropy depends on the potential asymme-
try. In Ref. [35], e.g., a difference of about 20% was detected
for the two in-plane directions [110] and [110] in a GaAs-
AlGaAs heterojunction. However, within our experimental
error margins, we cannot clearly resolve such an anisotropy
(cf. Fig. 5). We will come back to this point in more detail
below, in Sec. V.

Finally, we demonstrate how the intrinsic effective spin-
orbit field By, can be determined directly by superimposing
an external magnetic field. In the above measurements, a fixed
magnetic field was applied, and the sample was rotated in or-
der to change the in-plane crystal directions with respect to the
magnetic field. From the variation of the spin splittings, ex-
tracted from RILS spectra of intrasubband SDE, first, the spin-
orbit parameters are determined from the measurements at
Bext = 0, and then the g factors are derived from experiments
at Bexy # 0. As outlined above, this measurement procedure
is prone to be influenced by inhomogeneities of the sample if
the laser spot is not perfectly aligned with the rotation axis.
The carrier densities are determined by the positions of the
high-energy cutoffs of the spectra. In principle, we could now
compute the maximum spin-orbit field with these parameters.
For o = £f, the energy paraboloids for spin up and spin
down are shifted against each other in k space [see Figs. 2(b)
and 2(d)] by a momentum Ak with magnitude

dm*o
Inserting this into Eq. (4), and assuming a Zeeman-type
energy splitting AEg = gupBs,, one gets for the magnitude
of the maximum intrinsic spin-orbit field

4ok
Bso = £ . (7)
8B

Inserting the parameters, as extracted above from the mea-
surements of samples A and B, into Eq. (7), we receive
for sample A By, ~ (19.9 £4.1)T and for sample B By, ~
(18.6 £ 3.9) T. The uncertainties are quite large, due to the
uncertainties in the contributing individual parameters. In the
following we will verify these field values by a direct, more
accurate measurement. In order to do so, we fix the direction
of wave-vector transfer q in the directions of maximum spin
splittings, i.e., the [110] direction for sample A and the [110]
direction for sample B. Since By L q, the external field is
then parallel or antiparallel to the maximum internal spin-orbit
field By, [36]. Then we record a series of RILS spectra of the
SDE for different external fields, ranging from —6T to +6T.
In doing so, the laser spot is kept fixed on the sample surface,
which reduces the possible influence of inhomogeneities to
a minimum. Figure 6(a) shows such a series of depolarized
RILS spectra for different external magnetic fields of sample
B, recorded with a wave-vector transfer along ¢ = 0° (q
[| [110]), where the maximum spin splitting appears. A linear
convergence of the peak splittings from positive to negative
external magnetic fields is clearly visible.
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FIG. 6. (a) Depolarized RILS spectra of sample B for different
external magnetic fields, oriented parallel for Bey > 0 7T and an-
tiparallel for By, < O T. The peaks are converging linearly due to a
superposition of B¢, and By,. (b) Extracted spin splittings for both
investigated samples, recorded with a wave-vector transfer along
maximum spin splitting crystal direction. The orange shaded area
is the experimentally accessible magnetic field range of the cryostat.
Dashed line: Linear fit and extrapolation of the spin splittings.

We expect the effective spin-orbit field By, to be enhanced
if the external magnetic field is oriented parallel to B,
which is the case for Beyy > 0 T and B, to be attenuated
for antiparallel orientation, i.e., Bexy < O 7. The values for the
splitting were extracted via the Lindhard-Mermin line-shape
analysis and plotted against the external magnetic field in
Fig. 6(b) for both investigated samples. For both samples a
linear shift of the peak splitting occurs in the orange shaded
area of Fig. 6(b), which marks the accessible magnetic field
range of the cryostat. In particular, this measurement series
shows a clear difference of the spin splitting of both samples
for Bexy = 0. The value of this splitting for sample B nicely
agrees with the calculated value in Fig. 5(b) for 0° and 180°
[solid gray line in Fig. 5(b)], confirming the above-derived
values for o and B. As discussed above, the corresponding
experimental data in this figure [open green dots in Fig. 5(b)]
may have been influenced by sample inhomogeneities. The
strength of the intrinsic spin-orbit field By, can be extracted
by extrapolating the spin splittings (dashed lines) until their
intersection with the x axis. For both samples we extract
a value of ~(18 £1) T, in good agreement with the com-
puted values above. From the slope of the dashed lines we
extract an effective |g| factor of 0.17 £ 0.01 for sample A
and 0.24 +0.01 for sample B, in almost perfect agreement
with the values we have received from the angular-resolved
measurements with fixed magnetic field [dashed gray lines in
Figs. 5(a) and 5(b)].

V. DISCUSSION

We have investigated two single quantum-well samples
with nominally identical GaAs wells of 12-nm width but op-
posite doping profiles, leading to oppositely oriented electric
fields in the quantum well and, hence, linear Bychkov-Rashba
parameters, o, with opposite sign. The electron densities n
of the samples can be relatively accurately determined from

