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Tunneling and fluctuating electron-hole Cooper pairs in double bilayer graphene
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A strong low-temperature enhancement of the tunneling conductance between graphene bilayers has been
reported recently and interpreted as a signature of equilibrium electron-hole pairing, first predicted in bilayers
more than 40 years ago but previously unobserved. Here we provide a detailed theory of conductance enhanced
by fluctuating electron-hole Cooper pairs, which are a precursor to equilibrium pairing, that accounts for specific
details of the multiband double graphene bilayer system which supports several different pairing channels.
Above the equilibrium condensation temperature, pairs have finite temporal coherence and do not support
dissipationless tunneling. Instead they strongly boost the tunneling conductivity via a fluctuational internal
Josephson effect. Our theory makes predictions for the dependence of the zero bias peak in the differential
tunneling conductance on temperature and electron-hole density imbalance that capture important aspects of
the experimental observations. In our interpretation of the observations, cleaner samples with longer disorder
scattering times would condense at temperatures Tc up to ∼50 K, compared to the record Tc ∼ 1.5 K achieved
to date in experiment.
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I. INTRODUCTION

The possibility of Cooper pairing in a system with spatially
separated electrons and holes in semiconductor quantum wells
was first anticipated more than 40 years ago [1,2]. Accord-
ing to theory, strong Coulomb interactions allow pairing at
elevated temperatures, which would provide a physical real-
ization of dipolar superfluidity that is potentially relevant for
applications. The paired state is fragile however, and can be
suppressed by disorder [3,4] or by Fermi-line mismatches due
to the differences between electron and hole anisotropies [5,6]
that are always present in conventional semiconductors [7].
In fact equilibrium pairing has until recently been observed
only in the presence of strong magnetic fields that quench the
kinetic energies of electrons and holes and drive the system to
the regime of strong correlations [8,9].

Recent progress in fabricating single-atomic-layer two-
dimensional materials has renewed interest in electron-hole
pairing [11–25]. Graphene-based two-dimensional electron
systems not only have high mobility and almost perfect
electron-hole symmetry, but they also make it possible to
fabricate closely spaced, and therefore strongly interacting,
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independently gated and contacted double layer structures.
Very recently low-temperature enhancement of the tunneling
conductance between graphene bilayers has been observed at
matched concentrations of electrons and holes [10]. A typical
conductance trace is presented in Fig. 1, where we see a
tunneling conductance that appears to diverge at T0 ≈ 1.5 K,
signaling equilibrium pair condensation. This observation
provides the first clear experimental signature of equilibrium
electron-hole pair condensation in the absence of a magnetic
field [26,27].

Enhanced tunneling conductance has been observed previ-
ously in semiconductor bilayers in the strong field quantum
Hall regime [28] and has been interpreted as an internal
Josephson effect [8]. The differential conductance does not
diverge, however, and instead has a sharp peak at zero bias.
The property that the conductance peak width is smaller than
temperature, and smaller than the single-electron scattering
rate (i.e., the Landau level width), nevertheless points to a
collective origin of the peak. Bilayers in the quantum Hall
regime are predicted to support dissipationless Josephson-like
tunneling currents in the presence of long-range electron-hole
coherence [29,30]. The development of a quantitative theory
of enhanced tunneling in quantum Hall systems [31–34] that
fully explains the peak width has been challenged by the
importance of inhomogeneity and disorder and by strong
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FIG. 1. (a) Temperature dependence of the tunneling conduc-
tance GT between graphene bilayers at zero voltage bias (V = 0).
The red curve corresponds to the calculation that incorporates the
effect of fluctuating Cooper pairs [Eq. (27)] and accurately fits the
experimental data presented by blue dots [Fig. 3(b) in Ref. [10]].
The purple dashed curve corresponds to the model of noninteracting
electrons and holes [Eq. (26)]. The fitting details and parameters
are presented in Sec. V. Fluctuating Cooper pairs above the critical
temperature T0 = 1.5 K strongly enhance GT and are responsible
for its critical behavior GT ∼ (T − T0 )−2. The latter is derived and
discussed in Sec. IV E and reasonably matches with the experimental
data, as is clearly seen in the inset (b).

interactions in the presence of dispersionless Landau lev-
els. Phase fluctuations that are inevitably present due to
the two-dimensional Berezinskii-Kosterlitz-Thouless nature
of the phase transition [35–38] also play a role. The theory of
enhanced tunneling is simpler at a zero magnetic field, at least
in the weak coupling regime where the electron-hole pairing
energy is small compared to the Fermi energy, allowing
experiments to be explained more fully, as we demonstrate
below.

The enhancement of the tunneling conductance in the dou-
ble bilayer graphene system has been observed over a wide
density range 4 × 1010–1012 cm−2, where electronic correla-
tions vary from moderate to weak [39]. The Bardeen-Cooper-
Schrieffer (BCS) theory of electron-hole pairing has greater
validity at weaker pairing. True internal Josephson behavior
in this case occurs only below a critical temperature T0 and
is preceded by enhancement of the tunneling conductance
that diverges as T0 is approached as illustrated in Fig. 1.
This critical behavior has been predicted by one of the au-
thors [40] and has been interpreted as a fluctuational internal
Josephson effect. It originates from partly coherent fluctuating
electron-hole Cooper pairs [40–42] that are a precursor of
equilibrium pairing and reminiscent of Aslamazov-Larkin and
related effects in superconductors [43–45]. Above T0 fluctuat-
ing Cooper pairs have a finite coherence time [19,46–48] and
cannot support a dissipationless tunneling current. While the
recent observations do qualitatively agree with earlier theory,
the double bilayer graphene system has some important differ-
ences compared to the double parabolic electron gas models
considered previously. These are related to the system’s well-
known 2π momentum space Berry phases. We show here that
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FIG. 2. (a) Schematic of a double bilayer graphene system which
specifies our sublayer labeling. External gates induce an excess of
electrons (holes) in the top (bottom) bilayer and open a gap in the
spectrum of isolated bilayers. (b) Electronic structure of the system
in the case of the matched concentration of electrons and holes that
most strongly favors electron-hole Cooper pairing.

accounting properly for these differences provides a better
account of the low-temperature tunneling anomalies.

In the present work we have developed a theory of the
fluctuational internal Josephson effect in a system with closely
spaced graphene bilayers. As we show below, the presence
of valley and sublattice degrees of freedom provides three
competing electron-hole channels for both intravalley and
intervalley Cooper pairs. We show that three channels are
nearly independent and have have different condensation tem-
peratures and different sublattice structure. The experimen-
tal enhancement of the tunneling conductance by fluctuat-
ing Cooper pairs can be explained only by the presence of
competing channels that dominate in different temperature
ranges. In the vicinity of T0, the tunneling conductance at
zero bias is predicted to have a critical divergence GT ∼
(T − T0)−2, which matches the experimental data well, as we
see in Fig. 1. The calculated dependence of the tunneling
conductivity on interlayer voltage bias and carrier-density
imbalance also match the experimental data [10] reasonably.
We conclude that the observed enhancement of the tunneling
conductance in double bilayer graphene is well explained by
our fluctuational internal Josephson effect theory.

The paper is organized as follows. In Sec. II we introduce
a model that describes the low-energy physics of two closely
spaced graphene bilayers. Section III is devoted to a descrip-
tion of fluctuating Cooper pairs above the critical temperature
T0. In Sec. IV we use these results as a starting point for a
theory of the tunneling conductance. In Sec. V we compare
our calculations with the recent experimental data. Finally in
Sec. VI we discuss limitations of our theory and aspects of
the experimental data that are still not well understood and
present our conclusions.

II. MODEL

A. Weak and strong coupling regimes

The system of interest contains two graphene bilayers
separated by an insulator as sketched in Fig. 2(a). An external
electric field perpendicular to the bilayers induces an excess of
electrons in the top bilayer (t) and their deficit in the bottom
bilayer (b). Inevitably, it also results in gaps 2|u| in isolated
bilayer graphene spectra. The latter are in Fig. 2(b) in the
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case of matched concentrations for electrons and holes, the
most favorable regime for the Cooper pairing. Double bilayer
physics is very rich and has been considered in a number
of recent papers [19–21,23,39] that aim to provide realistic
predictions of the critical temperature T0 based on the micro-
scopic model. Here we follow a different route and consider a
minimal phenomenological model that accounts for disorder
and describes the instability of the system towards electron-
hole pairing in the weak coupling regime and can explain the
observed enhancement of the tunneling conductance between
graphene bilayers [10].

