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A quantum tricritical point is shown to exist in coupled time-reversal symmetry (TRS) broken Majorana
chains. The tricriticality separates topologically ordered, symmetry-protected topological (SPT), and trivial
phases of the system. Here we demonstrate that the breaking of the TRS manifests itself in the emergence
of a dimensionless scale, g = α(ξ )B

√
N , where N is the system size, B is a generic TRS-breaking field, and

α(ξ ), with α(0) ≡ 1, is a model-dependent function of the localization length, ξ , of boundary Majorana zero
modes at the tricriticality. This scale determines the scaling of the finite-size corrections around the tricriticality,
which are shown to be universal, and independent of the nature of the breaking of the TRS. We show that the
single-variable scaling function, f (w), w ∝ mN , where m is the excitation gap, that defines finite-size corrections
to the ground-state energy of the system around topological phase transition at B = 0, becomes double-scaling,
f = f (w, g), at finite B. We realize TRS breaking through three different methods with completely different
lattice details and find the same universal behavior of f (w, g). In the critical regime, m = 0, the function f (0, g)
is nonmonotonic and reproduces the Ising conformal field theory scaling only in limits g = 0 and g → ∞. The
obtained result sets a scale N � 1/(αB)2 for the system to reach the thermodynamic limit in the presence of
the TRS breaking. We derive the effective low-energy theory describing the tricriticality and analytically find
the asymptotic behavior of the finite-size scaling function. Our results show that the boundary entropy around
the tricriticality is also a universal function of g at m = 0.
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I. INTRODUCTION

Finite-size corrections to the ground-state energy in 1 +
1D conformal field theories [1–3] (CFT) have been shown
to be universal and were studied in various systems since
the mid-1980s. Recently, in Ref. [4], it has been shown that
the finite-size corrections to the ground-state energy across
topological phase transitions can differentiate between differ-
ent topological and topologically trivial phases. These include
transitions within phases classified by the group Z of topolog-
ical invariants [from phase characterized by topological index
n to the phase characterized by index (n − 1)] or transitions
from phases with the Z indices and phases with Z2 indices.
Importantly, it has been shown that the finite-size scaling
function is universal for all five topological symmetry classes
in 1 + 1D (AIII, BDI, CII, D, DIII), tabulated according to
Cartan’s classification of symmetric spaces [5–8]

Although the fact of distinct universality of the scaling
function across a continuous phase transition between phases
characterized by Z and/or Z2 index classification is amazing,
the question arises whether these scaling properties survive
in the presence of tricriticality. Different scaling proper-
ties can be expected for example when there is a tricrit-
ical point in the phase diagram separating three different
phases: a topologically ordered phase [9,10], a time-reversal
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symmetry-protected topological (SPT) phase [11–18], and a
trivial phase. Such a situation appears if the transition between
phases is accompanied by the time-reversal symmetry (TRS)
breaking. Examples include transitions between topological
phases belonging to the BDI class classified via Z index and
the TRS broken phase belonging to the D class classified via
Z2 index.

In this paper, we answer this question through confining
our focus on coupled 1 + 1D Kitaev-Majorana superconduct-
ing wires [19–26] (throughout this article referred to as Ma-
jorana chains) from the above mentioned symmetry classes.
The transition from a BDI phase to a D phase is characterized
by a generic TRS-breaking field, which we denote by B and
which will be specified for all models considered in this work.
The universal properties around tricriticality between BDI, D,
and trivial phases are described by the low-energy excitations
around the Fermi surface, which we will discuss here in
detail.

For a 1 + 1D critical quantum system, the CFT predicts a
universal finite-size scaling of the ground-state energy with
open boundary conditions [3],

E (N ) = Nε + b − c

N

π

24
+ O(N−2), (1)

where c is the central charge [1,27] of the CFT, E (N ) is the
ground-state energy of the system with size N , ε is average
bulk energy, and b is the boundary energy (for a detailed
discussion of ε and b see Ref. [3]).
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Around a topological quantum phase transition in 1 + 1D,
the CFT result (1) is generalized to [4]

E (N, m) = Nε(m) + b(m) − c

N
f (Nm) + O(N−2), (2)

where f (Nm) is shown to be a universal function of its
argument for five different symmetry classes. This is achieved
in the double scaling limit, when N → ∞, m → 0, while
w = Nm is kept constant.

This result is derived from 1 + 1D Majorana field theory,
which describes the critical phases of free fermion models.

While the finite-size scaling across the topological quan-
tum phase transition is now well understood, we will show that
the situation is different around the tricriticality, where there
are two extra Majorana edge modes near the Fermi surface.
There are two categories of states determining the low-energy
sector: (1) the states described by the 1 + 1D massive (with
the excitation gap, m) bulk Majorana field theory (MFT),
and (2) a boundary Hamiltonian describing an even number
of localized Majorana edge modes with localization lengths
ξ . Once the TRS-breaking field is introduced, it can drive
the boundary RG flow [28] from the tricriticality (gapless
SPT phase) [29,30] to the criticality without edge modes
(gapless trivial phase). Such nontrivial boundary effects can
exhibit themselves in the scaling properties of finite-size
corrections to the ground-state energy. This is the effect that
we are going to explore here.

In this work, we derive the finite-size scaling function
around the tricriticality, which is strongly influenced by the
TRS-breaking field, B. We show that the result (2) is general-
ized to

E = Nε + b − c

N
f (Nm, α

√
NB) + O(N−2), (3)

where E = E (N, m, B) is the ground-state energy that now
also depends on B, c = 1/2, and α(ξ ) is a function of
the localization length of the Majorana edge modes, ξ , at
the tricriticality. The function α(ξ ) depends on the details
of the lattice model, but α(0) ≡ 1 for all of them. The
finite-size scaling function f (w, g) is now a function of two
variables: w = Nm and g = α

√
NB. Under two simultaneous

double-scaling [31] limits, (1) N → ∞, m → 0 with w =
const, and (2) N → ∞, B → 0, with g = const, the function
f (w, g) is a universal function of w and g. This is the main
result of our work, which will be obtained below both analyt-
ically and numerically. We will also discuss the implications
of the emergent scale on the numerical simulations of many-
body systems with TRS breaking.

The universality of the double-scale function f (w, g) is
shown for a parent Hamiltonian representing a pair of coupled
Majorana chains (discussed in Sec. II), with three different
symmetry-breaking fields B.

(1) We consider two Majorana chains coupled to each other
with a complex pairing potential �v = �R

v + i�I
v [22] along

the vertical rungs. The TRS-breaking field, in this case, is
identified with B ≡ �I

v/(2t ), where t is the nearest-neighbor
hopping parameter. In this model, the function α(ξ ) is found
to be α(ξ ) = √

coth(1/2ξ ). The Hamiltonian of the model, its
solution, along with the detailed analysis of the ground-state
energy is discussed in Sec. III A.

FIG. 1. Universal finite-size scaling function f (w = 0, g) plotted
at criticality, w = 0, vs g. The function is nonmonotonic and exhibits
a strong g dependence. It starts decreasing from the Ising CFT value,
f (0, 0) = π/24, and undergoes a minimum at g = 0.5. At g � 1, it
gradually converges to the CFT result, f (0, g → ∞) = π/24.

(2) We consider coupled Majorana chains in a uniform
external magnetic field [23]. The Flux can be realized by
complex hopping teiθ/2 along the horizontal chains. The TRS-
breaking field in this case is identified with B = 1

2 sin (θ/2).
This model is analyzed in Sec. III B.

(3) We study coupled Majorana chains in the presence of
a staggered magnetic flux, ±θ , threading square plaquettes of
the lattice. The flux can be realized by alternating complex
hopping tve±iθ/2 along the vertical rungs. In this model,
α(ξ ) = √

tanh(1/2ξ ). The TRS-breaking field in this case is
identified with B = tv sin (θ/2)/(2t ), This model is analyzed
in Sec. III C.

The scaling of finite-size correction to the ground-state
energy in all three models under consideration is shown to
obey the universal behavior determined by function f (w, g).
Particular cases corresponding to w = 0 (critical phase) and
finite w = 2 (gapped phase) are shown in Figs. 1 and 2,
respectively.

Although f (0, 0) = π/24, which directly follows from
CFT calculations, the scaling function f (0, g) exhibits non-
trivial behavior. Interestingly enough, this function, plotted in
Fig. 1, appears to be nonmonotonic and strongly g dependent.
The small and large g asymptotes are found to be

f (0, g) �
{

π
24 + 1√

π
g2 log g, g 	 1

π
24 − γ

g2 , g � 1
. (4)

Here γ is a constant, the numerical value of which is found to
be γ ≈ 0.24.

To complete the theoretical picture, we derive the low-
energy effective theory describing the symmetry-breaking ef-
fect. The theory enables one to analytically uncover the scale,
g, which describes physics around the tricriticality, and to
extract the asymptotic behavior of the finite-size scaling func-
tion, f . We start with the full-symmetry parent Hamiltonian
from BDI class and find its phase diagram in Sec. II. In Sec. III
we define three different symmetry-breaking models where
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FIG. 2. The universal finite-size scaling function f (w, g) is plot-
ted vs g at w = 2 (gapped phase) for three models with different
origin of TRS-breaking field, B.

Majorana tricritical points emerge. In Sec. IV we numerically
show the emergence of g in finite-size scaling function and
plot f (w, g) in several different cases. In Secs. V and VI
we derive the low-energy theory near the tricriticality and
provide its solution. We also show the universal behavior of
the boundary entropy in all three models. Conclusions are
presented in Sec. VII, and some technical details are presented
in the appendices.

II. PARENT HAMILTONIAN FROM
BDI SYMMETRY CLASS

In this section, we write down the “parent” Hamiltonian
with T , P, and T P symmetries. We show that this model can
support three different phases: (1) a trivial gapped phase, (2)
a topologically ordered phase supporting two boundary Ma-
jorana modes, and (3) symmetry-protected topological phase
supporting four boundary Majorana modes. At the end of this
section, we analytically derive the low-energy effective theory
describing the finite-size scaling effect around special critical
points which belong to the XY universality class.

