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Excitons in phosphorene: A semi-analytical perturbative approach
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In this paper we develop a semi-analytical perturbation-theory approach to the calculation of the energy levels
(binding energies) and wave functions of excitons in phosphorene. Our method gives the exciton wave function
in both real and reciprocal spaces with the same ease. This latter aspect is important for the calculation of the
nonlinear optical properties of phosphorene. We find that our results are in agreement with calculations based
both on the Bethe-Salpeter equation and on Monte Carlo simulations, which are computationally much more
demanding. Our approach thus introduces a simple, viable, and accurate method to address the problem of
excitons in anisotropic two-dimensional materials.
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I. INTRODUCTION

Although black phosphorus was first obtained in 1914, that
is, over a century ago, little research was developed around
this material throughout most of the twentieth century. In
100 years only around 100 papers were written [1]. With
the isolation of monolayer graphene in 2004 [2], an inten-
sive study has been made of two-dimensional (2D) materials
[3–5]. This opened a new window of opportunity for black
phosphorus to show its potential in the form of a few-layer
material, named phosphorene. Since 2014, building on the
work done on graphene, hexagonal boron nitride (hBN), and
transition-metal dichalcogenides (TMDs), black phosphorus
has been rediscovered [1].

Black phosphorus is the stablest of the phosphorus al-
lotropes and presents a unique structure when reduced to few
layers. Along with graphite, it is one of the few-layer materials
composed of a single type of atom, in this case phosphorus
[6]. Unlike graphene, TMDs, and hBN, phosphorene presents
a rectangular primitive cell composed of four atoms, and the
energy gap is located at the � point in the Brillouin zone. Also,
unlike these other materials, phosphorene presents a highly
anisotropic crystallographic structure, as can be seen in Fig. 1.
The puckering of its structure results in a plethora of exotic
properties, with examples being the negative Poisson ratio [7]
and the existence of intrinsic dichroism [8].

Contrary to what occurs in TMDs, phosphorene presents a
direct band gap in both monolayer and bulk forms. The values
of the quasiparticle gap range from 0.3 eV (in bulk) to 2.0 eV
(in monolayer) [9,10]. Besides that, phosphorene’s band gap
can be finely tuned through the number of layers. The increase
in the gap as the material is thinned can be understood in
terms of a concomitant increase of the quantum confinement
in the direction perpendicular to the stacking plane of the
layers. Studies have also reported high mobility and high
on-off current ratio in field-effect transistors [11–13]. This set
of characteristics makes phosphorene a desirable material for
electronic and optical applications [14–16].

Like many others 2D materials (graphene being a
notable exception), excitons dominate phosphorene’s optical

properties. Experimental works have reported highly
anisotropic and tightly bound excitons, with binding
energies up to 900 meV [17]. A large binding energy
allows for stable excitons with increased lifetimes. These are
important properties for future applications in light transport
and optically driven quantum computing [6]. Due to the
importance of optical applications involving phosphorene,
in this paper we focus our attention on the study of exciton
binding energies and wave function anisotropy, characteristics
of this 2D material. Our approach follows a simple,
yet effective, path. Instead of solving the Bethe-Salpeter
equation starting from ab initio calculations [18], which is
computationally demanding, we follow the path of solving the
anisotropic Wannier equation. This approach has been shown,
in the context of TMDs in strong magnetic fields, to produce
binding energies in full agreement with the solution of the
Bethe-Salpeter equation [19]. As we will see, our approach
proposes a semi-analytical form for the wave function of the
excitons up to a set of numerical coefficients determined from
the solution of a generalized eigenvalue problem.

This paper is organized as follows: In the next section we
present the model Hamiltonian and transform it in order to
separate our problem into two parts: an unperturbed Hamilto-
nian, which has cylindrical symmetry, and a perturbation one,
which includes the lattice anisotropy information. Next, we
introduce a simple semi-analytical method that allows us to
solve the cylindrical symmetric part of our problem. In Sec. III
we present the necessary formalism to compute the effect of
perturbations breaking the cylindrical symmetry. Afterwards,
in Sec. IV, we compute the exciton binding energies and
wave functions for three different scenarios: phosphorene
encapsulated in hBN, phosphorene on a substrate of silicon
oxide (SiO2), and phosphorene in freestanding form. Finally,
we compare our results to values obtained in other works,
finding good agreement.