the high-energy cutoffs of the intrasubband SDE spectra via
a Lindhard-Mermin line-shape analysis. This delivers differ-
ent values for the two samples, namely n ~ (2.7 £ 0.3) x
105 m~2 for sample A and n ~ (5.8 +0.7) x 10" m~2 for
sample B. Furthermore, from the line-shape analysis of the
peak splittings at Bey = 0, comparable magnitudes of the
spin-orbit parameters (|| + B8)/2 = (3.50 £0.25) meV A
for sample A and (|a| + B)/2 = (3.25 £ 0.25) meV A for
sample B can be determined within the error bars. These
values are consistently confirmed by the high accuracy mea-
surements, displayed in Fig. 6, where the laser spot is kept
at a fixed position on the sample surface. We believe that
the approximate equivalence of the spin-orbit parameters in
both samples is just by coincidence. It seems that the different
doping profiles in the two samples [see Figs. 1(a) and 1(b)]
result in approximately the same magnitude of the Bychkov-
Rashba coefficient || for both samples. The g factors, ex-
tracted from the experiments in Fig. 6 with By # 0 are,
however, puzzling. It is obvious from Fig. 6 that the g factors
for samples A and B are distinctly different. Puzzling is the
fact that sample B, which has the larger electron density n,
shows a g factor of |g| = 0.24 £ 0.01, which is almost 50%
larger than the g factor of sample A. This is counterintuitive:
Assuming a negative g factor (as expected for a well width
of 12 nm [37,38]), |g| should decrease with increasing Fermi
energy (and same well width). This is further corroborated by
the fact that the effective mass, m*, follows the expectation:
It is slightly larger in sample B, which has the larger Fermi
energy. This is expected because of the nonparabolicity of the
conduction band of GaAs.

At a first glance, one could think that the difference in g
factors for the two samples could be due to the anisotropy of
the in-plane g factor [32,34,35]: The directions of maximum
spin splitting in samples A and B are the [110] and the
[110] directions, respectively (cf. Fig. 5). In Ref. [35], these
directions were experimentally found to be the directions
of maximum anisotropy in a GaAs-AlGaAs heterojunction.
However, due to the reversed electric fields in the two samples,
the in-plane directions of maximum and minimum g factors
are expected to switch between the two samples. As a result,
in both samples the directions of maximum spin splitting
correspond to the directions of maximum g factor. This can
be proven as follows: A theoretical treatment yields for the
nondiagonal elements of the in-plane g tensor [32,34]

2ye

2NN 2
i (Pe) = (pez)). ®

8xy = 8yx =

with the bulk Dresselhaus coefficient y [2] and () denoting
the expectation value for the electron wave function. The two
terms in the brackets on the right-hand side of Eq. (8) exactly
cancel if the quantum-well potential is symmetric, i.e., then
the in-plane g factor is isotropic. The larger the asymmetry of
the potential, the larger is the magnitude of the offdiagonal
element g,,. With Eq. (8) and the electronic wave functions
of samples A and B [cf., Figs. 1(a) and 1(b)] it follows that
&xy > 0 for sample A and g, < 0 for sample B, provided that
y > 0. For a small magnetic field B¢y, pointing in an arbitrary
in-plane direction ¢, as defined above, the anisotropic g(¢) is
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given by [34]

89 = — /&, + &, + 28ugy c05(20). ©)

We have to take into account now that in our experiments
we have Be L q. This means that, e.g., in an experiment
on sample A with q || [110], i.e., in direction of maximum
spin splitting, Bey || [110], and so on. Altogether, employ-
ing Eq. (9), this results in the relations |g;jo| = |g(180°)| >
18110l = |g(—90°)| for sample A and |gyjo| = [g(—90°)] >
lg110] = |g(180°)| for sample B. This confirms the above
statement that the directions of maximum spin splitting in
both samples ([110] for sample A and [110] for sample B)
are the directions of maximum in-plane g factor. Hence, the
quite significant difference of the measured g factors cannot
be explained by the g factor anisotropy.

We speculate that the difference in g factors is due to
residual collective effects in the Landau-damped SDE, which
may lead to an enhanced spin-orbit field and, hence, an
enlarged splitting. If we rewrite Eq. (4) for the situation when
the external field is parallel to the intrinsic spin-orbit field
[as in the experiments, displayed in Fig. 6] for a Zeeman-like
energy splitting, then we have for the spin splitting

AES,max = 2(|Ol| + IB)kF + g/'LBBext = g/'LB[BSo + Bext]-
(10)

Equation (10) may contain g as an effective g factor, modeling
the effect of a collective spin-orbit field. However, at the
moment it is not clear whether it is just an enhancement of
the g factor due to many-particle interaction or an enhanced
spin-orbit field. This is so far a naive assumption and further
theoretical elaboration is needed for an accurate description of
the relevant effects.

Finally, we note that having approximately the same mag-
nitude of the spin-orbit field By, in both samples, e.g., on
the basis of Eq. (7) means that the relation kr/g in both
samples has to be the same. This would mean that a larger
kr (sample B) is compensated for by a larger g factor and
vice versa for sample A. For our extracted parameters, this
is the case (see above). The conclusion regarding whether
this is significant or just coincidence for the two investigated
samples will need more investigations from the experimental
as well as theoretical sides.

VI. CONCLUSION

In conclusion, we compared two samples possessing bal-
anced Bychkov-Rashba and Dresselhaus spin-orbit coupling
but with different sign of the Rashba parameter, i.e., « = £,
by their spectra of intrasubband SDEs. For each sample, we
precisely mapped the spin splitting of the 2DES and could
show that the unidirectional spin-orbit field is pointing parallel
and antiparallel along the [110] in-plane direction for & = 8
and along [110] for « = —B. With in-plane external magnetic
fields, we were able to deduce the strengths of the maximum
intrinsic spin-orbit fields. We found an effective g factor,
which is significantly enhanced for the sample with the larger
density, possibly indicating the influence of collective effects
in the intrasubband SDEs.
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