We start with two identical Majorana chains with full
symmetries of the BDI class:

H = H1 + H2 + Hinterchain, (5)

where H1 and H2 are two Hamiltonians, each representing a
1 + 1D chain. The Hinterchain describes coupling between two
chains that has the form of interleg hopping and pairing:

Hm = −
∑

j

μâ†
j,mâ j,m −

∑
j

(t â†
j+1,mâ j,m + H.c.)

+
∑

j

(�â j,mâ j+1,m + H.c.), m = 1, 2, (6)

Hinterchain =
∑

j

(−tv â†
j,1â j,2 + �v â j,1â j,2 + H.c.). (7)

Here â(†)
j,m are fermion annihilation (creation) operators, index

j = 1, . . . , L labels the position of a fermion, index m labels
the chains, μ is the chemical potential for each of the chains,

� (�v) is the intrachain (interchain) pairing potential, and t
(tv) is the intrachain (interchain) hopping parameter. One can
safely set pairing � to be real since its complex phase can be
absorbed into fermion operators. In the presence of TRS (and
obviously PHS) symmetry, t , tv , and �v are all real.

To obtain the single-particle spectrum, one may introduce
the momentum-space fermion operators

âk,m = 1√
N

∑
j

â j,meik j, (8)

where the lattice constant is set to be unity. Then H can be
represented in the momentum space as

H = 1

2

∑
k

ψ̂
†
k h(k)ψ̂k, with (9)

h(k) = (−2t cos k − μ)σz ⊗ 12 + 2� sin kσy ⊗ 12

− tvσz ⊗ τx + �vσy ⊗ τy, (10)

where ψ̂
†
k = (â†

k,1 â−k,1 â†
k,2 â−k,2), σ are Pauli matrices in

Nambu space and τ are Pauli matrices in the space of m = 1, 2
Majorana chains. The time reversal symmetry is seen from the
commutativity of the antiunitary operator T with the Hamil-
tonian, T HT −1 = H , where T acts on spinless fermions as
T â j,iT −1 = â j,i. Similarly, the particle-hole symmetry is im-
plied by the operator P = τxK ⊗ 12 in BdG formalism, where
K is the operator of complex conjugation. Thus, one may
show that Ph(−k)P−1 = −h(k), where h(k) is the k-space
Hamiltonian in Eq. (10).

Diagonalization of h(k) is achieved through the Bogoli-
ubov transformation, yielding the single-particle excitation
spectrum

Es(k) =
√

ξ1(k) + 2sξ2(k), (11)

where ξ1 = (2� sin k)2 + (2t cos k + μ)2 + t2
v + �2

v , ξ2 =√
4�2 sin2 k�2

v + �2
vt2

v + (2t cos k + μ)2t2
v and s = ± [32].

Given the spectrum, one can obtain the phase boundaries
(critical lines in the phase space of model parameters) by
solving the equation Es(k) = 0 for some k. This yields

(2t cos k + μ)2 + �2
v − t2

v = 0,

(2t cos k + μ) sin k = 0. (12)

One can further simplify Eq. (12) to obtain the phase bound-
aries (where the spectral gap closes) at k = 0; π as

�2
v + (2t ± μ)2 = t2

v . (13)

The third phase boundary corresponds to momenta solving
the equation cos k = ±μ/2t and parameters satisfying the
condition

t2
v + �2

t2
(2t + μ)(2t − μ) = �2

v, (14)

where 2w > μ.
In this work, we are interested in characterizing the topo-

logical states via the edge Majorana modes (and thus, we
do not explicitly evaluate the topological quantum numbers
from the bulk wave functions). Since a number of stable
edge modes characterize topological phases, below, we will
calculate the localization lengths of Majorana modes from the
lattice Hamiltonian.
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Let us adopt the following notations for Majorana fermion
operators:

c2 j−1,m = â j,m + â†
j,m,

c2 j,m = â j,m − â†
j,m

i
, (15)

where anticommutator {c j,m, cl,n} = 2δ j,lδm,n. Using these no-
tations, the Hamiltonian can thus be represented in the Majo-
rana basis. The intrachain part is given by

Hm = i

2

∑
j

{−μc2 j−1,mc2 j,m + (� + t )c2 j,mc2 j+1,m

+ (� − t )c2 j−1,mc2 j+2,m}. (16)

The interchain part is written as

Hinterchain = i

2

∑
j

(�v − tv )c2 j−1,1c2 j,2+(�v + tv )c2 j,1c2 j−1,2.

(17)

Using the Majorana representation of the Hamiltonian, we
can diagonalize it and find the Majorana zero-energy states
that are localized at the boundaries of the chain. We show in
Appendix A that the question of the existence of Majorana
zero-energy states reduces to the estimation of the localization
length ξ±. The latter is found from the wave function that
decays into the bulk exponentially as exp{−x/ξ±}, with

ξ−1
± = ln

2t

μ ± √
t2
v − �2

v

. (18)

Here, if the argument of the logarithm is negative, ξ−1
± obtains

a complex phase, iπ , indicating an oscillatory wave function.
Thus,

(1) If ξ+ > 0 and ξ− > 0, the system is in the gapped
phase with four localized zero-energy Majorana modes.

(2) If ξ+ > 0(ξ+ < 0) and ξ− < 0(ξ− > 0), the system is
in the gapped phase with two localized zero-energy Majorana
modes.

(3) If ξ+ < 0 and ξ− < 0, the system is in the trivially
gapped phase with no localized zero-energy Majorana modes.

These three different phases are shown on the phase di-
agram Fig. 3 in the space of rescaled energies w and μ.
Throughout this paper, we will adopt the notation “n-MF”
to represent the gapped phase with n localized zero-energy
Majorana modes (below we will deal with cases with n =
0, 2, 4).

The critical lines (or, in other words, the phase boundaries)
in the phase diagram Fig. 3 belong to the Ising universality
class with central charge c = 1/2. The exceptions are the
intersection points of two critical lines, which belong to
the XY universality with central charge c = 1. Two relevant
perturbations, given by the change of critical μ and 2w, will
drive the system away from criticality. Tuning of parameter μ

opens a gap and drives the system into 2-MF state. Tuning of
2w opens a gap, and the system finds itself either in the 4-MF
or 0-MF state.

One can calculate the finite-size corrections to the ground-
state energy around the XY criticality. To this end, we define

FIG. 3. Phase diagram for parent Hamiltonian from BDI symme-
try class. n-MF represents gapped phase with n localized zero-energy
Majorana modes. There are three different phases, 0-MF, 2-MF, and
4-MF. Critical points in the phase diagram are Ising universality
with central charge c = 1/2, but intersection points of two critical
lines are XY universality with central charge c = 1. Two special
intersection points located at (0, ±1) are emphasized as red triangle
points. Two relevant perturbations μ and 2w will drive the system
away from the criticality: tuning μ opens a gap to 2-MF; tuning 2w

opens a gap to 4-MF or 0-MF.

two masses m±:

m± = 2t ± μ − √
t2
v − �2

v

2t
. (19)

The magnitudes of m+ and m− are the spectral gaps measured
at k = 0 and k = π respectively. Interestingly, the low-energy
effective theory around the criticality is given by a direct sum
of two massive Majorana field theories:

Hlow =
∑
s=±

ivF

2

∫
dxηT

s

(
∂ ms

−ms −∂

)
ηs, (20)

where η± is a two-component Majorana field operator. To
evaluate the finite-size scaling function corresponding to a
single copy of Majorana field from Eq. (20), one may double
the number of degrees of freedom in Majorana field theory
above and form a 1 + 1D massive Dirac field. Then one will
recover the finite-size scaling function, fD(w) [defined in
Eq. (2)], for 1 + 1D Dirac field theory found in Ref. [4].

In the present situation, for low-energy Hamiltonian
Eq. (20), we obtain that finite-size scaling function f̃ becomes
function of two masses, w+ = Nm+ and w− = Nm−:

f̃ (w+,w−) = 1
2 [ fD(w+) + fD(w−)],

where the factor 1/2 eliminates the double counting of degrees
of freedom in Dirac field theory, as the latter is equivalent to
the direct sum of two Majorana field theories.

Instead of plotting f̃ (w+,w−) in a 3D space as a 2D
surface parametrized by two scales w+,w−, we chose |w+| =
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FIG. 4. Finite-size scaling functions, fn(w), for n = 0, 2, 4
around the criticality marked by the (red) triangle in Fig. 3. Inset:
The behavior of f2 at small w 	 1. The finite-size scaling function
clearly distinguishes all three different phases around the criticality.

|w−| = w and plot f̃ (w,w) versus w. This plot will bear all
the necessary information about the nature of the phases as
follows:

(1) From definition of masses in Eq. (19), we see that
if (w+,w−) = (w,w) with w > 0, then both masses are
positive and the system is in the 4-MF phase. Below we will
use the notation f4(w) ≡ f̃ (w,w) for the finite-size scaling
function in the 4-MF phase.

(2) If (w+,w−) = (w,−w) [or (−w,w)], w > 0, then
one of the masses is positive (indicating the existence of
two localized Majorana modes) while the other is negative
(indicating a trivial boundary). In this case one has the 2-MF
phase. Below we will use the notation f2(w) ≡ f̃ (w,−w) =
f̃ (−w,w) for the finite-size scaling function in 2-MF phase.

(3) Finally, when (w+,w−) = (−w,−w), w > 0, one ob-
tains a trivial 0-MF phase. The corresponding finite-size scal-
ing function is denoted as f0(w) ≡ f̃ (−w,−w).

Thus we obtain three finite-size scaling functions, f0, f2,
and f4, of a single variable w. These functions are depicted
in Fig. 4. We see that f4 is has a pronounced maximum at
the topological 4-MF phase; f2 exhibits a less pronounced
maximum in the 2-MF phase; and f0 is a featureless decaying
function in the trivial 0-MF phase. The inset to Fig. 4 shows
the small w behavior of f2 suggesting that it is completely
regular and df2/dw|w=0 = 0. The latter property is expected
from Eq. (21).

Properties of f̃ (w+,w−) follow from the fact that we have
a direct sum of noninteracting Hamiltonians at intersections
of two critical lines in Fig. 3. The same procedure is straight-
forwardly generalized to more complex situations, where one
has N intersecting critical lines, each represented by a central
charge ci, i = 1, . . . , N , (e.g., if there are many coupled
Majorana chains). In this case the finite-size scaling func-
tion becomes multivariable and equal to f̃ (w1,w2, . . . ,wn) =∑N

i=1 ci fD(wi )/
∑N

i ci.