The physics of electron-hole Copper pairing depends
on three dimensionless parameter: Wigner-Seitz interaction
strength parameter rs = me2/κ h̄2kF that scales the ratio of
interactions and kinetic energy in an individual bilayer [49], a
parameter kFd that scales the interlayer Coulomb interactions
respect to the intralayer one, and a parameter |u|/εF that
determines the low-energy spectrum of individual bilayers.
Here kF and εF are Fermi wave vector and energy for electrons
and holes, m is their effective constant, and κ and d are a
dielectric constant for the spacer between bilayers and its
thickness, respectively. If rs � 1, kFd � 1, and |u|/εF �
1 the system is in the weak coupling regime with pairing
correlations only in the vicinity of Fermi level for electrons
and holes. This regime can be described by the BCS theory
for electron-hole pairing. The nature of the strong coupling
regime (rs � 1 and kFd ∼ 1) depends on the ratio |u|/εF. If
|u| � εF, the state is a Bose-Einstein condensate (BEC) of
indirect excitons that represent a bound state of electron and
hole. It has been argued that the most favorable conditions for
observation of electron-hole condensation are reached near
the midpoint of the BEC-BCS crossover [19–21,39,50]. In
the opposite case the paired state is a multiband BCS-like
paired state [15–18,51] where pairing correlations also span
to remote bands (valence band in the layer with excess of
electrons and conduction band in the layer with excess of
holes).

Enhanced conductance has been seen over a range of
electron and hole densities that covers 4 × 1010–1012 cm−2

and corresponds to rs = 3.1–0.72 and kFd = 0.07–0.35 [52].
This range suggests to the transition from moderate to weak
coupling regime occurs with increasing of electron and hole
concentrations. In the experimental setup [10] the Fermi en-
ergy εF of charge carriers and the gap 2|u| in the spectrum of
individual bilayers are not controlled independently, but with
the same gate (that produces the electric field perpendicular to
bilayers). While the density can be tuned within a wide range,
the ratio |u|/εF ≈ dBG/d ≈ 0.15 is approximately fixed. Here
dBG is the thickness of individual bilayers. This favors the
multiband BCS-like state at strong coupling and extends the
region of the applicability for the phenomenological weak
coupling BCS theory that will be employed below.

B. Phenomenological model in the weak coupling regime

The spectrum sketched in Fig. 2(b) has spin and valley
degeneracy. The spin degrees of freedom simply added a
factor of 2 in the tunneling conductance when the condensed
state preserves spin invariance and do not need to be treated
explicitly. The low energy states in bilayer graphene are

concentrated around two inequivalent valleys K (v = 1) and
K ′ (v = −1) situated at the corners of the first Brillouin zone
and are described by the two-band Hamiltonian [53]

H0 =
∑

p

[ψ̂+
tp (ĥtp − μt )ψ̂tp + ψ̂+

bp(ĥbp + μb)ψ̂bp], (1)

where ψ̂p = {ψ1p, ψ2p} is a spinor of annihilation operators
for electrons in both layers [top (t) and bottom (b)] with
sublattice indexes σ = 1, 2, that are numerated according to
the sketch in Fig. 2(a). We assume that there is a deficit
of electrons in the bottom layer, but it is instructive not to
perform the transformation to field operators of holes. μt =
εF + h and μb = εF − h characterize the electric potentials in
the top and bottom bilayers. Here εF is the average of the
electron and hole Fermi energies at neutrality, while 2h � εF

is their difference. The matrices ĥtp and ĥbp are

ĥtp =
(

u
p2

v̄t
2m

p2
vt

2m −u

)
, ĥbp =

(
−u

p2
vb

2m
p2

v̄b
2m u

)
. (2)

Here v = ±1 and v̄ = ∓1 are valley indexes, m is the electron
mass, and pv = px + ivpy. The electric field perpendicular
to bilayers opens a gap 2|u| separating conduction εcp =
εp and valence εvp = −εp bands in each bilayer with εp =√

u2 + (p2/2m)2. In the weak coupling regime the pairing
correlations appear in the vicinity of Fermi lines for electrons
and holes, and the presence of remote bands (valence band in
the layer with excess of electrons and conduction band in the
layer with excess of holes) can be neglected. In this regime
only the conduction band of the top bilayer and the valence
band of the bottom bilayer are relevant, and the corresponding
spinor wave functions are

|tcp〉 =
(

cp e−ivtφp

sp eivtφp

)
, |bvp〉 =

(
cpeivbφp

−spe−ivbφp

)
. (3)

Here φp is the polar angle; cp = cos(ϑp/2) and sp =
sin(ϑp/2) with cos(ϑp) = u/εp. The spinors have valley-
dependent chirality ±vt(b)φp that defines a sublattice structure
of fluctuating electron-hole Cooper pairs as will be shown be-
low. We introduce disorder with the help of phenomenological
scattering rates γt(b). It is important in this theory to observe
that because the electron and hole components of the Cooper
pair are spatially separated and have opposite charges, both
short- and long-range Coulomb disorder lead to pair-breaking
[3,4].

In experiment [10] the relative angle θ between graphene
bilayers can be adjusted. Since valleys K and K ′ reside at
the corners of the first Brillouin zone, the valley momenta in
the two layers do not match in the presence of a twist. For
momentum-conserving tunneling, the current is maximized
when the layers are aligned (θ = 0) or twisted by θ = nπ/3.
For even n, valley K (K′) in one layer is aligned with valley
K (K′) in the other layer, whereas for n odd valley K (K′)
in one layer is aligned with valley K′ (K) in the other layer.
When states are labeled by their momenta relative to the
Brillouin-zone corners, the tunneling Hamiltonian for θ close
to nπ/3 is

Ht = T + + T =
∑

p

[ψ̂+
bp t̂+ ψ̂tp+Q + ψ̂+

tp+Qt̂ ψ̂bp]. (4)
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Here Q = Qθ + QB is the momentum splitting between val-
leys in the different layers. The twist contribution at small
relative angle θ � 1 can be approximated as Qθ = −[qK ×
ez]θ where qK is the momentum for the Brillouin-zone corner
in bilayer graphene. It has opposite directions for valleys K
and K′, and its magnitude is qK = 4π h̄/3a0 with a0 the cor-
responding Bravais lattice period. The contribution induced
by an in-plane magnetic field B|| is the same for two valleys
and is equal to QB = ed[B|| × ez]/h̄c. Because each bilayer is
represented by a two-band model, the matrix t̂ has four matrix
elements, which we treat in a phenomenological way below,
with the expectation that since t22 corresponds to the tunnel-
ing between adjacent sublayers whereas t11 to the tunneling
between remote sublayers, |t11| � |t12| ≈ |t21| � |t22|.

III. FLUCTUATING COOPER PAIRS

A. The Cooper instability

Due to Coulomb interactions between electrons and holes,
the double bilayer system is unstable towards Cooper pairing.
Here we omit repulsive interactions within each graphene
bilayer since its main effect in the considered weak coupling
regime is a simple renormalization of the quasiparticle spec-
tra. The interbilayer attraction is

Hint =
∑
pp′q

∑
σtσb

Uqψ
+
t,p+q,σt

ψ+
b,p′−q,σb

ψbp′σbψtpσt , (5)

where Uq is the screened Coulomb potential estimated in our
previous work [14–16]. Below we employ a multipole decom-
position of the interaction and set the momenta magnitudes

to the Fermi momentum so that Uq reduces to a constant Ul

for each orbital angular momentum channel l . The set of Ul

parameters are also treated as phenomenological parameters
with the expectation that the s-wave moment Us ≡ U0 is
largest. Since valleys are well separated in momentum space
we neglect intervalley scattering for electrons and holes.