II. MODEL HAMILTONIAN

We start this section by introducing the effective Hamil-
tonian that will be used throughout the text to describe the
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FIG. 1. Schematic representation of phosphorene from three dif-
ferent perspectives: top view, side view, and in perspective. With this,
the anisotropic nature of phosphorene’s crystal lattice becomes clear.
Also in the bottom left of the image an artistic view of phosphorene
anisotropic excitons is given.

exciton dynamics in black phosphorus. This is given by

H = p2
x

2μx
+ p2

y

2μy
+ V (r). (1)

This is a center of mass Hamiltonian, composed of kinetic
(first and second) and potential (last) terms. Since black
phosphorus is a highly anisotropic material, there are two
different reduced masses in the x and y directions, thus leading
to two different contributions to the kinetic terms, one for each
direction in momentum space. The reduced masses are defined
as

μx/y = mx/yMx/y

mx/y + Mx/y
, (2)

with mx/y and Mx/y being the effective masses of electrons and
holes, respectively, in the x/y direction. The potential term
V (r) corresponds to the Rytova-Keldysh potential [20,21] and
is given by

V (r) = − e2

4πε0

π

2

1

r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (3)

where r0 ∼ dε/2 (this is a rule-of-thumb estimation for r0

based on a macroscopic electrostatic calculation; microscop-
ically, r0 connects to the polarizability of the 2D material),
with d and ε being the thickness and dielectric function of
the 2D material, respectively; κ = (ε1 + ε2)/2 is the mean
dielectric function of the media surrounding the 2D material
(either different or equal on each side of the material); H0(x)
is the Struve function of zero order; and Y0(x) is the Bessel
function of zero order of the second kind. This potential is the
solution of the Poisson equation for a thin film embedded in a
medium.

With the intent of passing the anisotropy from the kinetic
term to the potential energy V (r) term, we follow the change
in variables proposed by Rodin et al. [22]:√

μx/y

2μ̄m0
x/y = X/Y, μ̄ = μxμy

μx + μy

1

m0
. (4)

After this change in variables, the Hamiltonian (1) acquires
the form

H = − h̄2

4μ̄m0
∇2 + V [R

√
1 + β cos(2θ )], (5)

where the kinetic term now has the usual form, albeit with
a different mass, β = (μy − μx )/(μy + μx ), and θ is the in-
plane polar angle. The parameter β characterizes the degree
of anisotropy. The larger it is, the more anisotropic the system
is. The new variable R is defined as R = √

X 2 + Y 2. We see
that this variable change produces the desired effect; that is,
the anisotropy is now present in the potential, and the kinetic
term takes the usual form of an isotropic center of mass
system, with reduced mass equal to 2μ̄m0. From now on we
will work in this new coordinate system and return to the
original x and y coordinates only when plots are presented and
concrete values for averages of distances are computed. To
avoid misunderstandings we will warn the reader if confusion
may arise.

The main advantage of working with the Hamiltonian in
this form is twofold: (i) the unperturbed Hamiltonian has
cylindrical symmetry, and (ii) we can now expand the po-
tential energy term in powers of β, allowing us to separate
Eq. (5) into an unperturbed Hamiltonian and an additional
perturbative potential energy. Taylor expanding the potential
energy up to order β2, we obtain

H = − h̄2

4μ̄m0
∇2 + V (R) + 1

2
R cos(2θ )

dV

dR
β

+ cos2(2θ )
1

8

(
R2 d2V

dR2
− R

dV

dR

)
β2 + O(β3). (6)

We can now divide our problem into two different stages: (i)
solving the unperturbed problem, whose Hamiltonian consists
of the first two terms in Eq. (6), and (ii) computing the
corrections introduced by the terms proportional to β and β2.