III. MODELS WITH BROKEN TIME-REVERSAL
SYMMETRY

In the above section, we discussed and solved models
whose parameters are real, and whose Hamiltonian operators
preserve time-reversal symmetry (TRS). In this section, we
will consider two-leg ladder models, where the TRS is ex-
plicitly broken. This can be achieved, e.g., through endow-
ing a complex phase to model parameters in such a way
that it cannot be gauged out. We introduce three different
TRS-breaking models and prove the existence of Majorana
tricriticality between topologically ordered, SPT, and trivial
phases in each of them. Consequently, we trace the evolution
of the single-particle spectrum with varying the TRS-breaking
field, B, around the tricriticality.

A. Model I: Majorana ladder with complex
vertical pairing potential

The complex phase of the pairing potential, �, in the single
Majorana chain can be gauged out (through absorbing it into
fermion operators). However, if one starts with the parent
Hamiltonian (5) and introduces complex phases to � and
�v , then only one of these two phases can be gauged out
(the complex phases of � and �v cannot be simultaneously
absorbed into fermion operators). Below we will work in
the gauge where � is real while �v is a complex number:
�v = |�v|eiθ = �R

v + i�I
v . The parameter θ is thus the phase

difference between � and �v . The corresponding Hamilto-
nian reads

Hinterchain = i

2

∑
j

(
�R

v − tv
)
c2 j−1,1c2 j,2

+ i

2

∑
j

(
�R

v + tv
)
c2 j,1c2 j−1,2

+ i

2

∑
j

�I
v (c2 j−1,1c2 j−1,2 − c2 j,1c2 j,2). (21)

In this model, the TRS-breaking field B is identified with
B ≡ �I

v/2t , as the vertical complex pairing terms, ∝cm,1cm,2,
do break the TRS.

The Hamiltonian, H , is represented in momentum space as
follows:

H = 1

2

∑
k

ψ̂
†
k h(k)ψ̂k, (22)

h(k) = (−2t cos k − μ)σz ⊗ 12 + 2� sin kσy ⊗ 12

− tvσz ⊗ τx + �R
vσy ⊗ τy − �I

vσx ⊗ τy. (23)

Complex �I
v completely changes the structure of the single-

particle excitation spectrum. We apply the Bogoliubov trans-
formation to diagonalize h(k) to get the spectrum Es(k) as

Es(k) =
√

ξ
p
1 (k) + 2sξ p

2 (k), (24)

where ξ
p
1 = (2� sin k)2 + (2t cos k + μ)2 + t2

v + |�v|2, ξ p
2 =√

4�2 sin2 k(�R
v )2 + |�v|2t2

v + (2t cos k + μ)2t2
v , s = ±. As

the next step, we proceed with the identification of the 0-MF,
2-MF, and 4-MF phases. This can be achieved by following
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(a) Complex vertical pairing potential (b) Uniform Flux (c) Staggered Flux

FIG. 5. Phase diagrams of (a) Model I, (b) Model II, and (c) Model III. All three phase diagrams support the tricriticality, marked by a
bold (red) dot. It separates the 4-MF, 2-MF, and 0-MF phases. In all three diagrams, the 4-MF phase resides on the dashed (yellow) line. It is
smoothly connected to 0-MF when the field B is added, while 2-MF is robust to TRS-breaking perturbation.

the procedure outlined for the parent Hamiltonian in Sec. II:
upon solving the equation Es(k) = 0, one obtains

(2t cos k + μ)2 + |�v|2 − t2
v = 0,(

�I
v sin k

)2 + (2t cos k + μ)2 sin2 k = 0. (25)

Then the phase boundaries of the phase diagram are given in
terms of parameters |�v|, t , μ, and tv satisfying the equation

|�v|2 + (2t ± μ)2 = t2
v . (26)

Along these boundaries, the spectral gap closes at momenta
k = 0, π .

As the next step, we diagonalize the Hamiltonian (5) with
Hinterchain given by Eq. (21) in the Majorana basis with open
boundary conditions. Subsequently we numerically analyze
the eigenvalues of the Hamiltonian and obtain complete in-
formation for the zero-energy boundary modes. The phase
diagram is plotted in Fig. 5(a) in the space of rescaled pa-
rameters wv and �I

v . All three different phases, namely, the
4-MF, 2-MF, and 0-MF phases, exist in this phase diagram:

(1) The 4-MF is an SPT phase characterized by the ZT
2

quantum number. It can be smoothly connected to the topo-
logically trivial phase without closing a gap in the presence
of the TRS-breaking field. Thus the 4-MF SPT phase resides
only on the dashed (yellow) line of the diagram, while to the
left/right of it, the TRS is broken, and the phase is trivial.

(2) The 2-MF phase is topologically ordered [9]. It is
robust to TRS-breaking perturbation, and the Majorana modes
are immune to B.

(3) The 0-MF phase is topologically trivial.

B. Model II: Majorana ladder in a uniform magnetic field

The ladder model has square plaquettes that can be
threaded by magnetic fluxes and around which a fermion
can rotate. In this subsection, we will consider a model that
corresponds to the parent Hamiltonian (5) in the presence
of an external constant magnetic field. Thus each square
plaquette of the ladder is penetrated uniformly by the flux, θ ,
as shown in Fig. 6(a). The gauge field, which generates the
uniform flux, couples to fermion hoppings along the links. For
simplicity, we chose to work in the gauge where the complex
phase is added to the intrachain hopping, t : teiθ/2 in H1 and

te−iθ/2 in H2. The Hamiltonian of Model II is thus given by
Eq. (5), where Hiterchain is unchanged and

H1 =
∑

j

μâ†
j,mâ j,m + (�â j,mâ j+1,m + H.c.)

− (teiθ/2â†
j+1,mâ j,m + H.c.), (27)

H2 =
∑

j

μâ†
j,mâ j,m + (�â j,mâ j+1,m + H.c.)

− (te−iθ/2â†
j+1,mâ j,m + H.c.). (28)

Here the intrachain terms H1,2 reduce to the parent Eq. (6) at
θ = 0. We remind the reader that the uniform flux θ breaks
the TRS and thus the TRS-breaking field B here is identified
with B ≡ 1

2 sin(θ/2). The momentum space representation
of the Hamiltonian in the Majorana basis helps to trace the
modification of (1) the boundary modes and (2) of the bulk
spectrum. The technical details of analytical calculations are
presented in Appendix B.

The phase diagram of the uniform-flux model under con-
sideration contains three different phases: a trivial 0-MF
phase, a topologically ordered 2-MS phase, and an SPT 4-MF
phase that is situated on a line. All three phases come together,
giving rise to a tricritical point. The two phase boundaries of
the model are given by the equation

(2tR ± μ)2 = t2
v − �2

v, (29)

(a)

(b)

FIG. 6. Parent model in the presence of an external TRS-
breaking flux field. (a) Uniform magnetic field. (b) Staggered mag-
netic field.
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where tR = t cos θ/2. It is clear that tI does not influence the
phase boundary equation in any way. The phase diagram in
the space of parameters tI and tv is shown in Fig. 5(b).

C. Model III: Majorana ladder in a staggered magnetic field

One can break the TRS also by introducing a staggered
magnetic field, instead of the uniform magnetic flux discussed
in the previous section. Here we consider a staggered θ flux
threading each of the square plaquettes of the ladder, whose
signs are alternating. An example of a certain lattice segment
with fluxes is shown in Fig. 6(b). The staggered disposition
of the sign of θ implies doubling of the unit cell, the net
flux through which is zero. The corresponding single particle
Hamiltonian, based on the parent model 5, can be written
in gauge where alternating complex phases are attached to
vertical interchain hopping parameters: tv → tve±iθ/2 with
alternating signs. Thus, the full Hamiltonian is still given by
Eq. (5), with the interchain Hamiltonian being

Hinterchain = −
∑

j=2n−1

tveiθ/2â†
j,1â j,2 −

∑
j=2n

tve−iθ/2â†
j,1â j,2

+
∑

j

�v â j,1â j,1 + H.c., (30)

where the staggered field θ breaks the TRS. Thus, we identify
the TRS-breaking field B here with B ≡ tv sin(θ/2)/(2t ).

As the next step, we study bulk and boundary spectra of
the model. To investigate the boundary modes, we switch to
the Majorana basis and find the spectrum using the method
outlined in Appendix A. To derive the bulk spectrum, we per-
form a Fourier transformation in Eq. (30), which diagonalizes
the Hamiltonian. We present the corresponding calculation in
Appendix C.

The outlined analysis helps us to study the phase diagram
of the model systematically. The phase boundaries separating
the trivial 0-MF phase, a topologically ordered 2-MF phase,
and an SPT 4-MF phase are given by(

2t ± tR
v ± �v

)2 + (
t I
v

)2 = μ2. (31)

Here t I
v does enter into the expression for phase boundaries,

which now in the space of parameters t I
v and tR

v becomes very
interesting. It is shown in Fig. 5(c), from which we see that
it is topologically different from the one corresponding to the
uniform magnetic field. In particular, the space corresponding
to the 2-MF state is now compact.

D. Phase diagrams of models with broken TRS: The
tricriticality separating 4-MF, 2-MF, and 0-MF phases

In this subsection, we will discuss common features of all
three phase diagrams corresponding to Models I, II, and III
defined above. In each phase diagram, shown in Fig. 5(a),
Fig. 5(b), and Fig. 5(c), there is a peculiar 4-MF phase,
which resides on a dashed (yellow) line. The dashed line
itself also represents a first-order phase transition line. It has
the following description: when the TRS-breaking field, B, is
added to the 4-MF state, the ground-state degeneracy is lifted.
This happens because the zero-energy boundary modes obtain
finite energy proportional to B. Then the spectrum develops a

level crossing, signaling the first-order phase transition. There
are phase boundaries corresponding to the second-order phase
transitions between 2-MF and trivial phases shown in Fig. 5 by
full lines (blue and red). Interestingly enough, the tricriticality
happens as the intersection of the first-order transition line and
the second-order transition line. The study of the universal
properties around this tricriticality, shown by bold (red) dots
in Fig. 5, is the main focus of the present paper.