The instability of a double layer system towards electron-
hole Cooper pairing is signaled by divergence of the electron-
hole channel scattering vertex �

σ ′
t σt

σ ′
bσb

(ω, p′, p, q) at zero fre-
quency ω. Note that in our approximation scattering conserves
valley indices for electrons (vt) and holes (vb). The � vertex
satisfies the Bethe-Saltpeter equation presented in Fig. 3(a)
and is algebraic within the multipole approximation. It is
instructive to combine σt and σb into a single index |σtσb〉
that varies between 1 and 4 as |1〉 = |11〉, |2〉 = |12〉, |3〉 =
|21〉, and |4〉 = |22〉. With this definition the Bethe-Saltpeter
equation can be written (see Appendix A for details) in a
compact matrix form:

�̂l ′l = Ul δl ′l +
∑

l ′′
Ul ′ M̂l ′−l ′′ ��̂l ′′l , (6)

where momentum and frequency dependence are suppressed,
l (l ′) is the orbital momentum for the relative motion of two
particles before (after) scattering, and �̂l ′l is the corresponding
scattering matrix. We have separated a factor of �(ω, q)
which also appears as the single-step pair propagator in the
Cooper ladder sum of a bilayer system without sublattice
degrees of freedom:

�(ω, q) = NF

⎛
⎝ln

[ εc

2πT

]
− 1

2

∑
ζ=±

〈
�

{
1

2
+ i[ω + ζ (h + vFq cos φp)] + γ

4πT

}〉
φp

⎞
⎠, (7)

where εc is an energy cutoff that is required for momentum-independent interactions. The average 〈· · ·〉φp is calculated respect to
a polar angle φp. �(x) is the logarithmic derivative of the � function (or the digamma function), while ζ = ±1 is the summation
index. γ = γt + γb is the pair-breaking rate, which is the sum of the scattering rates for electrons γt and holes γb. The expression
for �(ω, q) in Eq. (7) is well known [43,44] from previous work on systems without layer degrees of freedom. The chiral nature
of the bilayer graphene charge carriers is captured by the nontrivial matrix form factor M̂l in the Bethe-Salpheter Eq. (6). The
matrix form factor M̂l is defined as the multipole moment of the two-particle matrix element

M̂σ ′
t ,σt

σ ′
b,σb

(φp) =
〈
σ ′

t |tcp + q
2

〉〈
tcp + q

2
|σt

〉〈
σb|bvp − q

2

〉〈
bvp − q

2
|σ ′

b

〉
. (8)

Corrections to the form factor M̂l due to finite Cooper pair momentum q, |�M| = q2|u|/4p2
FεF, are negligible in the weak

coupling regime since q � pF. As a result, the matrix (8) can be approximated as

M̂(φp) =

⎛
⎜⎜⎝

c4 −c3se−2ivbφp c3se−2ivtφp −c2s2e−2i(vt+vb )φp

−c3se2ivbφp c2s2 −c2s2e2i(vb−vt )φp cs3e−2ivtφp

c3se2ivtφp −c2s2e2i(vt−vb )φp c2s2 −cs3e−2ivbφp

−c2s2e2i(vt+vb )φp cs3e2ivtφp −cs3e2ivbφp s4

⎞
⎟⎟⎠. (9)

Here the coefficient c and s correspond to the coherence
factors cp and sp in (3) evaluated at the average Fermi energy
εF for electrons and holes and are given by

c2 = 1

2

(
1 + u

εF

)
, s2 = 1

2

(
1 − u

εF

)
. (10)

The matrix form factor (9) shapes the sublattice structure
of fluctuating electron-hole Cooper pairs in double bilayer
graphene. Note that it couples scattering channels �̂l ′l with
different orbital momenta. Importantly, M̂l has only even har-
monics l = 0,±2,±4, which forbid scattering between states
with even and odd orbital momenta. For isotropic Coulomb
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(a)

Γ = + Γ

(b) (c)

T T+ T T+

(d)

T = T + T

FIG. 3. (a) Bethe-Saltpeter equation in the electron-hole chan-
nel. Divergence of the many-body vertex �(ω = 0, Q0) signals the
double bilayer electron-hole pairing instability with a momentum
Q0. (b) The noninteracting tunneling response function χ0(ω, q)
introduced in Eq. (18). (c) The tunneling response function χ (ω, q)
with the renormalized vertex t ′ that captures the effect of fluctuating
Cooper pairs. (d) Renormalization of t ′ that illustrates Eq. (21).

interactions, the s-wave moment Us is expected to be largest. It
is instructive to start by neglecting all other moments. In that
case only �̂00 is nonzero. The latter depends on the s-wave
moment of the form factor M̂0, which has a different form for
intravalley and intervalley Cooper pairs. We discuss these two
cases separately below.

B. Intravalley Cooper pairs

For intravalley (vt = 1 and vb = 1) electron-hole Cooper
pairs the s-wave moment of the form factor M̂0 = 〈M̂(φp)〉φp

is given by

M̂0 =

⎛
⎜⎜⎝

c4 0 0 0
0 c2s2 −c2s2 0
0 −c2s2 c2s2 0
0 0 0 s4

⎞
⎟⎟⎠. (11)

The scattering problem decouples into the three channels
identified in Ref. [21], and the corresponding scattering vertex
is given by

�̂00

Us
=

⎛
⎜⎜⎜⎜⎝

1
L11

0 0 0

0 1−c2s2Us�
L12-21

−c2s2Us�
L12-21

0

0 −c2s2Us�
L12-21

1−c2s2Us�
L12-21

0

0 0 0 1
L22

⎞
⎟⎟⎟⎟⎠, (12)

TABLE I. Coupling constants λα for intravalley Cooper pairs.

Channel, α s-wave, λs d-wave, λd

11 c4NFUs 2c2c2NFUd

22 s4NFUs 2c2c2NFUd

12-21 2s2c2NFUs (c4 + s4)NFUd

FIG. 4. Dependence of the s-wave coupling constants λs
α for

different pairing channels on the displacement field parameter u.
For intravalley (a) Cooper pairs a competition between channels is
possible, but in the considered regime |u| � εF the mixed one 12-21
dominates. For intervalley Cooper pairs (b) the hierarchy between
channels does not depend on ratio between |u| and εF, and the mixed
channel 11-22 is the dominant one.

where Lα = 1 − λs
α�/NF is a dimensionless inverse Cooper

propagator for channel α and λs
α is the corresponding cou-

pling constant specified in Table I. Lα vanishes at the critical
temperature Tα for the electron-hole pairing instability in
channel α.

In the absence of disorder and electron-hole density
imbalances, the critical temperatures are given by T̄α =
2eC� exp[−1/λs

α]/π , where C = 0.577 is the Euler constant.
Although the coupling constant values λα can be fine-tuned
by the displacement field, as is presented in Fig. 4(a), their
hierarchy is universal for the case |u| � εF. The coupling
constant λs

12-21 ≈ 1/2 is almost twice as large as the constants
λs

11(22) ≈ 1/4, ensuring domination of the mixed channel
12-21. Physically the presence of two sub lattice combinations
(|12〉 and |21〉) doubles the number of states that take part in
the Cooper pairing.

C. Intervalley Cooper pairs

For intervalley (vt = 1 and vb = −1) electron-hole Cooper
pairs the s-wave moment of the form factor M̂0 = 〈M̂(φp)〉φp

is given by

M̂0 =

⎛
⎜⎜⎝

c4 0 0 −c2s2

0 c2s2 0 0
0 0 c2s2 0

−c2s2 0 0 s4

⎞
⎟⎟⎠. (13)
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TABLE II. Coupling constants λα for intervalley Cooper pairs.

Channel, α s-wave, λs d-wave, λd

12 c2s2NFUs (c4 + s4)NFUd

21 c2s2NFUs (c4 + s4)NFUd

11-22 (c4 + s4)NFUs 2c2s2NFUd

This case also decouples into three independent channels, with
scattering vertex

�̂00

Us
=

⎛
⎜⎜⎜⎜⎝

1−s4Us�
L11-22

0 0 −c2s2Us�
L11-22

0 1
L12

0 0

0 0 1
L21

0
−c2s2Us�

L11-22
0 0 1−c4Us�

L11-22

⎞
⎟⎟⎟⎟⎠. (14)

Interestingly, the sublattice structure of the Cooper pairs and
the corresponding coupling constants are different in intraval-
ley and intervalley cases. The latter are presented in Table II,
and their dependence on displacement field parameter u is
shown in Fig. 4(b). In that case the hierarchy between cou-
pling constants is universal and does not depend on the ratio
between |u| and εF. The mixed channel 11-22 has the highest
critical temperature.

The separation of scattering problem into three channels
is not an artifact of the s-wave truncation, but is main-
tained when higher multipole momenta of interactions Ul are
taken into account. When the d-wave interaction Ud ≡ U±2

is nonzero (s- and p-wave momenta are decoupled, and the
latter is irrelevant) the scattering matrix �l ′l is nonzero for
l = −2, 0, 2. We show below that the only effect of the d-
wave momentum Ud on the tunneling conductance between
graphene bilayers is a renormalization of coupling constants
λα = λs

α + λd
α . The d-wave coupling constants λd

α are summa-
rized in Tables I and II.