In order to solve the unperturbed problem we will intro-
duce a semi-analytical method that already showed excellent
results in a previous work [23]. The quasianalytical nature of
this method makes it less computationally demanding than
other approaches and much simpler to work with when com-
pared to fully numerical calculations which diagonalize the
Bethe-Salpeter equation starting from ab initio calculations.
Inspired by the analytical solution of the 2D hydrogen atom
[24], we write the exciton wave function as

ψ (0)
ν (r) = Aνeimθ r|m|

N∑
j=1

cν
j e

−ζ j r, (7)

where eimθ r|m| follows from the eigenfunctions of the z com-
ponent of the angular momentum and from the radial behavior
of the wave function near the origin for m = 0,±1,±2, . . . ,
the magnetic quantum number; the exponential term (Slater
basis) e−ζ j r describes the decay of the radial part of the wave
function far from the origin, with a decay rate determined by
the parameter ζ j ; the coefficients cν

j weight the different terms
in the sum; and Aν is a normalization constant given by

Aν =
√

1

2πSν

, (8)
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with Sν = ∑N
j=1

∑N
j′=1 cν∗

j cν
j′ (ζ j + ζ j′ )−2−2|m|�(2|m| + 2),

where �(x) is the gamma function. The index ν encodes
both the principal (n) and the angular (m) quantum numbers.
An additional advantage of this method is that the matrix
elements of both the kinetic operator and the electron-electron
interaction do not mix different m values, and therefore,
the eigenvalue problem is block diagonal in the angular
momentum space. In this work, contrary to Ref. [23], we opt
to work with a Slater basis instead of a Gaussian one since
this choice allows us to obtain more accurate results using
fewer terms in Eq. (7). Contrary to the Gaussian basis, we
have found that the Slater basis requires more care in the
choice of parameters defining the grid of ζ j’s (see below).

Using the proposed wave function and computing the
matrix elements of the kinetic and potential operators (see the
Appendix), the generalized eigenvalue problem, whose nu-
merical solution gives the coefficients cν

j and the unperturbed
binding energies E (0)

ν , acquires the form

N∑
j=1

[
H (ζi, ζ j ) − S(ζi, ζ j )E

(0)
ν

]
cν

j = 0, (9)

where H (ζi, ζ j ) is the Hamiltonian kernel and S(ζi, ζ j ) is the
superposition kernel. Both kernels have analytical expressions
that are given in the Appendix. The superposition kernel
differs from a Kronecker δ since the Slater basis is not or-
thogonal. Equation (9) was first introduced in nuclear physics
and is termed the Griffin-Hill-Wheeler equation [25]. The key
aspect of this method is the sensible choice of the parameters
ζ j . A choice not so well known is the use of a logarithmic grid
of ζ ’s according to the rule given in Ref. [26],

� = ln ζ

A
, A > 1, (10)

where the grid � is composed of equally spaced values in the
interval [�min,�max] and A is a real number typically chosen
to be between 2 and 5. The interval is divided into N steps.

III. PERTURBATION THEORY

With the unperturbed problem dealt with, we will use this
section to present the necessary formalism to compute the
corrections introduced by the perturbation,

H (1) = 1

2
R cos(2θ )

dV

dR
β + cos2(2θ )

1

8

(
R2 d2V

dR2
− R

dV

dR

)
β2,

(11)

that is, the remaining terms of the potential expansion given
in Eq. (6).

We start by noting that the kernel expressions given in the
Appendix do not depend on m but, rather, on its absolute value
|m|. This means that every state with m �= 0 will be degenerate
since two states with equal principal quantum number n and
magnetic quantum numbers m and −m will have the same
kernels and therefore the same eigenenergies. One thus needs
to be careful when computing the energy corrections through
perturbation theory since a separation between degenerate and
nondegenerate states must be made.