The tricriticality separates three different phases:
4-MF(characterized by ZT

2 topological invariants of the
SPT theories), 2-MF(fermionic topologically ordered phase),
and 0-MF (trivial phase).

(1) In 4-MF phase, near the tricriticality, two Majorana
edge modes have localization lengths ξ+ while the other two
have localization length ξ−; see Eq.(18) for definitions.

(2) The Majorana edge modes in a 2-MF phase, near the
tricriticality, are characterized only by one localization length.

(3) At the tricriticality, there are two Majorana edge
modes, with the same localization lengths ξ . As one departs
from tricriticality in Fig. 5 and moves along the gapless
phase boundary (the blue line), one immediately enters the
trivial gapless phase with no boundary Majorana modes. To
achieve such a nontrivial transition, one will have to tune the
model parameters correspondingly. Unlike this critical line,
the tricriticality does support two Majorana modes, and as
such, it represents an example of the gapless SPT phase.

The phase diagram Fig. 5(a) has two tricritical points
positioned at (�I

v, tv ) = (0, 1) and (�I
v, tv ) = (0,−1) (mea-

sured in units of μ = t). The Majorana localization lengths
at the former is ξ− while at the latter it is ξ+. In two other
TRS-breaking situations, only one tricritical point is shown;
however, there are two such points as the phase diagrams are
symmetric with respect to the vertical axis.

In all three situations with TRS breaking and the tricritical-
ity, we define the universal dimensionless scale g as

g = α(ξ )
√

NB. (32)

The function, α(ξ ), is model dependent. The reason it
enters into the universal scale, g, is the following. Besides
the diverging correlation length, ξcor = ∞, there is one more
length scale, the localization length ξ , around the tricriticality.
The models under consideration are described by short-ranged
hoppings and pairings. These short-ranged terms are char-
acterized by the lattice constant a, which is set to be unity
throughout this paper. The universal phenomena at criticalities
emerge when 1 	 ξcor. However, the length scale ξ , which ap-
pears to be finite, needs to be carefully treated and compared
with the existing scales: (1) When ξ 	 1 	 ξcor the short-
ranged properties, characterized by the lattice spacing (∼1),
can be captured by neither the localization length ξ nor the
correlation length ξcor. Thus α(ξ = 0) ≡ 1, which is universal
for all three models. (2) When ξ ∼ 1, i.e., the localization
length is comparable with lattice spacing, the short-ranged
physics matters. That is the reason why the model-dependent
function α(ξ ) determines the scale, g.

In the next section, we will show how the scale g naturally
emerges in the universal finite-size scaling corrections to
ground-state energy.
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IV. UNIVERSAL FINITE-SIZE SCALING EFFECT
AROUND THE TRICRITICALITY

In this section, we will show the emergence of the universal
scale g describing the finite-size correction to the ground-state
energy around the tricriticality. Namely, we will show that the
finite-size correction to the ground-state energies of Models I,
II, and III has the universal form given by Eq. (3).

Further, we will show that in two simultaneous double-
scaling [31] limits: (1) N → ∞, m → 0 with w = const and
(2) N → ∞, B → 0, with g = const, the function f (w, g) is
a universal function of two variables in Eq. (3). To uniquely
identify f (w, g) around the tricriticality, we adopt the follow-
ing convention: we choose the sign of m to be m > 0 for 4-MF
and for 0-MF, while m < 0 for 2-MF.

A. Numerical approach to compute the
finite-size scaling function

Here we outline the numerical approach for the calculation
of the ground-state energy, E (N, m, B). We obtain it by per-
forming a summation of the occupied single-particle energy
levels corresponding to the Hamiltonian under open boundary
conditions. The per-particle average bulk energy, ε(m, B), is
obtained upon summing up the occupied energies and dividing
the result by N . This procedure yields

ε = − 1

4π

∫
BZ

dk
∑

s

Es(k), (33)

where BZ stands for the Brillouin zone, and Es(k) is single-
particle excitation energy in the k-space corresponding to
band s. For example, in case of model I, one has two energy
bands, and thus s acquires only two values s = ± [for this
model, Es(k) is given by Eq. (24)]. The boundary energy,
b(m, B), is then given by

b = lim
N→∞

[E (N, m, B) − Nε(m, B)]. (34)

Having identified all the necessary ingredients, the finite-size
scaling function f is obtained from

f = lim
n→∞ n[E (n, m, B) − nε(m, B) − b]. (35)

Numerically, we pick a large system with N0 = 1000
and compute b̃ = E (N0, m, B) − N0ε(m, B). Having evalu-
ated the boundary energy, b̃, we take n0 = 100 to eval-
uate the finite-size scaling function, labeled by f̄ : f̄ =
n0[E (n0, m, B) − n0ε(m, B) − b̃]. The outlined computation
is based on two approximations: (1) the evaluated boundary
energy b̃ generates an error e1 ∼ O(n/N ) that contributes to f̄
and (2) the higher order terms are ignored, which yields an er-
ror e2 O(n−1) to f̄ . The total error is thus f − f̄ ∼ O(n/N ) +
O(n−1). By keeping track of these errors and accumulating
statistics, one can obtain accurate data for f with controlled
precision.

B. Emergence of the scale g

In this subsection, we take Model I: coupled Majorana
chains with complex vertical pairing potential as an example
and use the method of Sec. IV A to evaluate its finite scaling
f . Then we show that f is a double scaling function of two
variables: the standard variable Nm and an emergent scale g.

There are several important quantities around the tricrit-
icality: (1) The spectral gap m, (which is identified with
the mass of the low-energy effective field theory), (2) the
localization length, ξ , of Majorana edge modes existing at
the tricriticality, which characterize the topological properties
of the tricritical point, (3) the system size, N , which is the
essential ingredient for studies of finite-size effects, and (4)
the symmetry-breaking field B, which induces the tricritical-
ity. We find that the finite scaling f does explicitly depend
on certain combinations of m, N , ξ , and B: if we vary m,
N , ξ , and B keeping g = √

N coth(1/2ξ )B (for Model I) and
w = Nm const, f always yields exactly the same value. This
means that f ≡ f (w, g) is only a function two variables, w

(a) (b)

FIG. 7. The finite-size scaling function f is plotted as a function of g for Model I. Panel (a) corresponds to w = 2 and panel (b) corresponds
to w = −2. These curves have been obtained for nine different values of α = √

coth 1/2ξ and N .
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FIG. 8. The finite-size scaling functions at w � 1. Curves from
top to bottom correspond to values w = 1, 2, 3, 4, 5. Here only the
g � 1 is presented. As w increases, f (w, g) decays faster since
larger w means being further away from a second-order phase tran-
sition. Then the contribution coming from the first-order transition
dominates.

and g. This observation puts forward the definition of the scale
g in Eq. (32). The scale w = Nm is consistent with previous
papers on the finite-size scaling effect with no TRS breaking
[2,4].

Figures 7(a) and 7(b) give concrete results to support that
f is a function of g: f yields the same value if we keep g
to be constant simultaneously changing N , ξ , and B. In the

FIG. 9. The finite-size scaling function at w � −1. The left
figure depicts the scaling function when g varies from 0 to 12, while
the right figure depicts the behavior when 0 � g � 0.4.

FIG. 10. The finite-size scaling function at −0.1 < w < 0.1.

remainder of the paper, we will use f (w, g) to represent the
finite-size scaling around the tricriticality.

C. Universality of the finite-size scaling function f (w, g)

We calculate the scaling function f for all three models
introduced in Sec. III. We show the universality nature of
f (w, g) for all of them. In each model, symmetry-breaking B
is realized in different ways by involving different lattice pa-
rameters: �I

v is imaginary part of the vertical pairing potential
for Model I in Sec. III A, t I is imaginary part of the intrachain
hopping for Model II in Sec. III B, and t I

v is imaginary part of
vertical hopping for model III in Sec. III C.

We find that all three models yield the same finite-size
scaling function f (w, g), although the field B has different ori-
gins in them. Figure 1 depicts f (w = 0, g) at criticality for all
three models, and Fig. 2 depicts f (w = 2, g) corresponding
to the gapped phase for all of them. These plots support the
universality, either at the criticality or for the gapped phase.
The finite-size scalings f (w, g), calculated for three models,
provide the same sets of curves.

D. Features of the finite-size scaling function f (w, g)

Here we analyze the features of f (w, g). The function itself
is given by a 2D surface in a 3D space of (w, g, f ). We depict
some of the curves residing on this surface: for each value of
w, we plot f (w, g) as function of g. We use the parameters
of the complex-vertical pairing model I as an example to
present f (w, g) (although f is universal, for simplicity of the
presentation we work in the parameter space of this model).

The results are as follows: Figs. 8 and 9 show the behavior
of f (w, g) with w ranging between 1 � w � 5 and −5 �
w � −1. When w belongs to these intervals, f (w, g) is a
monotnoic function of g. In the first interval, f (+|w|, g)
decays exponentially as a function of g, while in the second
one, f (−|w|, g) converges slowly (which is in fact ∝g−2 at
large g). Figures 10 and 11 show the behavior of f (w, g) in
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FIG. 11. The finite-size scaling function at criticality (w = 0)
plotted for three different values of N .

the interval −0.1 < w < 0.1. For small |w| < 0.1, f (w, g)
is a nonmonotnoic function of g. At the criticality, w = 0,
the finite-size scaling f (0, g) strongly depends on the scale
g. Figure 12 shows that the function f (w, g) saturates to a
constant value as ∝g−2 at large g.

At this stage, it is interesting to compare our universal
finite-size scaling function f (w, g) with the result of Ref. [4]
for the scaling function, fD(w). The latter was calculated in
a situation, where there were no tricriticalities. From all the
curves above, we confirm the role of g: g provides interpo-
lation between fD(w) and fD(−w) by f (w, g = 0) = fD(w)
and f (w, g = +∞) = fD(−w). For example, it is shown in
Ref. [4] that fD(1) ≈ 0.6 in a 1D topological phase while
fD(−1) ≈ 0 in a trivial phase. The curve with w = 1 in Fig. 8
provides the decaying function f (1, g) from 0.6 [that is, the
value of fD(1)] to 0 [value of fD(−1)].