D. Disorder and density imbalances

Disorder and electron-hole density imbalances both reduce
the critical temperature T̄0 (index 0 corresponds to the channel
α that has the largest critical temperature of electron-hole
pairing). The latter can stabilize the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) pairing state [5,6,54–57] with finite
Cooper pair momentum Q0. (References [56,57] also outlines
a stabilization of the Sarma phases [58] within the BEC-BCS
crossover. These phases are unstable in the weak-coupling
regime considered here.) The critical temperature T0 and the
instability momentum Q0 for a channel with the highest
critical temperature satisfy the equation L0(0, Q0) = 0, which
can be recast as

ln

[
T0

T̄0

]
+ 1

2

∑
ζ=±

〈
�

[
1

2
+ iζ (h + vFQ0 cos φp) + γ

4πT

]
− �

(
1

2

)〉
φp

= 0. (15)

The dependence of the critical temperature T0 on the pair-
breaking rate γ and the electron-hole imbalance expressed as
a difference in Fermi energies, h, are illustrated in Fig. 5(a).
The electron-hole pair instability is suppressed when the
pair-breaking rate exceeds a critical value γ ≈ 1.78 T̄0. If
the rate does not exceed γ ≈ T0 the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state with finite Cooper pair momentum
Q0 is stabilized by finite imbalance. The dependence of the
instability momentum Q0 is presented in Fig. 5(b). Its mag-
nitude can be approximated by vFQ0 ≈ h, corresponding to
the difference between the Fermi momenta for electrons and
holes.

E. Coherence time and length of fluctuating Cooper pairs

In the absence of electron-hole imbalance, the Cooper
propagator L−1

0 of the dominating channel at small frequen-
cies and momenta simplifies to

L−1
0 (ω, q) = 1

λ0NF

1

iωτ − εq
, εq = ε + ξ 2q2

h̄2 , (16)

where ε = ln [T/T0] is the energy scale that is required to
create a uniform fluctuating Cooper pair. It vanishes at the
critical temperature T0 and is linear, ε ≈ �T/T0, in its vicinity
�T ≈ T0. Here �T = T − T0. τ and ξ are characteristic time

and spatial scales for Cooper pairs, which are given by

τ = h̄� ′( 1
2 + γ

4πT

)
4πT

, ξ = h̄vF |� ′′( 1
2 + γ

4πT

)| 1
2

8πT
. (17)

They are connected to the coherence time and length of
Cooper pairs by τ ∗ = τ/2ε and ξ ∗ = ξ/

√
ε, which diverge

at the critical temperature for electron-hole condensation T0.
The Cooper propagator (16) has its only pole on the imaginary
frequency axis at ωq = −i/2τ ∗

q with τ ∗
q = τ/2εq, reflecting

the dissipative nature of Cooper pairs dynamics. Due to the
presence of a finite temporal coherence time τ ∗, fluctuating
Cooper pairs do not provide a dissipationless Josephson cur-
rent but do strongly enhance the tunneling conductance at zero
voltage bias.

IV. TUNNELING CONDUCTIVITY

A. Linear response theory for the tunneling conductance

When interlayer tunneling amplitudes are treated in leading
order of perturbation theory, the interbilayer tunneling con-
ductance at finite voltage bias V is [59–61]

GT(V ) = 8Ae2

h̄

Im[χ (eV, Q)]

eV
. (18)

Equation (18) accounts for the fourfold degeneracy due to the
presence of valley and spin degrees of freedom, and A is the
sample area. Here χ (�) is the retarded correlation function
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FIG. 5. Dependence of the critical temperature T0 (a) and the
instability momentum of Cooper pairs Q0 on the pair-breaking rate
γ and electron-hole imbalance, parameterized by the difference
between electron and hole Fermi energies 2h. When disorder is
weak γ � T0 the imbalance can stabilize the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state with the finite Cooper pair momentum.

corresponding to the imaginary-time ordered correlation func-
tion constructed from tunneling operators:

χ (τ, q) = −〈TMT (τ, q)T +(0, q)〉. (19)

χ (ω, q) can be constructed from χ (τ, q) by the usual Fourier
transform and analytical continuation steps. Without Coulomb
interactions between electrons and holes the response function
χ (ω, q) corresponds to the single electron-hole loop diagram
depicted in Fig. 3(b) and is given by

χ0(ω, q) = t̂+M̂0 � t̂, (20)

where t̂ = {t11, t12, t21, t22} is the vector of tunneling matrix
elements in the compact representation, and � ≡ �(ω, q) is
a single step pair propagator in the Cooper ladder defined in
Eq. (7). In the presence of Coulomb interactions, the single-
particle Green functions and the tunneling vertex need to be
renormalized. The renormalization of Green functions results
in a dip of the density of states at the Fermi level [42],
which does not produce any singularities in the tunneling
conductivity and thus is unimportant and can be neglected.
The renormalized tunneling vertex t̂ → t̂ ′ ≡ t̂ ′(ω, q) diverges
at the critical temperature T0 and is responsible for the drastic
enhancement of the tunneling conductivity in its vicinity. The
renormalization of tunneling vertex is presented in Fig. 3(d),
and the corresponding equation for t̂ ′ can be written as

t̂ ′
l = t δl0 +

∑
l ′

Ul M̂l−l ′ � t̂ ′
l ′ . (21)

The matrix form factor M̂ couples even orbital channels, and
we neglect all multipole moments except for s and d . (The
p-wave multipole moment is decoupled from the s-wave one
and is irrelevant.) Since the form factors M̂ are different for

intravalley and intervalley Cooper pairs, we again consider
these two cases separately.

B. Intravalley tunneling

Without Coulomb interactions between electrons and holes
the response function χ (ω, q) is a sum of three noninterfer-
ing terms that correspond to three channels α introduced in
Sec. III and identified in Ref. [21]:

χ0 = (c4|t11|2 + s4|t22|2 + |t12 − t21|2c2s2) �. (22)

The three channels are not coupled by Coulomb interactions
and the response function χ (ω, q) is given by

χ =
(

c4|t11|2
L11

+ s4|t22|2
L22

+ |t12 − t21|2c2s2

L12-21

)
�, (23)

where Lα is the inverse Cooper propagator for each channel
and λα = λs

α + λd
α is the corresponding coupling constant.

Importantly the only role of the d-wave interaction moment
is the renormalization the coupling constant λα .

C. Intervalley tunneling

When opposite valleys are aligned by a twist angle between
bilayers close to θ = π/3, the response function χ (ω, q) for
noninteracting electrons and holes is

χ0 = (
c2s2|t12|2 + c2s2|t21|2 + |c2t11 − s2t22|2

)
�. (24)

It again is a sum of three noninterfering terms that correspond
to three channels α. Coulomb interactions do not couple the
channels, and the response function χ (ω, q) is given by

χ =
(

c2s2|t12|2
L12

+ c2s2|t21|2
L21

+ |c2t11 − s2t22|2
L11-22

)
�. (25)

Each channel acquires its own Cooper propagator Lα with the
coupling constant λα = λs

α + λd
α .

D. Tunneling conductance

Due to the remarkable conservation of momentum for
electron tunneling, the conductance GT is observable only if
graphene bilayers are aligned with twist angle θ = 0 or θ =
π/3. In the former case the tunneling is intravalley, while in
the latter case it is intervalley. Therefore we refer to the cases
θ = 0 and θ = π/3 as to intravalley and intervalley align-
ments, respectively. As we explain below, there are important
differences in the enhancement of tunneling conductance by
fluctuating the Cooper pair in these two cases.

Within the model of noninteracting electrons and holes
the tunneling conductance is dominated by tunneling between
adjacent sublayers t22 and can be approximated (for both for
both intra- and intervalley alignments) as

G0
T = 8Ae2

h̄

s4|t22|2Im[�(eV, Q)]

eV
. (26)

In the presence of interactions, the enhancement of tunneling
conductance by fluctuating Cooper pairs works very differ-
ently for intra- and intervalley alignments. The reason is a
drastic difference in the sublattice structure for the pairing
correlations.
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For intravalley fluctuating Cooper pairs, the dominating
channel 12-21 does not involve pairing correlations at ad-
jacent sublayers. As result, the corresponding contribution
of the channel 12-21 is weaker than that of 22, since the
latter involves tunneling between adjacent sublayers, except
in the vicinity of the critical temperature T0. The tunneling
conductance is governed by the competition of two channels
and can be approximated as

GT = 8Ae2

h̄

(
s4|t22|2
|L22|2 +|t12−t21|2c2s2

|L12-21|2
)

Im[�(eV, Q)]

eV
. (27)

As we explain in the next section, the competition between
channels is essential for the explanation of the experimental
data [10], which in our interpretation strongly depend on
mutual orientation of graphene bilayers.

For the intervalley alignment, the dominant channel for
fluctuating Cooper pairs involves pairing correlations at ad-
jacent sublayers. As a result, the tunneling conductance can
be well approximated by a single term corresponding to the
channel 11-22 and is given by

GT = 8Ae2

h̄

s4|t22|2
|L11-22|2

Im[�(eV, Q)]

eV
. (28)

The intervalley alignment case has not been studied experi-
mentally yet, but according to our theory it is most favorable
for observations of the fluctuational internal Josephson effect.