Starting with the nondegenerate states (m = 0), the first-
order energy correction is elementary and is given by the

matrix element (all the matrix elements in this work are known
analytically)

E (1)
ν = 〈

ψ (0)
ν

∣∣H (1)
∣∣ψ (0)

ν

〉
, (12)

where the superscript (0) indicates that these are unperturbed
wave functions; that is, they are the solution of the first two
terms of Eq. (6). Looking at the wave function given in
Eq. (7), especially its angular dependence, one realizes that
the first-order energy correction is zero for the perturbation
term proportional to β since the integral of cos(2θ ) between
0 and 2π vanishes. Only the β2 portion of the perturbation
gives a nonzero result up to the first-order correction to the
unperturbed binding energies.

For the degenerate states, the first-order correction is ob-
tained from the solution of the secular equation

det
[
H (1)

αβ − Eδβ
α

] = 0, (13)

with

H (1)
αβ = 〈

ψ (0)
α

∣∣H (1)
∣∣ψ (0)

β

〉
. (14)

For the sake of clarity let us work out a specific case that will
be used later in the text. Consider the degenerate states (n =
2, m = ±1). The energy corrections will be given simply by

E (1) = ±〈
ψ

(0)
2,1

∣∣H (1)
∣∣ψ (0)

2,−1

〉 + 〈
ψ

(0)
2,1

∣∣H (1)
∣∣ψ (0)

2,1

〉
, (15)

where the first term will produce only a finite contribution
for the perturbation term proportional to β and the second
term will produce only a finite contribution for the term
proportional to β2. The new eigenstates will be superpositions
of the original unperturbed states, that is,

|2px/y〉 = 1√
2

(∣∣ψ (0)
2,1

〉 ± ∣∣ψ (0)
2,−1

〉)
. (16)

This superposition of states is to be expected since m is no
longer a suitable quantum number due to the loss of rotational
symmetry in the original problem.

To further improve the energy eigenvalues, we compute
the second-order correction for the nondegenerate states, con-
sidering only the term of H (1) linear in β since we want
corrections only up to β2. This correction reads

E (2)
ν =

∑
μ �=ν

∣∣〈ψ (0)
μ

∣∣ 1
2 R cos(2θ ) dV

dR β
∣∣ψ (0)

ν

〉∣∣2

E (0)
ν − E (0)

μ

. (17)

Although the sum should cover all the μ states different from
ν, we consider only the dominant term in the sum, that is, that
for which the ratio |〈ν|H (1)|μ〉|2/(E (0)

ν − E (0)
μ ) has the largest

absolute value. Therefore, the exact value for the ground-state
energy will be slightly more negative than what we actually
compute. It is important to note that, once again, the angular
dependence of the wave functions plays a crucial role in
evaluating the matrix elements since there will be coupling
only between μ and ν states whose angular functions combine
to give e±2imθ . Since the cosine is an even function and only
the real part of the exponential will couple with cos(2θ ), the
sign difference in the complex exponential will not change the
matrix element value.

Having determined the binding energy corrections, we
proceed to compute the first-order correction to the wave
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TABLE I. Values for the effective masses of electrons (m) and
holes (M) in the x and y directions. The masses are presented in terms
of m0, the bare electron mass. We have used the effective masses of
Ref. [28]. We have checked that the binding energy of the 1s exciton,
for freestanding phosphorene, changes by 6 meV if one uses β =
−0.78.

Ref. [27] Ref. [29] Ref. [28]

mx 1.15m0 0.20m0 0.46m0

my 0.24m0 6.89m0 1.12m0

Mx 7.29m0 0.20m0 0.23m0

My 0.24m0 6.89m0 1.61m0

β −0.78 0.94 0.62

functions, using the relation

∣∣ψ (1)
ν

〉 =
∑
μ �=ν

〈
ψ (0)

μ

∣∣H (1)
∣∣ψ (0)

ν

〉
E (0)

ν − E (0)
μ

∣∣ψ (0)
μ

〉
, (18)

where, once again, we consider only the dominant term in the
sum.