FIG. 12. The linear fit of f (w, g) versus g−2 is shown at g �
1: f (w, g) = f (w, ∞) − β/g2. The panels depict the function δ =
f (w, ∞) − f (w, g) vs g−2. The g-independent shift f (w, ∞) is
given by the constant part in the linear fit.

V. LOW-ENERGY EFFECTIVE THEORY
AROUND THE TRICRITICALITY

In the section, we start from the parent Hamiltonian
h(−i∂x ), given by Eq. (10), which supports the low-energy
Majorana field theory and two Majorana edge modes. As
the first step, we rewrite the symmetry-breaking Hamiltonian
Hinterchain(B) − Hinterchain(B = 0), where Hinterchain(B) is given
by Eq. (21), in the momentum representation. This yields
hB = −Bσx ⊗ τy, which acts as a perturbation to the parent
Hamiltonian. Then we consider the low-energy sector of the
perturbed theory by calculating the matrix elements of hB us-
ing the low-energy eigenstates of the full parent Hamiltonian
[note that in this basis the parent h(−i∂x ) is diagonal]. At this
level, we explicitly show the emergence of the scale, g, in the
low-energy effective matrix. Finally, we obtain the spectrum
of the effective matrix and analyze the essential properties
around the tricriticality.

A. Low-energy sector around the tricriticality at B = 0

Here we identify the low-energy eigenstates of the parent
Hamiltonian h(−i∂x ), around the tricriticality. Diagonaliza-
tion of h(−i∂x ) yields two energy bands that are above the
chemical potential. The lower one corresponds to the low
energy states being described by the 1 + 1D Majorana field
theory. The higher energy band also brings upon states sup-
porting and protecting Majorana zero-energy edge modes. In
this way, we obtain two sets of low-energy states: (1) states
that are described by 1 + 1D Majorana field theory. We call
these states MFT-states and (2) zero-energy edge modes that
are protected by the topological number of the higher energy
band of the ladder model.

We take Model I with the complex-vertical pairing poten-
tial as an example, and start from the Hamiltonian h(−i∂x ):

h(−i∂x ) = [−2t cos(−i∂x ) − μ]σz ⊗ 12

+ 2� sin(−i∂x )σy ⊗ 12 − tvσz ⊗ τx, (36)

where we took �v = 0 for simplicity (as it does not affect the
universal properties under consideration).

Around the criticality, the wave function of the lower
band can be obtained from linearization of h(−i∂x ). The
operator h(−i∂x ) has two energy bands above the chemical
potential, with the lowest one being Ek = √

m2 + k2 with m =
(2t − μ − wv )/(2t ), at μ,w > 0. The corresponding eigen-
states are the MFT states. For an infinite system (no imposed
boundary conditions), these MFT states are characterized by
good quantum numbers k (momentum) and n (energy):

h(−i∂x )eikxu(n, k) = n2t
√

m2 + k2eikxu(n, k), (37)

where in principle, k can be either real or imaginary and
u(n, k) is a four-component vector function of n and k. Now
we impose the following geometry constraints: assume the
system has a finite length (0, N ) and four-component eigen-
states of h(−i∂x ), ϕi(x), i = 1, . . . , 4, satisfy the following
boundary conditions:

ϕ1(0) − ϕ2(0) = ϕ3(0) − ϕ4(0) = 0,

ϕ1(N ) + ϕ2(N ) = ϕ3(N ) + ϕ4(N ) = 0. (38)
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These boundary conditions are justified in Appendix D. We
find that the eigenstates of h(−i∂x ), which also satisfy the
boundary conditions (38), are characterized by quantized k
and n. The quantized values of k are given by the following
equation:

tan kN = k/m. (39)

For future consideration, we introduce a notation Q(m)
representing the set of quantized values of k, ranging from 0
to π , which satisfies Eq. (39). π , as the bound of quantized k,
comes from that we consider unit lattice spacing and discrete
space. We will also use the notation |ψn,k〉 to represent a single
MFT state, which is characterized by quantized k and n. Its
analytical expression in the coordinate space x, 〈x|ψn,k〉, is
given in Appendix D.

The other set of Majorana zero-energy boundary modes,
which are protected by the topological number of the higher
band, cannot be accurately obtained from the first-order ex-
pansion of the Hamiltonian (36). Instead, one needs to use
the exact form of the Hamiltonian, which can give a precise
description of the higher band. Solving h(−i∂x )ψ (x) = 0,
we find two zero-energy wave functions: ψL(x) and ψR(x),
which are protected by the higher-band. The wave functions
ψL,R(x) are localized at left or right boundaries of the system
correspondingly. Their analytical expressions read as

ψL(x) =
√

1 − e−2/ξ e−x/ξϕL,

ψR(x) =
√

1 − e−2/ξ e−(N−x)/ξϕR (40)

with ξ−1 = log 2t
μ−tv

, ϕL = 1
2 (1, 1,−1,−1)T , and ϕR =

1
2i (1,−1,−1, 1)T . We remind the reader that ξ−1 obtains the
complex phase iπ if 2t/(μ − tv ) < 0. We will use the notation
|ψL,R〉 to represent the corresponding ket (bra) states of these
boundary modes. One may see that the expression for ξ here is
consistent with ξ− in Eq. (18), which is the localization length
derived from the lattice model.

B. Low-energy effective matrix in the
presence of the TRS breaking

Here we introduce the symmetry-breaking field B and
study the low-energy properties of the TRS broken Hamil-
tonian. For example, we consider Model I with the complex
vertical pairing potential. We note again that the symmetry-
breaking term in this Hamiltonian is written in the momentum
space as

hB = −Bσx ⊗ τy (41)

with B = �I
v in this case. We confine our focus on the low-

energy sector at the tricriticality. We choose the eigenstates
of the parent Hamiltonian as basis states for the low-energy
sector: {|ψL,R〉, |ψn,k〉|n = ±, k ∈ Q(m)}, where Q(m) is set
of quantized k-values defined above. In order to represent
the full Hamiltonian, h(−i∂x ) + hB in this basis, we need to
calculate the corresponding matrix elements. Here h(−i∂x )
yields a diagonal matrix, whose diagonal values are the en-
ergies of corresponding modes. Thus, we will focus on the
representation of hB, which yields off-diagonal elements.

Upon calculating all the matrix elements of hB, we find
that only a limited number of off-diagonal matrix elements

are nonzero. All possible finite off-diagonal elements are
listed below. For the case when MFT states |ψn,k〉 with real
quantized k couple to the zero-energy modes ψL,R via hB, we
have

〈ψn,k|hB|ψL〉 = −n
B√
N

√
coth(1/2ξ )|sin kN |,

〈ψn,k|hB|ψR〉 = B

i
√

N

√
coth(1/2ξ ) sin kN, (42)

where | sin kN | means the absolute value of sin kN . In the case
with imaginary quantized k = iκ , one has

〈ψn,iκ |hB|ψL〉 = −i
√

w
B√
N

√
coth(1/2ξ ),

〈ψn
n,iκ |hB|ψR〉 = −n

√
w

B√
N

√
coth(1/2ξ ). (43)

Using the four matrix-elements above, we can calculate
the corrections to all single-particle energies due to the
TRS-breaking perturbation. From here one clearly observes
the emergence of the scale g = α(ξ )

√
NB, with α(ξ ) =

coth(1/2ξ ) for Model I. This consideration analytically shows
the nature of the scale g, which was extracted numerically
from the universal finite-size corrections to the energy. More
details of determining α(ξ ) for different models are contained
in Appendix G.

C. Evolution of the low-energy spectrum
with the TRS-breaking field

One can calculate the eigenvalues of the effective low-
energy matrix to obtain the low-energy spectrum of the sys-
tem. We do this for three different values of w = Nm: (1) At
w = 2 we trace the topological transition from 4-MF phase
(at g = 0) to 0-MF phase (at finite g). (2) At w = 0 we trace
the topological transition from tricriticality, (at g = 0), which
represents an example of gapless SPT phase with two bound-
ary Majorana modes, to the trivial critical phase. (3) At w =
−2 we trace evolution of the spectrum of the topologically
ordered 2-MF phase with the TRS-breaking field and show
that the localized Majorana modes remain localized even in
the presence of finite g. The low-energy spectra of the model
in these three situations are shown in Fig. 13:

(1) Figure 13(a) describes the evolution of the low-energy
spectrum with scale g, when the 4-MF phase smoothly tran-
sitions to the 0-MF phase without closing the bulk gap. We
clearly observe that four zero-energy modes get gapped and
merge into the bulk band. At the same time, the energy levels
of bulk modes also acquire a sensitivity to g. We will analyze
their g-dependence afterward.

(2) Figure 13(b) describes the evolution of the low-energy
spectrum starting from tricriticality at g = 0, and upon in-
creasing of g. We see that the zero-energy modes merge into
the bulk band, and the energy level of each of the bulk mode is
lifted by one “step” up, occupying the spot of the next higher
band at g = 0. This happens when g increases from 0 to 10.

(3) Figure 13(c) describes the g-dependence of the low-
energy spectrum of the topologically ordered 2-MF state.
Although the topology of 2-MF phase is robust with re-
spect to the TRS-breaking perturbation, the spectrum still
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(a) w = 2 (4-MF and 0-MF) (b) w = 0 (criticality) (c) w = −2 (2-MF)

FIG. 13. Several low-lying energy levels of the effective matrix around E = 0 plotted as a function of g varying from 0 to 10. (a) The
spectrum for w = 2 and describing how 4-MF state is smoothly connected to 0-MF state. The evolution of the lowest energy levels, depicted
as light gray (blue and yellow) lines, shows how the zero-energy modes merge into the bulk. The bulk energy levels (black lines) also experience
change. (b) The spectrum for w = 0 (criticality) showing nontrivial behavior: the edge modes, shown in light gray (blue), obtain finite energy
and finally merge into the bulk. The energy levels of bulk modes deviate from Majorana CFT values when g increases from 0, and then
converge to Majorana CFT values when g → +∞. (c) The spectrum for w = −2. The zero-energy modes in 2-MF obtain finite energy, which
is proportional to e−λ|w|, indicating that the localization length of edge modes changes.

exhibits some nontrivial behavior. The degeneracy of the
zero-energy modes in 2-MF phase is being slightly lifted,
but the discrepancy between the states is exponentially small
and is proportional to e−|w|. In fact, the localization length
ξ of the edge modes is changed: if for example we consider
the tricriticality corresponding to the upper tricritical point
if the phase diagram 5(a) [which has the coordinates (0,1)
in that diagram], then ξ changes from ξ−(g = 0) to ξ+(g =
∞). We note that g = 0 when the TRS is preserved (B = 0),
while g → ∞ is achieved at the thermodynamic limit when
the system size is N � 1/(αB)2).