E. Critical behavior of tunneling conductance

At matched concentrations of electrons and holes the volt-
age dependence of tunneling conductance GT in the vicinity of
the critical temperature T0 acquires a Lorentzian shape which
is governed by the factor

F (eV, Q) = Im[�]

eV |L0|2 = τ

(eV τ )2 + ε2
Q

, (29)

where εQ = ε + ξ 2Q2/h̄2 and ε = ln(T/T0) can be inter-
preted as an energy of fluctuating Cooper pairs. In the absence
of a valley splitting Q = 0, the amplitude of the peak has a
long high-temperature tail F (0, 0) = τ/ ln2[T/T0]. It diverges
near the critical temperature T0 as a function of �T = T − T0

in the critical manner as F (0, 0) ≈ τT 2
0 /�T 2 with an index 2.

Its width at half maximum eVHM = 1/τ ∗ = 2�T/T0τ is equal
to the inverse coherence time τ ∗ of fluctuating Cooper pairs
and vanishes linearly at T0. In the presence of a valley splitting
that can be induced by in-plane magnetic field or relative
twist, fluctuating Cooper pairs with finite momentum Q are
probed in tunneling experiments. Temperature dependence of
the peak width is modified as eVHM = [1 + (ξ ∗Q)2]/τ ∗. It has
a universal form as a function of coherence time τ∗ = 2τ/ε

and length ξ ∗ = ξ/
√

ε for fluctuating Cooper pairs, that allow
one to extract them from the experimental data in the presence
of an in-plane magnetic field.

For the case of the intervalley alignment (θ = π/3), the
temperature dependence of the tunneling conductance (28)
is well approximated by Eq. (29) in a wide temperature
range. For the case of intravalley alignment (θ = 0) channels
12-21 and 22 compete with each other. As a result, tunneling
conductance Eq. (27) cannot be approximated by a simple
analytical expression over as wide of a temperature range. It is

well approximated by the critical behavior given by Eq. (29)
only in the narrow temperature range where the contribution
of the channel 21-21 dominates.

V. COMPARISON WITH EXPERIMENT

In Ref. [10] the twist angle between graphene layers can
in principle be tuned to access the intravalley (θ = 0) and
intervalley (θ = π/3) tunneling cases, although experimental
results for tunneling conductance GT have so far been reported
only for one alignment. A preliminary analysis of the data
suggests that a divergent zero bias peak appears on the top
of a background with a weaker temperature dependence.
This behavior can be explained by the competition between
channels 12-21 and 22. This is not surprising since top and
bottom graphene bilayers originate from the same flake and
are aligned with the twist angle θ = 0. Calculations for the
intravalley alignment are presented below and compared with
the experimental data, and ones for the intervalley one are
presented in Appendix B.

To fit the experimental data, the tunneling conductance GT

has been calculated with the help of Eq. (27). The model has
a large number of fitting parameters. To adjust their values
and compare our results with the experimental data we use
the following strategy, which involves six steps.

(1) The experimental data have already been carefully
analyzed [10] within a model of noninteracting charge car-
riers. In the wide range of concentrations the noninteracting
model explains the tunneling data very well except in the
case of opposite polarity charge carriers with nearly equal
electron and hole densities. Based on the fits to experimen-
tal data away from matched electron and hole densities we
can confidently assign values for the adjacent layer tunnel-
ing amplitude, |t22| = 30 μeV and the disorder-broadening
energies γt(b) = 4 meV. Note that the measured disorder
broadening parameter γt(b) is much larger than T0, where
T0 is the temperature at which the tunneling conductance
appears to diverge experimentally. It is immediately clear
therefore, even before performing a detailed analysis, that
the condensation temperature must be strongly suppressed by
disorder.

(2) The colossal enhancement of the tunneling conduc-
tance has been observed in the wide density range 4 ×
1010−1012 cm−2. The strength of the interactions in the sys-
tem decreases with doping, and we have chosen the elevated
doping level n = 7.4 × 1011 cm−2 because of the detailed
experimental data available in this case. This doping level cor-
responds to the average concentration of electrons and holes
n = (ne + nh )/2, while the electron-hole imbalance �n � n
can be present.

(3) The transport experiments with similar double bilayer
graphene samples and with similar gating geometry have
already been performed [62]. The doping level of charge car-
riers εF and the gap 2|u| in the electronic spectrum of bilayer
graphene are independent and are controlled by the same
gate. At the considered average density n = 7.4 × 1011 cm−2,
the effective mass parameter of bilayer graphene can be ap-
proximated as m ≈ 0.04 m0, while the gap is equal to 2|u| ≈
6.6 meV and is much smaller than the corresponding Fermi
energy εF ≈ 20 meV. It follows that |u|/εF ≈ 0.16, which
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implies sublayer polarization within the bilayers c2 ≈ 0.58
and s2 ≈ 0.42 to be modest.

(4) The bare critical temperature without disorder T̄0 ≈
50 K can be recalculated from the actual critical temperature
at the considered doping level T0 = 1.5 K and the Cooper
pair-breaking rate γ = γt + γb = 8 meV, which has been
chosen above with help of Eq. (15). The system is in the
regime of strong pair breaking T0 � T̄0 ∼ γ , and the value
γ /T0 ≈ 1.74 is very close to the critical value 1.78. Exper-
imentally, singular behavior of the tunneling conductance is
observed only in the cleanest samples.

(5) The bare critical temperature T0 of Cooper pairing in the
weak-coupling regime is given by T̄0 = 2eC� exp[−1/λ0]/π ,
where C = 0.577 is the Euler constant. Here λ0 = λs

0 + λd
0

corresponds to the mixed channel 12-21 that dominates in the
considered regime |u| � εF. Approximating the high energy
cutoff as εc ≈ 2εF and employing the values of T̄0 and εF

chosen above we get λ0 ≈ 0.44. The applicability condition
for the weak-coupling approach λ0 � 1 is not well satisfied,
but this value for λ0 corresponds to moderate coupling regime
λ0 � 1, which justifies the approximations used in our theory.

(6) The relative contribution to the tunneling conductance
GT of channels 12-21 and 22 can be characterized by a
dimensionless parameter r = |t12 − t21|2/|t22|2 that we treat
in the phenomenological way. Along with the sample area A,
r and A are only free parameters of the model that have not
yet been assigned. We adjust them by fitting the measured
temperature dependence for tunneling conductance at zero
voltage bias V = 0 (and also at matched concentrations of
electrons and holes and zero in-plane magnetic field), which
is presented in Fig. 1, with the theory that incorporates the
effect of fluctuating electron-hole Cooper pairs [Eq. (27)]. The
area A can be be obtained by matching the high-temperature
behavior of GT since the contribution of 12-21 in this case
is negligible small, resulting in A ≈ 397 μm2. The value of
r ≈ 7.6 × 10−5 is obtained by fitting the singular behavior
of the tunneling conductance in the vicinity of the critical
temperature. The corresponding theoretical curve is also pre-
sented in Fig. 1 and matches the experimental data reasonably
well over a wide temperature range.

In Fig. 1 we also present calculations within the model
of noninteracting electrons and holes [Eq. (26)]. This model
severely underestimates the tunneling conductance GT in the
case of matched electron and hole concentrations, where inter-
actions are crucial to explain enhanced tunneling conductance
at low temperature and singular behavior in the vicinity of the
critical temperature T0 for Cooper pair condensation.

We will keep all parameters chosen above in further cal-
culations and investigate an impact of finite voltage bias
between bilayers V , electron-hole imbalance �n, and in-plane
magnetic field B at tunneling conductance. We will also
present only results of the theory that incorporates the effect
of fluctuating Cooper pairs.

A comparison between theory and experiment for the
voltage dependence of the tunneling conductance between
graphene bilayers GT is presented in Fig. 6. The zero bias
peaks emerge with a decreasing temperature on a top of a
smooth background that corresponds to the channel 22. The
width of the background eVHM is governed by the single-
particle energy scales 2πT and γ and is approximately equal

FIG. 6. Dependence of the tunneling conductance GT on bias
voltage V at different temperatures T . The concentrations of elec-
trons and holes do match. The solid curves correspond to calcu-
lations, while the dotted lines are experimental data [Fig. S2(b) in
Ref. [10]]. For clarity the curves at adjacent temperatures are offset
by �GT = 12 mS. The theory that incorporates the effect of fluctuat-
ing Cooper pairs [Eq. (27)] reasonably fits temperature dependence
of the peak height but overestimates its width and does not capture
its asymmetry. Possible origins of the asymmetry are discussed in
Sec. VI.

to the largest of them. The width of the zero bias peak in
the vicinity of T0 is much smaller than the single-particle
disorder scale, which demonstrates its collective origin. While
the temperature dependence of peak height is well fit by the
theory, the width dependence is captured only qualitatively
and is overestimated by a factor of 2. The experimental
data also exhibit a voltage asymmetry that becomes more
prominent at low temperatures. Within our phenomenological
model an asymmetrical voltage dependence of the tunneling
conductance can be obtained if the scattering rates of elec-
trons and holes γt(b) that define the Cooper pair-scattering
rate as γ = γt + γb are energy dependent. The simple linear
dependence γ = γ + γ ′ω with a phenomenological param-
eter γ ′ does not capture the observed asymmetry, however.
A quantitative understanding of the asymmetry requires a
microscopic understanding of disorder mechanisms that is
outside the scope of the present work.