IV. RESULTS

In this section we apply the formalism introduced previ-
ously to three different cases: phosphorene encapsulated in
hBN, phosphorene on a substrate of SiO2, and freestanding
phosphorene. Due to the similarities between the analyses for
these three physical systems, we will give special attention
to the case of phosphorene encapsulated in hBN (due to its
experimental relevance) and comment on the differences from
the other two scenarios.

Let us start applying the semi-analytical method introduced
in Sec. II to black phosphorus encapsulated in hBN. For
this experimental scenario we have κ = 4.5 and r0 = 25 Å
[27]. Considering the effective masses of Ref. [28], pre-
sented in Table I, one obtains β = 0.62. Using the parameters
N = 25, A = 5, and � = [−2, 2], we obtain the unperturbed

TABLE II. Unperturbed exciton binding energies (in meV) ob-
tained using the semi-analytical method described in Sec. II for
phosphorene encapsulated in hBN, on a substrate of SiO2, and
freestanding. The parentheses refer to the exciton state (n, m). These
values were obtained using N = 25, A = 5, and � = [−2, 2]. A
value of r0 = 25 Å was considered [27]. As discussed previously,
we observe that states with m �= 0 are degenerate. We also note
that, as expected, the binding energies are inferior for the cases
with more dielectric screening, that is, higher values of κ (κ = 1 for
freestanding and κ = 2.4 for phosphorene on SiO2). Let us stress that
the energies given here refer to the solution of the Hamiltonian given
by the first two terms of Eq. (6); the effect of the perturbation has not
yet been considered.

(1,0) (2,0) (2,±1) (3, ±1) (3, ±2)

In hBN −240 −50 −64 −25 −26
On SiO2 −428 −121 −160 −66 −78
Freestanding −799 −340 −424 −232 −262

FIG. 2. Plot in log scale of the unperturbed exciton binding
energies (actually, Ebinding = −E (0)

ν ) for phosphorene encapsulated
in hBN. Each column corresponds to a different quantum number
m (0, ±1, ±2, from left to right), and each color corresponds to a
specific quantum number n (from 1 to 4).

binding energies given in Table II. A plot of these binding
energies is shown in Fig. 2.

For the cases of black phosphorus on a SiO2 substrate and
for freestanding black phosphorus, we observed larger binding
energies (in absolute value) than when we encapsulated the
material in hBN. This is a sensible result since in these
two other cases the effect of dielectric screening is reduced
and, as a consequence, the excitons are more tightly bound.
Freestanding phosphorene presents the largest exciton binding
energies of the lot.

After computing the unperturbed eigenenergies we pro-
ceeded to compute the energy corrections as described in
Sec. III. Calculating the first-order corrections to the degen-
erate and nondegenerate states using Eqs. (12) and (15) is a
straightforward process. The same cannot be said about the
second-order corrections, where an approximation is made
when truncating the sum over the different states. As was pre-
viously discussed in the text following Eq. (17), we consider
only the dominant term of the sum. To do this correctly a plot
like the one in Fig. 2 is useful since it allows us to see with
clarity which combination of two states is likely to give the
largest contribution. States with similar unperturbed binding
energies will, in principle, produce a significant contribution
to the correction. An example of this is the second correction
to the state n = 2, m = 0. Here the dominant term is obtained
from the matrix element with the state n = 3, m = ±2, giving
a correction of around −3 meV. Although this may seem to
be a higher value than expected for a second-order correction,
looking at Fig. 2, it becomes clear that the states n = 2, m = 0
and n = 3, m = ±2 present the smallest difference from the
unperturbed binding energies (orange and green), which en-
hance the weight of this contribution, making it the dominant
term in the perturbative sum.