In Sec. V A we considered the low-energy sector at the
tricriticality (g = 0) and showed it is composed of MFT states,
and the zero-energy modes at the tricriticality are protected by
the higher-energy band. Thus the low-energy spectrum at the
tricriticality, which is labeled by E (m, g), is given by

E (m, 0) = ±{0,
√

m2 + k2|k ∈ {Q1(m), . . . , QN (m)}}.
(44)

Here we observe that the low-energy spectrum away from
tricriticality (g → ∞, or, in practice, g � 10) is given by

E (m, g) = {±
√

m2 + k2|k ∈ {Q1(−m), . . . , QN (−m)}}.
(45)

Here the spectral gap, m, around the tricriticality is positive in
the 4-MF and 0-MF phase, while m is negative in the 2-MF
phase.

From Eq. (44) and Eq. (45), one can observe that for the
same value of m, the set of quantized momenta, k, is reversed
[{Q1(m), . . . , QN (m)} becomes {Q1(−m), . . . , QN (−m)}]
when g evolves from 0 to ∞. The fact is supported by the
numerically calculated energy spectrum shown in Figs. 13(a)
and 13(c). Although at the criticality Q(−0) = Q(0),
Fig. 13(b) still yields a nontrivial interpolation between
E (m = 0, g = 0) and E (m = 0, g = ∞), indicating the
discussed in Sec. IV nontrivial finite-size scaling effect.

The derivation of the closed analytical expression for the
exact spectrum of the effective matrix is tedious since the
edge modes ψL/R couple to all other states. For small g 	 1,
one may use the quasiparticle picture at g = 0 and apply
perturbation theory. We find that the energies of MFT states
corresponding to the bulk |ψn,k〉 states, and the edge modes
|ψL,R〉, acquire perturbative corrections proportional to pow-
ers of the scale g. These corrections are discussed in detail in
Appendix I. In the limit g 	 1 and w = 0, the energy, εe, of
the edge modes ψL/R becomes

εe ≈ g2/N, |w| = 0. (46)

For the aymptotic region where g and w satisfy√|w|e−|w| 	 g 	 1, εe is given by

εe ≈
{ √

2
|w|3 g2/N for w 	 −1√

2wg/N for w �1
. (47)

At w � 1, the linearity coefficient
√

2w � 1. This implies
that the edge modes in 4-MF phase are unstable with respect to
the TRS-breaking perturbation. On contrary, at w 	 −1, the
coefficient

√
2/|w|3 → 0, indicating stability of edge modes

in the 2-MF phase.

D. The finite-size scaling function at |w|, g � 1

The ground-state energy at |w| 	 1 and g 	 1 is obtained
upon performing the summation of energy levels in the oc-
cupied band. At |w| 	 1, the quantization of momenta in
the MFT yields only bulk modes (and no boundary modes
associated with MFT), and the energies of bulk MFT states
are {εl |0 � l � N − 1}. There are, however, two Majorana
edge modes protected by the topological index of the higher
band. The energies of these edge modes (defined as ψL/R

in the previous section) are defined as ±εe. The analyti-
cal expressions of εe and εl are given in Appendix I. The
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ground-state energy of the system will thus read

EG = −1

2
εe − 1

2

∑
l�0

εl . (48)

This expression can further be simplified by rewriting the
summation in the ground-state energy [both the summation in
εe and the summation over l in Eq. (48)] via a Cauchy contour
integral. This is done in Appendix J, leading to

EG = −1

4

∮
C

dk

2π i
[Em,g(k)q+(k) + Em,0(k)q−(k)]. (49)

Here q±(k) = ∂k ln[cos 1
2 (Nk + δm) ± π

4 ], tan δm = k/m,

Em,g(k) ≈
√

m2 + k2 + 8g2/N2 (since here |w| 	 1). The
contour C encircles all poles of q±(k) in the complex plane,
but it avoids the branch-cut line of E (m, g) along the complex
line z = ix with x �

√
m2 + 8g2/N2.

Upon taking the derivative of q±(k), one can obtain the
bulk energy, Nε, and the boundary energy, b, as follows:

Nε =
∫ π

−π

dk

2π
[Em,g(k) + Em,0(k)]N/4,

b =
∫ π

−π

dk

2π
[Em,g(k) + Em,0(k)]∂kδm/4. (50)

Then the combination EG − Nε − b is the energy responsible
for finite-size corrections to the ground-state energy, − f /N .
After performing a contour integration, we find the finite-size
scaling function, f (w, g), given by the following integral:

f (w, g) = −
∫ ∞
√

8g2+w2

dz

2π
Ew,g(z)∂z ln(1 + e−2z−2δw (z) )

−
∫ ∞

w

dz

2π
Ew,0(z)∂z ln(1 + e−2z−2δw (z) ). (51)

So, we see that f (w, g) is a function of w and g. One
can evaluate this integral at w = 0 and g 	 1, yielding the
following asymptote:

f (0, g) − f (0, 0) � 1√
π

g2 log g, (52)

where f (0, 0) = π/24.

VI. THE LOW-ENERGY HAMILTONIAN AT CRITICALITY
AND THE BOUNDARY ENTROPY

In this section, we work out the second quantized formal-
ism for the low-energy Hamiltonian at criticality. We show
that the boundary entropy is a universal function of the scale
g for Models I, II, and III.

A. The low-energy Hamiltonian at criticality

In second quantization, for the MFT modes, ψn,k and ψL/R

given by Eq. (D6) and Eq. (40), one defines the corresponding
quasiparticle operators, ψ̂n,k and ψ̂L/R. The analytical expres-
sions of these operators and their properties are discussed
in Appendix E. The particle-hole symmetry of the theory is
reflected in the following property of ψ̂n,k : ψ̂†

+,k = ψ̂−,k . Thus,
we keep only one operator with positive energy, ψ̂k ≡ ψ̂n,k .

We remind readers that ψ̂L and ψ̂L are two localized Majorana
fermion operators: ψ̂

†
L = ψ̂L and ψ̂

†
R = ψ̂R.

Consider the effective matrix corresponding to the Model I
at the criticality (m = 0); see Sec. V. The corresponding low-
energy Hamiltonian is given by

H =
∑

k∈Q(0)

kψ̂
†
k ψ̂k + α(ξ )B√

N
(ψ̂k − ψ̂

†
k )ψ̂L

+ sin(kN ) · α(ξ )B√
N

ψ̂k + ψ̂
†
k

i
ψ̂R, (53)

where Q(0) ≡ {π/2N + mπ/N |m = 0, 1, . . . , N − 1}. Here
the upper bound for m is N − 1, since the lattice spacing is
chosen to be unity.

In the continuum limit, when the lattice spacing a → 0, the
Hamiltonian above becomes equivalent to (see Appendix F)

H = 1

2

∫ +∞

−∞
dx

(
ψ̂†

c (x) ψ̂c(x)
)
(m(x)σz − iσy∂x )

(
ψ̂c(x)

ψ̂†
c (x)

)

+ α(ξ )B√
2

(i[ψ̂†
c (0)+ψ̂c(0)]ψ̂L+[ψ̂†

c (N )−ψ̂c(N )]ψ̂R).

(54)

Here ψ̂c(x) is the generic spinless fermion annihila-
tion operator at continuous space coordinate x, satisfying
{ψ̂c(x), ψ̂†

c (x′)} = δ(x − x′). Operators ψ̂L/R correspond to
two localized Majorana fermion operators, satisfying 2ψ̂2

L/R =
1, and the mass term, m(x), is given by

m(x) =
{

0 0 < x < N

+∞ x < 0, x > N
.

From Eq. (54), one may formulate the corresponding action
and conclude that α(ξ )B drives the boundary RG flow from
the bulk Ising criticality with two localized Majorana bound-
ary modes (gapless SPT phase) to the bulk Ising criticality
without localized Majorana boundary modes (gapless trivial
phase). Scaling dimension of α(ξ )B is 1/2 so the dimension-
less g = α(ξ )

√
NB emerges as scale invariant under RG flow.

The Hamiltonian in Eq. (54) is consistent with the action
proposed in the literature [33,34], which is used to describe
the boundary Ising chain. In the model of the boundary Ising
chain, the boundary magnetic field drives the RG flow from
the free boundary condition [35,36] to the fixed boundary
condition.

B. The boundary entropy

The boundary entropy is defined by the logarithm of uni-
versal noninteger degeneracy [28], which depends only on
the universality class of the conformally invariant boundary
condition [35,36]. In practice, one can obtain the boundary
entropy via calculating the Von Neumann entropy [37]. Given
the system defined on an interval M, one can partition it into
two subsystems consisting of two intervals, A and B. Von
Neumann entropy measures the entanglement between two
subsystems. Let ρ be the density matrix of system M and
ρA := trBρ is the reduced density matrix of A. Von Neumann
entropy is then defined as S = −trAρA log ρA. In the following,
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FIG. 14. Boundary entropies of Models I, II, and III and the low-
energy effective Hamiltonian [Eqs. (53) and Eq. (54)]. All curves
fall into same universal curve representing the universal boundary
entropy.

we will focus on the system with boundaries: M = (0, N ),
A = (0, l ), and B = (l, N ).

For critical lines around the tricriticality, we find that the
von Neumann entropy is given by

S = c

6
log(2l ) + c1/2 + SB(αB

√
l ), (55)

where c1 is nonuniversal constant and SB(αB
√

l ) is the bound-
ary entropy. We show that SB(αB

√
l ) is universal for Models

I, II, and III and the low-energy Hamiltonian (54); it is
depicted in Fig. 14. This result is consistent with that reported
in the literature on the universal flow of boundary entropy
[33,38,39].