The comparison between theory and experiment for the
dependence of the tunneling conductance GT on the electron-
hole imbalance �n and the voltage bias V are summarized in
Fig. 7, and a zero-bias-voltage cut of the comparison made in
this color plot at zero voltage bias is presented in Fig. 8. The
theoretical curves again agree reasonably well with the data. A
density imbalance splits the Fermi lines of the electrons and
holes and disfavors their Cooper pairing. As seen in Fig. 5,
the FFLO state with a finite Cooper pair momentum cannot
be stabilized in the strong pair-breaking regime realized in
the experiment. The critical temperature T0 is maximal for
Cooper pairs with zero Cooper pair momentum and decreases
monotonically in the presence of imbalance and vanishes if
the latter exceeds the critical temperature. As a result, the
dependence of tunneling conductance on imbalance �n and
the in-plane magnetic filed B that is presented in Fig. 9 is
smooth and featureless. Figure 9 presents theoretical curves
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FIG. 7. Dependence of the tunneling conductance GT on volt-
age bias V and electron-hole density imbalance �n. Their average
density n = (ne + nh )/2 = 7.4 × 1011 cm−2 is fixed, and the tem-
perature is 3.5 K. The top subplot (a) corresponds to experiment
[Fig. 5(c) in Ref. [10]], and the bottom one (b) to theory. The cut
of this plot at zero voltage bias V = 0 is presented as Fig. 8.

since the experimental data for magnetic field and density-
balance dependence at this temperature are not yet available.
The theory qualitatively explains the decrease of peak height
with a magnetic field studied experimentally at lower temper-
atures T0 ≈ 1.5 K but considerably overestimates its effect. In
this case the system is in the paired state whose behavior lies
outside the range of validity of the present theory. Other less
fundamental limitations might also explain this discrepancy as
we discuss in more detail in the next section. We conclude that
our theory of the fluctuational internal Josephson effect, com-
bined with specific features of the multiple-channel structure
of pairing in double bilayer graphene provides a reasonable
overall description of experiment.

VI. DISCUSSION

Our theory of the internal fluctuational Josephson effect
does not account for interactions between fluctuating Cooper
pairs. The Gaussian nature of the theory we employ is more
clearly seen within an alternate derivation of the tunneling
conductance. The latter employs the auxiliary field approach
and is presented in Appendix C. Interactions between fluc-
tuating pairs can be safely omitted in the wide range of
temperatures �T ∼ T0 and are important only in the crit-
ical region �TGi � Gi T0 where fluctuations are large and
strongly interfere with each other. Here Gi = T0/EF is the
Ginzburg number calculated in Appendix D. The double

FIG. 8. The dependence of tunneling conductance GT at zero
voltage bias V = 0 on the electron-hole density imbalance �n. Their
average density n = (ne + nh )/2 = 7.4 × 1011 cm−2 is fixed, and the
temperature is 3.5 K. The solid curve is theory, and the dotted curve
is experimental data extracted from the V = 0 line from Fig. 5(c) in
Ref. [10]. The theory captures the curve profile reasonably well but
does not capture the asymmetry. Possible origins of the asymmetry
are discussed in Sec. VI.

bilayer graphene system studied experimentally [10] is close
to the weak coupling regime, and the critical region �TGi =
T 2

0 /EF ≈ 10 mK is much smaller than the temperature range
�T ≈ 4 K where the tunneling conductance is strongly en-
hanced. The picture of noninteracting fluctuating Cooper pairs
is therefore well justified to address the basic phenomena
identified in experiment.

Fluctuating Cooper pairs in conventional superconductors
alter the thermodynamics of the normal state only in the
critical region �TGi. The conductivity and the magnetic sus-
ceptibility [43] not only aresingular at the critical tempera-
ture, however, but have long high-temperature tails [45]. The
high-temperature tail for the diamagnetic susceptibility χ ∼
χL/ ln2[T/T0], where χL is the Landau diamagnetic suscepti-
bility in the normal state, was predicted [63–65] theoretically
and observed in experiments [45]. The reason is the paired
state is superconducting and mediates the perfect diamag-
netism that makes even a small number of fluctuating Cooper
pairs important. Similarly the equilibrium-paired state of spa-
tially separated electrons and holes provides a fluctuational in-
ternal Josephson effect that colossally enhances the interlayer
tunneling. That is why even a small density of fluctuating
Cooper pairs can make a strong impact on the tunneling
conductance above the critical temperature T0 which also has
the high-temperature tail proportional to 1/ ln2[T/T0], which
is clearly seen in Fig. 1.

In the vicinity of the critical temperature T0 zero bias
peak shape is universal and governed by the factor F (eV, Q)
given by Eq. (29). It can be rewritten as F (eV, Q) =
Im[L−1

0 (eV, Q)]/eV . Thus an imaginary part of the Cooper
propagator L−1

0 (eV, Q), which can be interpreted as Cooper
pair susceptibility [66], is directly probed in tunneling experi-
ments [67]. It should be noted that Cooper pair susceptibility
of a superconductor can also be probed in tunneling Josephson
junction in which one side is near its critical temperature while
the other is well below its critical temperature [68,69]. The
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FIG. 9. Theoretical dependence of tunneling conductance GT

on in-plane magnetic B and electron-hole density imbalance �n.
Their average density n = (ne + nh )/2 = 7.4 × 1011 cm−2 is fixed
and the temperature is 3.5 K. The dependence of GT is smooth and
featureless, which demonstrates for the set of parameters used for
fitting (the regime of strong pair breaking γ � T0) the FFLO state
with finite Cooper pair momentum is not stabilized by the density
imbalance �n.

junction does not support dissipationless Josephson tunneling
current, but the tunneling current at finite voltage is strongly
enhanced by fluctuating Cooper pairs that grow in the vicinity
of T0. The latter has been observed experimentally [70,71].

Only the enhancement of intravalley tunneling that cor-
responds to the alignment (θ = 0) has been reported so far.
In this case the instability happens in one channel, while the
main contribution to the tunneling conductance comes form
the different one. As a result the divergent contribution to the
conductance due to fluctuating Cooper pairs appears on the
top of background with weak temperature dependence that
dominates at higher temperatures. We predict an enhancement
of intervalley tunneling (θ = π/3) to be much more profound
because Cooper pairs in the dominating pairing channel in-
volve electrons and holes settled at adjacent sublayers. We
present calculations for this case in Appendix B.

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with
finite Cooper pair momentum was predicted in conventional
superconductors more than 60 years ago [54,55]. It requires
the splitting of Fermi surfaces/lines for pairing electrons with
opposite spins. The splitting can be induced by a magnetic
field provided that its paramagnetic effect is larger than its dia-
magnetic one (Chandrasekhar-Clogston limit [72,73]). This
condition is rarely satisfied even in layered conventional su-
perconductors subjected to an in-plane magnetic field. There
are few observations in heavy-fermion and organic supercon-
ductors where FFLO state signatures have been claimed but
are still debated. (See Ref. [74] and Refs. [75,76] for reviews
of progress in solid state and cold atom systems.) So far the
FFLO state has not been unambiguously identified. In double
bilayer graphene the densities of electrons and holes can be
controlled separately in a way that opens the FFLO state up
for experimental study in a condensed matter system [5,6].
The FFLO can be unambiguously identified if it appears from
the dependence of the zero-bias peak on imbalance and an in-
plane magnetic field, since the latter makes it possible to probe
Cooper pairs with finite momentum. In the vicinity of the in-

stability to the uniform paired state, the tunneling conductance
monotonically decreases with the in-plane magnetic field (as
presented in Fig. 9). In the vicinity of an instability to the
FFLO state the tunneling conductance achieves a maximum
at finite field-induced momentum shift QB = Q0 where Q0

is the corresponding momentum of Cooper pairs. We discuss
how to distinguish these states in more detail in Appendix B,
where calculations for the intervalley tunneling are presented.