VII. CONCLUSIONS

In this paper, we report the existence of quantum tricriti-
cality in Models I, II, and III, which separates topologically
ordered, SPT, and trivial phases of the system. We study the
finite-size corrections to the ground-state energy and find that
it is a universal function of a dimensionless scale, g = α

√
NB,

where B is the symmetry-breaking field. Thus, around the
tricriticality, the finite-size corrections are determined by two
variables, w = Nm, and g. We derive the effective low-energy
theory corresponding to these models and show the emergence
of the scale g that describes the evolution of the low-energy
spectrum with B. We analytically calculate the asymptotes of
the universal finite-size scaling function, f (w, g). Finally, we
show that the scale g emerges in the boundary entropy, which
is shown to be universal for three models.

We conjecture that the universal finite-size double-scaling
function should emerge not only for coupled Majorana chains
considered in this work, but also for other models which
support SPT, topologically ordered, and trivial phases. In the
free fermion classification [6–8], only Majorana chains can
support such phases. However, one may find such tricritical-
ities in interacting models, including the spin chains, which
are beyond the free fermion classification. For example, it

is interesting to investigate the finite-size effects in critical
spin chains perturbed by a TRS-breaking scalar chirality
operator [40,41]. The tricriticality may also exist in interacting
Majorana chains [13,15,42–45], since 4-MF and 2-MF are
both stable in the presence of interactions, which preserve the
time-reversal symmetry and fermion-parity symmetry. The
behavior of finite-size scaling function in interacting systems,
including the spin chains and higher dimensional systems with
TRS breaking is beyond the scope of the paper, and is left for
future studies.
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APPENDIX A: ZERO-ENERGY MODES OF
ANTISYMMETRIC MATRIX A

In the Majorana-fermion basis, one can formulate the
Hamiltonian H in Eq. (5) in terms of an antisymmetric
matrix, A,

H = i

4

2∑
m,n

2N∑
j,l

c j,mAm,n
j,l cl,n, (A1)

where the matrix elements are given by Am,m
2 j−1,2 j =

μ, Am,m
2 j,2 j+1 = � + t , Am,m

2 j−1,2 j+2 = � − t where m = 1, 2,

A1,2
2 j−1,2 j = �v − tv , A1,2

2 j,2 j−1 = �v + tv . Then the problem of
solving for the edge modes with open boundary conditions is
equivalent to find new Majonara modes [6] b = ∑

j,m v j,maj,m

where �v satisfies ∑
j,m

v j,mAm,n
jl = vl,n × 0. (A2)

In the case when � = t , one can further simplify Eq. (A2),
leading to series of equations, which in turn provide two types
of solutions. One solution for v j,m is such that only v j,m with
odd site indices j are nonzero:

v2i−1,m = α+,mx−i
+ + α−,mx−i

− . (A3)

The other solution is such that only v j,m with even site indices
j are nonzero:

v2i′,m = β+,mx−i′
+ + β−,mx−i′

− , (A4)

where i acquires values from 1, . . . , N , while i′ = N − i. Here
the coefficients α and β are arbitrary. Moreover, x+ and x− are
given by

x± = 2t

μ ± √
t2
v − �2

v

. (A5)

The boundary conditions are vm
2i−1 = 0 for i = L + 1 and

vm
2i′ = 0 for i′ = L + 1. Thus the existence of edge modes

reduces to the estimation of x±:
(1) x+ > 1 and x− > 1 indicate four localized Majorana

edge modes
(2) x+ > 1 and x− < 1 indicate two localized Majorana

edge modes
(3) x+ < 1 and x− > 1 indicate two localized Majorana

edge modes
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(4) x+ < 1 and x− < 1 indicate zero localized Majorana
edge modes.

One may convert x± into localization length of the edge
modes with the help of e−1/ξ± = (x±)−1, which can be further
written as

ξ−1
± = ln

2t

μ ± √
t2
v − �2

v

. (A6)

Here ξ± are the correlation lengths of edge modes character-
ized by x±, respectively.

APPENDIX B: UNIFORM FLUX

In the momentum-space representation, t-dependent terms
are obtained upon Fourier transforming (H1 + H2) evaluated
at � = μ = 0. This yields the expression

−
∑

j

[2t cos(k + θ/2)â†
k,1âk,1 + H.c.]

−
∑

j

[2t cos(k − θ/2)â†
k,2âk,2 + H.c.] (B1)

Now, we switch to the Majorana basis, and express the
complex hopping as teiθ/2 = tR + itI . This will provide the
following form of Eq. (B1) for (H1 + H2)|�=μ=0:

− itI
2

N−1∑
j=1

2∑
m=1

eimπ (c2 j−1,mc2 j+1,m + c2 j,mc2 j+2,m )

+ itR
2

N−1∑
j=1

2∑
m=1

(c2 j,mc2 j+1,m − c2 j−1,mc2 j+2,m ). (B2)

APPENDIX C: STAGGERED FLUX

Since staggered-flux introduce sublattice, t I
v gives coupling

between two valleys in momentum space. In the Majorana
basis, we decompose tveiθ/2 = tR

v + it I
v and express the inter-

chain Hamiltonian as

Hinterchain = i

2

∑
j

(
�v − tR

v

)
c2 j−1,1c2 j,2

+ i

2

∑
j

(
�v + tR

v

)
c2 j,1c2 j−1,2

+ i

2

∑
j=2n+1

t I
v (c2 j−1,1c2 j−1,2 + c2 j,1c2 j,2)

− i

2

∑
j=2n

t I
v (c2 j−1,1c2 j−1,2 + c2 j,1c2 j,2), (C1)

where terms proportional to t I
v break TRS symmtery.

Staggering of the flux doubles the unit cell and introduces
two sublattices. Hopping t I

v couples two valleys in momentum
space

Hinterchain
(
t I
v, tR

v = 0,�v = 0
) =

∑
k

it I
v â†

k,1âk+π,2 + H.c.

(C2)

APPENDIX D: MFT OF THE LOW-ENERGY SECTOR

The operator h(−i∂x ) has two types of eigenstates: one is
eikxψk where ψk satisfies that h(k)ψk = Eψk , representing the
bulk modes. The other one is e−κxψiκ , which correspond to
edge modes. Here we are interested only in the low-energy
sections in the eigenspace of h(k) and may adopt �v = 0 and
wv > 0 to simplify the representation of the wave function.
There are two low-energy branches; one is positive and the
other is negative:

h(−i∂x ) eikxu±(k) = ±2tEkeikxu±(k). (D1)

Here Ek = √
m2 + k2 and m = 2t−μ−

√
w2

v−�2
v

2t is the gap of the
system. The definition of m indicates m > 0 for 4-MF and
m < 0 for 2-MF.

The wave functions u±(k), with real k, represent the bulk
modes. They are given by

u±(k) =
√

2

2

(− cos θ± i sin θ± − cos θ± i sin θ±
)T

.

Here θ± is defined as

(cos θ±, sin θ±) = (m ± Ek, k)√
2Ek (Ek ± m)

. (D2)

The wave function with imaginary k = iκ corresponds to
boundary excitations:

u±(iκ ) =
√

2

2
(cos φ± sin φ± cos φ± sin φ±)T . (D3)

The variables φ± here are defined as

(cos φ±, sin φ±) = (m ± Eiκ , κ )√
2m(m ± Eiκ )

. (D4)

The boundary conditions in Eq. (38) are obtained by imposing
a chemcial potential, μ(x), such that

μ(x) =
{
μ 0 < x < N

−∞ x < 0, x > N
. (D5)

The chemical potential μ(x) imposes the condition that the
mass, m(x) = [2w − μ(x) − wv]/(2t ), is +∞ outside of the
segment (0, N ).

For each energy level, there exist two linearly independent
eigenstates, with k and −k. To satisfy the boundary condi-
tions, one chooses a linear superposition of two eigenstates,
which provides an eigenstate that is consistent with Eq. (38).
This yields a set of two normalized wave functions of the form

ψ±,k (x) = 1√
2N

[ei(kx−θ± )u±(k) − e−i(kx−θ± )u±(−k)],

(D6)

ψ±,iκ (x) =
√

w

N
[e−κxu±(iκ ) ∓ eκ (x−N )u±(−iκ )], (D7)

where the normalization factors ignore the overlapping terms
between k and −k since overlap between wave functions at k
and −k is highly oscillatory, while the overlapping between
wave functions with k = iκ and k = −iκ is exponentially
small (as e−Nκ ). Finally, the boundary conditions at x = N ,
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which are given by Eq. (38), yield the quantization rule of k
as tan kN = k/m.

APPENDIX E: QUASIPARTICLE OPERATORS

We define the fermion creation operators ψ̂
†
n,k and ψ̂

†
L/R as

follows:

ψ̂
†
n,k =

N∑
i=1

(â†
i,1 âi,1 â†

i,2 âi,2)ψn,k

(
i − 1

2

)
,

ψ̂
†
L =

N∑
i=1

(â†
i,1 âi,1 â†

i,2 âi,2)ψL(i − 1),

ψ̂
†
R =

N∑
i=1

(â†
i,1 âi,1 â†

i,2 âi,2)ψR(i), (E1)

where âi, j is the fermion annihilation operator at lattice site i
and chain j, ψn,k , and ψL/R are the wave functions given by
Eq. (D6) and Eq. (40). One can show that the operators defined
above satisfy ψ̂

†
n,k = ψ̂−n,k and ψ̂

†
L/R = ψ̂L/R.

APPENDIX F: THE LOW-ENERGY HAMILTONIAN IN
THE CONTINUUM LIMIT

Given the lattice constant, a, the lattice sites can be chosen
to be located at points X = { ja − a/2| j = 1, 2, . . . , N/a}.
Then we consider H0 as

H0 =
∑

x

(ψ̂†(x) ψ̂ (x))(m(x)σz − iσy∂x )

(
ψ̂ (x)

ψ̂†(x)

)
.

Here ψ̂ (x) is the fermion annihilation operator at the lattice
site, x, with x = ja − a/2, j ∈ Z in the summation. Here
m(x) = 0 if x ∈ X and m(x) = +∞ if x /∈ X . One may define
an operator, ψ̂k , in terms of which H0 is diagonal,

ψ̂k = i√
N/a

∑
x∈X

cos(kx − π/4)ψ̂†(x) − sin(kx − π/4)ψ̂ (x).

(F1)

Here k = π
N ( j − 1/2), j = 1, 2, . . . , N/a. Then the Hamilto-

nian, H0, is H0 = ∑
k kψ̂

†
k ψ̂k . In fact, Eq.(F1) can be rewritten

to express ψ̂ (x) as

ψ̂ (x) = i√
N/a

∑
k

cos(kx − π/4)ψ̂†
k + sin(kx − π/4)ψ̂k .

Then one can use the equation above to show the following
identities:

i√
2a

[
ψ̂

(
a

2

)
+ ψ̂†

(
a

2

)]
= 1√

N

∑
k

cos

(
ka

2

)
(ψ̂k − ψ̂

†
k )

and

i√
2a

[
ψ̂

(
N − a

2

)
+ ψ̂†

(
N − a

2

)]

= 1√
N

∑
k

sin(kN ) cos

(
ka

2

)
ψ̂k + ψ̂

†
k

i
. (F2)

In the continuum limit (a → 0) one can introduce the field
operator ψc(x) = lima→0

1√
a
ψ (x) so that {ψc(x), ψ†

c (x′)} =
δ(x − x′). Since we are interested in the low-energy theory
(and small k), we approximate cos(ka/2) � 1. Thus, one will
obtain

i√
2

[ψ̂c(0) + ψ̂†
c (0)] = 1√

N

∑
k

(ψ̂k − ψ̂
†
k ),

1√
2

[ψ̂†
c (N ) − ψ̂c(N )] = 1√

N

∑
k

sin(kN )
ψ̂k + ψ̂

†
k

i
. (F3)

Now we consider the Hamiltonian with symmetry-breaking
field, B, from Eq. (53):

H =
∑

k

kψ̂
†
k ψ̂k + α(ξ )B√

N
(ψ̂k − ψ̂

†
k )ψ̂L

+ sin(kN )
α(ξ )B√

N

ψ̂k + ψ̂
†
k

i
ψ̂R. (F4)

Here k = π
N ( j − 1/2), j = 1, 2, . . . ,+∞ due to a → 0. One

can use Eqs. (F3) to show that the Hamiltonian in Eq. (F4) is
equivalent to Eq. (54).

APPENDIX G: THE DETERMINATION OF
MODEL-DEPENDENT FUNCTION α(ξ)

When the localization length ξ is finite, especially
comparable/larger to lattice spacing, the nature of short-
ranged symmetry-breaking Hamiltonian reflects itself as
model-dependent function α(ξ ) in the scale g. This section
talks about how to determine this model-dependent function.

In practice, α(ξ ) can always be found numerically for
arbitrary lattice models. For the system known with the finite
localization length ξ (note ξ is found at B = 0, i.e., ξ is inde-
pendent of B), one can obtain the finite-size scaling function
by tuning symmetry breaking field B and plot the finite-size
scaling function f versus αB

√
N , where α is the parameter

to be tuned. One can tune α until the plot is fitting well with
the curves, for example, shown in Fig. 1 and Fig. 2. Then one
can extract the value of α at a fixed value of the localization
length, ξ .

Also, α(ξ ) can be obtained analytically. In Sec. V, we
show that α(ξ ) = √

coth(1/2ξ ) for Model I. It is calculated
from the effective matrix elements of symmetry-breaking
Hamiltonian, hB. The method has also been applied to Model
III. The symmetry-breaking Hamiltonian hB(x) in Model III
is given by

hB(x) = −B(−1)x12 ⊗ τy. (G1)

One can show that the effective matrix elements
〈ψn,k|hB|ψL〉 = −n B√

N

√
tanh(1/2ξ )| sin kN |. Then one finds

that α(ξ ) = √
tanh(1/2ξ ) for Model III. However, finding

α(ξ ) for Model II analytically still remains an open problem.

APPENDIX H: EFFECTIVE MATRIX

Around the tricriticality, we find matrix representation of
h = h(−i∂x ) + hB using the basis of N + 2 normalized wave
functions, V = {ψL, ψR, ψ+,k1 , ψ−,k1 , . . . , ψ+,kN , ψ−,kN } ≡
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{vi|i = 1, 2, . . . , N + 2}, where k2 < · · · < kN and kn ∈ QR

for n � 2. Momentum k1 could be either real or imaginary.
Then the matrix representation of h = h(−i∂x ) + hB gives rise
to matrix elements hi j = 〈vi|h|v j〉, which will be presented
below. However, before going through the details, we
introduce a variable, x = kN , k ∈ Q(m) (we note again that
N is the size of the system). This definition implies that x
satisfies the equation

tan x = x/w, (H1)

where w = Nm. Solutions to Eq. (H1) are labeled by xl ,
0 � l < N . The meaning of xl is clarified in the following: (1)
At the crticiality and 2-MF phase (w � 1), all the solutions
to Eq. (H1) are real, then xl is given by xl = lπ + φl , 0 �
φl < π , 0 � l . (2) At the 4-MF phase (w > 1), there exists an
imaginary solution. So xl is given by x0 = iq, 0 < q � w and
xl = lπ + φl , 0 � φl < π , 1 � l < N .

The diagonal part of h is the same for all 4-MF, 2-MF, and
0-MF phases. The diagonal matrix elements are

h11 = h22 = 0, (H2)

h2l+3,2l+3 = −h2l+4,2l+4 =
√

w2 + x2
l

N
, (H3)

where l � 0. However, off-diagonal matrix elements are
somewhat more complicated, due to different topological na-
tures of phases. For 2-MF phase and the corrsponding critical
points, the nonzero off-diagonal matrix elements are given by

h1,2l+3 = h2l+3,1 = − g

N

xl√
w2 + x2

l

,

h1,2l+4 = h2l+4,1 = g

N

xl√
w2 + x2

l

,

h2,2l+3 = h2l+3,2 = eiπ l g

iN

xl√
w2 + x2

l

,

h2,2l+4 = h2l+4,2 = eiπ l g

iN

xl√
w2 + x2

l

. (H4)

For the 4-MF phase, the matrix elements coincide with
Eq. (H4) except the following ones:

h1,3 = −h3,1 = i
√

w
g

N
,

h1,4 = −h4,1 = i
√

w
g

N
,

h2,3 = −h3,2 = √
w

g

N
,

h2,4 = −h4,2 = −√
w

g

N
. (H5)

APPENDIX I: ANALYTICAL SPECTRUM AT SMALL g

At w < 1, corresponding to the criticality and the 2-MF
phase, we find that the energy of bulk MFT states, |ψn,k〉, and
the edge modes, |ψL,R〉, is sensitive to the scale g. Here we
present only an expression for the g dependence of the positive
energy band, εl (g), which represents the energy of the MFT

state with quantized xl and εe(g) is the energy of boundary
|ψL,R〉:

εl (g) = 1

2N

{√
w2 + x2

l + 8g2 sin2 xl +
√

w2 + x2
l

}
, (I1)

εe(g) = 1

2N

∑
l�0

(−1)l
{√

w2+x2
l + 8g2 sin2 xl −

√
w2 + x2

l

}
,

where xl is defined and calculated in Appendix H.
When w > 1, which corresponds to the 4-MF phase, the

low-energy spectrum is given by

εe ≈ 1

2N

{√
w2 + x2

0 + 8g2w −
√

w2 + x2
0

}
, (I2)

ε0 = 1

2N

{√
w2 + x2

0 + 8g2w +
√

w2 + x2
0

}
,

εl = 1

2N

{√
w2 + x2

l + 8g2 sin2 xl +
√

w2 + x2
l

}
, l � 1,

(I3)

where ε0 is the correction to the energy of the boundary mode
of MFT states, and εl yields the correction to the bulk energy.

APPENDIX J: ANALYTICAL DERIVATION OF THE
FINITE-SIZE SCALING FUNCTION

At |w| 	 1, we use Eq. (I2), which describes the energy
levels of the system at w � 1, and rewrite the ground-state
energy as a sum of energy levels in Eq. (48) as

EG = 1

2N

∑
l∈odd

√
w2 + x2

l + 1

2N

∑
l∈even

√
w2 + x2

l + 8g2,

(J1)

where we use the fact that at the region |w| 	 1, sin2 xl =
(xl )2/[w2 + (xl )2] ≈ 1 (recall that xl = π

2 + lπ when w = 0).
So one needs to treat the quantized xl with odd l and even l
separately. To this end we define

q±(k) = ∂k ln

(
cos

1

2
(Nk + δm) ± π

4

)
, (J2)

where the poles of q+/− are composed of quantized xl with
even/odd l . Now we can pick a contour, C, shown in Fig. 15,
to encircle all the poles of q± on the real axis and avoid the
branch-cut line of Em,g(z) =

√
z2 + w2 + 8g2 in the complex

z plane. Then we can perform the contour integration as
follows:

EG = −1

4

∮
C

dk

2π i
[Em,g(k)q+(k) + Em,0(k)q−(k)].

Then we rewrite qs(k), s = ± as

qs(k) = ∂k ln

(∑
n=±

exp

{
in

[
1

2
(Nk + δm) + s

π

4

]})
.
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FIG. 15. The (blue) integration contour, C, and the (red) branch
cut at

√
z2 + w2 + 8g2 in the upper half-plane.

For the part of integration below(above) real line, we may
need the following expression of qs(k):

qs(k) = ∂k ln

(
exp

{
±i

[
1

2
(Nk + δm) + s

π

4

]})

+ ∂k ln

(
1 + exp

{
∓ i

[
(Nk + δm) + s

π

2

]})
. (J3)

In the first term above, the function “ln exp” yields identity
function and then the contour integration of this term in
Eq. (49) yields the bulk energy and boundary energy:

Nε =
∫ π

−π

dk

2π
[E (m, g) + E (m, 0)]N/4,

b =
∫ π

−π

dk

2π
[E (m, g) + E (m, 0)]∂kδm/4. (J4)
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