The sensitivity of Cooper pairing to a disorder opens the
possibility of a granular electron-hole state in the presence
of its strong long-range variations. In this state the pairing
happens in disconnected or weakly coupled regions with a
minimal amount of disorder and does not support the spatial
coherence. It makes the transport properties of the system
including Coulomb drag effect to be different from ones in the
uniform paired state. A tunneling conductance in the granular
state is still colossally enhanced since the latter requires
temporal coherence of Cooper pairs but not the spatial one.

The interpretation of experiment provided by our the-
ory suggested that the pairing critical temperature would be
substantial if samples with weaker disorder could be fab-
ricated. This finding is perhaps a bit surprising since the
experiments are for the most part conducted in the weak
to moderate coupling regime (rs = 0.72–3.3) where some
researchers have argued that critical temperatures should be
strongly suppressed by screening, especially accounting for
spin and valley degeneracy [17,77] (see also arguments that
this approach considerably underestimates the critical tem-
perature [15,16,19,20]). Our theory also suggests that high
pairing temperatures should be achievable in double single-
layer graphene systems, since there is nothing in its structure
that puts single layers at a disadvantage relative to bilayer.
Moreover, for the linear spectrum in monolayer graphene the
Wigner-Seitz radius is defined in a different way, rs = 2.19/κ ,
and could achieve even larger value rs = 1.1 if hBN is used as
a spacer between graphene sheets. Here κ is the corresponding
dielectric constant. Future experimental work which seeks to
weaken pair breaking by disorder and which explores double
single-layer graphene systems as well is therefore important.

In summary, the theory of the fluctuational internal
Josephson effect developed here explains the anomalies
in the tunneling conductance between graphene bilayers
observed experimentally at equal electron and hole densities,
including their dependence on temperature, bias voltage
bias, and electron-hole imbalance. Some aspects of the
observations are nevertheless not understood. First, the
observed dependence of the tunneling conductance on bias
voltage has an asymmetry between positive and negative bias
that becomes more prominent with decreasing temperature.
At first glance the asymmetry is unexpected and surprising
since the electronic spectrum of two graphene bilayers with
matched concentrations of electrons and holes is symmetric,
as is clearly seen in Fig. 2. The symmetry can be broken by
Coulomb impurities if most of them are of the same charge.
For example, positive charges (ionized donors) provide repul-
sive scattering for holes and attractive scattering for electrons.
Our model takes the scattering rates for electrons and holes
γt(b) to be momentum and energy independent and ignores
these common complications. An asymmetry can be intro-
duced in a phenomenological way by making the assumption
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that the Cooper pair-breaking time is energy dependent
γ (ω). Approximating it by a linear function does predict an
asymmetry of the tunneling conductance that grows with de-
creasing temperature, but the shape of the experimental curves
is not captured by this simple ansatz. To clarify whether or
not the observed asymmetry can be explained by the presence
of charge impurities, a more microscopic description of their
scattering characteristics is needed, and this is outside of the
scope of the present work. Second, it is not clear whether
or not our theory can capture the dependence of tunneling
conductance on magnetic field since more experimental data
are needed. Comparison with data obtained at T ≈ 1.5 K
suggests that the theory considerably overestimates the effect
of a magnetic field. Nevertheless, at such temperatures the
system is in the paired state or in the critical regime, which
is outside of the applicability range of the theory of Gaussian
fluctuations. This discrepancy can be due to other reasons.
Bilayer graphene along with other two-dimensional systems
have long-range density variations, and if the corresponding
length is smaller than h̄/QB, the effect of the magnetic cannot
be reduced just to the relative shift of dispersion for electrons
from different layers. To better understand capabilities of the
theory more experimental data are needed.

To conclude, we have developed a theory of the fluctua-
tional internal Josephson effect in the system of two closely
spaced graphene bilayers. The presence of valley and sublat-
tice degrees of freedom provides three competing electron-
hole channels for both intravalley and intervalley Cooper

pairs. We show that three channels are nearly independent
and have different critical temperatures of the condensation
and sublattice structures. The observed enhancement of the
tunneling conductance can be explained only by the presence
of competing channels that dominate in different temperature
ranges. The theory reasonably captures the dependence of
the conductance on temperature, voltage bias between bi-
layers, and electron-hole imbalance. We also argue that the
enhancement is much stronger for intervalley tunneling than
for the intravalley one that has been reported recently. We also
discuss how to distinguish the uniform state and the FFLO
state with finite Cooper pair momentum that can be stabilized
in the system by an electron-hole imbalance.

ACKNOWLEDGMENTS

This work was supported by the Army Research Office un-
der award W911NF-17-1-0312, by ARO MURI 3004628717,
and by the Welch Foundation under Grant No. F-1473. D.K.E.
acknowledges support from the Australian Research Council
Centre of Excellence in Future Low-Energy Electronics Tech-
nologies (FLEET).

APPENDIX A: BETHE-SALPETHER EQUATION

Here we present a detailed derivation of Eq. (6). The Bethe-
Saltpeter equation that is illustrated in Fig. 3 can be written as

�
σ ′

t σt

σ ′
bσb

(ipn, p′, p) = Up′−pδ
σ ′

t σt

σ ′
bσb

+ T
∑
iωnp′′

Up′−p′′Gt
σ ′

t σ
′′
t
(ipn + iωn, p′′

+)Gb
σ ′′

b σ ′
b
(iωn, p′′

−)�σ ′′
t σt

σ ′′
b σb

(ipn, p′′, p). (A1)

Here p± = p ± q/2; ωn = (2n + 1)π/T and pn = 2nπ/T are fermionic and bosonic Matsubara frequencies, respectively. The
electron Green function Ĝt(b)(ıωn, p) in the sublattice space can be presented as

Gt
σ ′σ (iω̄t

n, p) = 〈σ ′|tcp〉〈tcp|σ 〉
iωn − εcp + iγtsgn[ωn]

, Gb
σ ′σ (iωn, p) = 〈σ ′|bvp〉〈bvp|σ 〉

iωn − εvp + iγbsgn[ωn]
, (A2)

where γt(b) are scattering rates for electrons (holes). We have also neglected the presence of the valence band in the layer with
excess of electrons and the presence of the conduction band in the layer with the excess of holes. The product of Green functions
that appears in (A1) can be written with as

Gt
σ ′

t σ
′′
t
(ipn + iωn, p+)Gb

σ ′′
b σ ′

b
(iωn, p−) = Mσ ′

t σ
′′
t

σ ′
bσ

′′
b

(p′′)C(ipn, q, iωn, p),

where the matrix form factor

Mσ ′
t σ

′′
t

σ ′
bσ

′′
b

(p) = 〈σ ′
t |tcp+〉〈tcp+|σ ′′

t 〉〈σ ′′
b |tvp−〉〈bvp−|σ ′

b〉
reflects the chiral nature of charge carriers in bilayer graphene, while C(ipn, q, iωn, p) contains information only about the
energy spectrum for electrons and holes and is given by

C(ipn, q, iωn, p) = 1

(iωn + ipn − εcp+ + iγtsgn[ωn + pn])(iωn − εvp− + iγbsgn[ωn])
. (A3)

In the weak coupling regime that we consider in the paper,
pairing correlations do appear in the vicinity of Fermi lines for
electrons and holes. As a result the vertex �̂(ipn, φp′ , φp), the
Fourier transform of interactions U (φp′ − φp), and the form
factor M̂(φp) can be safely approximated by their values at the
Fermi level (|p| = pF and |p′| = pF) and depend only on the

corresponding polar angles (φp and φp′). After decomposition
over multipole momenta �̂l ′,l , Ul , and M̂l Eq. (A1) becomes
algebraic and can be presented in a compact form

�̂l ′l = Ul ′δl ′l 1̂ +
∑
l1l2

Ul ′Ml ′−l1−l2�l2 (ipn, q)�̂l2,l , (A4)
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where �l (ipn, q) is given by

�l (ipn, q) = T
∑
iωn,p

e−ilφpC(ipn, q, iωn, p).

Its s-wave component �0(ipn, q) ≡ �(ipn, q) has the ultra-
violet logarithmic divergence that is usually present in the
weak coupling pairing theories and coincides with the single-
step pair propagator in the Cooper ladder sum of a bilayer
system without sublattice degrees of freedom. Its detailed
derivation can be found in textbooks [43,44], and its explicit
expression is presented in the main part as Eq. (7). Therefor
all information about the chiral nature of the bilayer graphene
charge carriers is hidden in the nontrivial matrix form factor
M̂l . At finite l the value �l (ipn, q) is nonzero only at finite
Cooper pair momentum and is much smaller than �0(ipn, q)
and can be neglected. As a result, Eq. (A4) reduces to Eq. (6).

APPENDIX B: INTERVALLEY ALIGNMENT AND
IDENTIFICATION OF THE FFLO STATE

In the main text calculations for intravalley tunneling (θ =
0) are discussed, while ones for the intervalley alignment (θ =
π/3) are presented here. The tunneling conductance is dom-
inated by the channel 11-22 because of fluctuating Cooper
pairs in the dominating channel involve correlations at adja-
cent sublayers. The tunneling conductance can be approxi-
mated as Eq. (28). We use the same set of parameters that have
been used above to fit the experimental data except for pair-
breaking rate γ . For the latter we use γ = 2, 4, and 8 meV.
The first two values correspond to cleaner samples com-
pared to ones that have been studied experimentally [10].
The temperature dependence of tunneling conductance is
presented in Fig. 10. Its enhancement of the conductance is
considerably stronger than that for the intervalley tunneling.
The pair-breaking rate γ determines the critical temperature
of pair condensation but weakly influences the temperature
dependence of tunneling conductance above it.

FIG. 10. The temperature dependence of the intervalley tun-
neling conductance GT between graphene bilayers at zero voltage
bias (V = 0). Three curves correspond to pair-breaking rates γ =
2, 4, and 8 meV. The pair-breaking rate induced by scattering at
impurities reduces the critical temperature T0 of electron-hole con-
densation but weakly affects the critical behavior above T0.

FIG. 11. The dependence of tunneling conductance GT on in-
plane magnetic B and the electron-hole density imbalance �n.
Three subplots correspond to T = 45 K (a), 25 K (b), and 5 K (c).
The dashed line corresponds to the phase boundary of equilibrium
electron-hole paired state. In (b) and (c) the conductance achieves a
maximum at a finite value of magnetic field B, which demonstrates
that fluctuating Cooper pairs with finite momentum Q ≈ QB are the
most intensive and the system is in the vicinity of the instability
to the FFLO state. The presence of a kink in the phase boundary
in (c) clearly demonstrates that the system is unstable towards the
equilibrium FFLO state.

For the pair-breaking rate γ = 2 meV the critical temper-
ature is T0 ≈ 42 K. According to the phase diagram (Fig. 5)
the ratio γ /T0 ≈ 0.52 is small enough to stabilize the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state by the electron-hole
imbalance. The in-plane magnetic field results in a relative
shift of electronic dispersions between layers and makes it
possible to probe fluctuating Cooper pairs with finite mo-
mentum QB = edB||/h̄c. The dependence of tunneling con-
ductance at zero voltage bias on the electron-hole imbalance
and magnetic field at temperature T = 55 K is presented in
Fig. 11(a). The tunneling conductance has a monotonic depen-
dence demonstrating that the system is far from the instability
to the FFLO state, and Cooper pair fluctuations with zero
momentum Q = 0 are the most intensive. The dependence
at T = 25 K is shown in Fig. 11(b) with a dashed line
that denotes a phase boundary of a paired state. Since
the critical imbalance required to suppress the pairing
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instability decreases with the magnetic field the paired state
is the uniform BCS one. Nevertheless, the tunneling con-
ductance achieves a maximum at the finite value of the
magnetic field, which shows that the system is close to
the FFLO state and fluctuations with finite Cooper momen-
tum are the most intensive. The dependence at T = 5 K
is presented in Fig. 11(c). The dashed line that denotes
the phase boundary is nonmonotonous and has a kink at
the magnetic field finite value. It clearly demonstrates
that the equilibrium FFLO state is stabilized by the electron-
hole imbalance.

APPENDIX C: BOSONIC PICTURE OF THE
FLUCTUATIONAL INTERNAL JOSEPHSON EFFECT

Here we present a bosonic picture of the fluctuational
internal Josephson effect that can be employed with a help

of the field integral formalism. We consider the contact in-
teractions U between electrons and holes that correspond to
the truncation of all multipole momenta of interactions except
the s-wave one. In the main text we have demonstrated that
they are unimportant. The correlation function of tunneling
operators χ (ω, q) that defines the tunneling conductance GT

according to Eq. (18) can be extracted from the corresponding
imaginary time correlation function χ (τ, r) given by

χ (τ, r) = 1

Z

δ2Z

δ�τ,rδ�
+
0,0

, (C1)

where Z[�+
τ,r,�τ,r] is the statistical sum with an auxiliary

bosonic field �τ,r introduced to the action S of the system as

S =
∫ β

0
dτ

∫
dr

[
ψ̂+

t (∂τ + ĥtr − μt )ψ̂t + ψ̂+
b (∂τ + ĥbr + μb)ψ̂b + ψ̂+

b �+t̂+ψ̂t + ψ̂+
t t̂�ψ̂b + Uψ+

tst
ψ+

bsb
ψbsbψtst

]
,

where ψ̂t ≡ ψ̂tτr and ψ̂b ≡ ψ̂bτr are spinor fermionic fields for electrons from top (t) and bottom (b) layers, respectively, with
labeling described in Sec. II. If they are integrated out and the corresponding action is expanded in the lowest order in tunneling
matrix elements t̂ , the Fourier transform χq appears in the action as S = −∑

q χq|�q|2. Here q = {qn, q} with bosonic Matsubara
frequency qn = 2πT n. For noninteracting electrons and holes, calculations are straightforward and result in

χ0
q = t̂+M̂0�q t̂ . (C2)

After analytical continuation we get Eq. (20). In the case of interacting electrons and holes it is instructive to start with the
Hubbard-Stratonovich transformation. It eliminates interactions but introduces the bosonic field �̂τr corresponding to electron-
hole Cooper pairs. The action S is modified as

S =
∫ β

0
dτ

∫
dr

[
ψ̂+

t (∂τ + ĥtr − μt )ψ̂t + ψ̂+
b (∂τ + ĥbr + μb)ψ̂b + ψ̂+

b �̂′+ ψ̂t + ψ̂+
t �̂′ ψ̂b + 1

U
tr
(
�̂+�̂

)]
, (C3)

where �̂′
τr = �̂τr + t̂ �τr. Above the critical temperature T0 of the electron-hole pairing the saddle point of the action is trivial

〈�̂〉 = 0, and the field �̂ corresponds to Cooper pair fluctuations [86]. In the wide temperature range �TGi � �T ∼ T0 outside
the critical regime �T � �TGi fluctuations can be approximated by the noninteracting Gaussian theory. Here �TGi = Gi T0 with
Ginzburg number Gi = T0/EF calculated in Appendix D. Integrating out fermions and expanding the action up to the second
order in the bosonic field �̂′ results in

S =
∑

q

[
�̂+

q �̂q

U
− �̂′+

q M̂0�q�̂
′
q

]
=

∑
q

[
�̂+

q �̂−1
q �̂q − �̂+

q M̂0�qt�q − �+
q t̂+M̂0�q�̂q − �+

q χ0
q �q

]
. (C4)

Here all matrices are in the compact representation, and
�̂q is the scattering vertex calculated in Sec. III. Some of
its components vanish at the critical temperature T0 of the
electron-hole Cooper pairing. The last term corresponds to the
response χ0

q function for noninteracting electrons and holes
that is given by Eq. (C2). The action represents the bosonic
picture of the Josephson effect and is valid outside the weak
coupling regime. The action (C4) is quadratic in the bosonic
field �q, and after its integration we get the tunneling response
function χq given by

χq = χ0
q + t̂+M̂0�q�̂

−1
q M̂0�qt̂ . (C5)

With the help of Eqs. (12) and (11) we get the tunneling
response function for the intravalley tunneling (23). In the

same way with the help of Eqs. (14) and (13) we get the
response function for the intervalley one (25).

APPENDIX D: GINZBURG CRITERION

The developed theory of the fluctuational internal Joseph-
son effect implies that Cooper pair fluctuations are Gaussian
and do not interact with each other. The interactions can
be safely omitted in the wide range of temperatures �T ∼
T0 except the critical region �T � �TGi where fluctuations
are overgrown are strongly interfere with each other. The
range �TGi can be estimated from the Ginzburg criterion
[87], which compares the contribution of Gaussian fluctu-
ations to the heat capacity CFL = T0/4πξ 2�T with predic-
tions of the mean-field theory below the critical temperature
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CMF = NF/gT0 = εF/4πξ 2T0. Here g = 4ξ 2/(h̄vF)2 is the
strength of contact interactions between fluctuating Cooper
pairs neglected so far. The contribution of fluctuations CMF

grows with decrease of temperatures and dominates in
the temperature range �TGi = GiT0 with Ginzburg number

Gi = T0/EF. It does not depend explicitly on the pair-breaking
rate γ but only on the critical temperature T0. It should be
noted that the Ginzburg criterion can be derived microscopi-
cally in a more strict way by explicit analysis of the role of
interactions between fluctuating Cooper pairs [88].
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