The values we obtained for the corrected ground-state
binding energy and their comparison to other results from the
literature are summarized in Table III. In Table III we observe
excellent agreement between our values and the ones given
by other studies using different numerical approaches (note,
however, that there is a certain degree of dispersion within
the values reported by different works). In agreement with
what was found in the other works, the three more tightly

035406-4



EXCITONS IN PHOSPHORENE: A SEMI-ANALYTICAL … PHYSICAL REVIEW B 101, 035406 (2020)

TABLE III. Comparison between the perturbed ground-state ex-
citon binding energy obtained in this work, taking into consideration
the effect of the terms in the potential energy proportional to β and
β2, and the ones available in the literature. All energies are given in
meV. We report good agreement between our values and the ones
obtained in other works for the three considered configurations. An
asterisk (*) means that the values presented in these references were
obtained experimentally, while the others are theoretical predictions.
We note that the theoretical results correspond to the solution of
the Wannier equation, quantum Monte Carlo simulations, and the
solution of the Bethe-Salpeter equation, depending on the reference.
We also stress the existence of a certain degree of dispersion among
the results from different works.

In hBN On SiO2 Freestanding

This work −256 −449 −825
Ref. [30] −300 −460 −910
Ref. [27] −260 −440 −810
Ref. [22] −220
Ref. [13] −380
Ref. [31] −396
Ref. [28]a −850
Ref. [17]* −900 ± 120
Ref. [32] −740
Ref. [18] −840
Ref. [33] −780
Ref. [34] −860
Ref. [35]* −762
Ref. [36]b −870

aWe have used the effective masses of this reference in our calcula-
tion (our calculation of the exciton binding energy agrees well with
that of this reference).
bPhosphorene in vacuum under 5% strain.

bound excitons correspond to the 1s, 2py, and 2s states. We
also emphasize that the proximity between results extends
across the three considered combinations of phosphorene and
dielectrics.

In Fig. 3 we plot the probability density (squared modulus
of the corrected wave functions) for the three more tightly

TABLE IV. Computed values of Lx = √〈x2〉gs and Ly = √〈y2〉gs

for phosphorene, using the perturbed 1s wave function (gs stands for
ground state). It is possible to see that as κ decreases, the values
of Lx and Ly also decrease. This is a direct consequence of the
higher localization of the exciton ground-state wave function. The
abbreviation “Freest.” stands for “freestanding.”

In hBN (κ = 4.5) On SiO2 (κ = 2.4) Freest. (κ = 1)

Lx (nm) 1.1 0.89 0.78
Ly (nm) 0.54 0.44 0.39

bound excitons of phosphorene encapsulated in hBN. As
stated before, these correspond to the 1s, 2py, and 2s states.
Although we show only the plots for the case where we
encapsulate phosphorene in hBN, the plots obtained for the
other two situations are extremely similar to these ones, with
the only difference being the smaller area across which the
probability density extends since the higher binding energy
in these other two scenarios leads to more localized wave
functions. Plotting these functions, we have returned to the
original x and y coordinates through the relation given in
Eq. (4).

Finally, we compute the mean value of x2 and y2 in
the corrected exciton ground state. Although this may be a
straightforward process, one aspect should be noted: when
evaluating the matrix elements, one should consider only the
contributions up to β2 since otherwise, the results would
be inconsistent with the potential expansion made in the
beginning of the text. The values we found for Lx = √〈x2〉gs

and Ly = √〈y2〉gs for the three considered cases are presented
in Table IV. There we see that Lx > Ly, in agreement with
the plot of Fig. 3. We also note that as the effect of dielectric
screening diminishes, the values of both Lx and Ly decrease.
This is a direct consequence of the connection between di-
electric screening and the exciton binding energies since as
screening effects decrease, the binding energy grows and the
wave functions become more localized. We further note that
the ratio between the values of Lx and Ly for freestanding

FIG. 3. Probability density (squared modulus of the corrected wave functions) for the 1s (left), 2py (middle), and 2s (right) exciton states
of phosphorene encapsulated in hBN. These three states correspond to the three more tightly bound excitons. These plots emphasize the effect
of the phosphorene anisotropic crystallographic structure on its excitons. When dealing with isotropic systems, such as the 2D hydrogen atom,
the 1s orbital presents a circular shape. That is not the case in phosphorene, where we see that for the 1s state, what was once a circle is now a
disk stretched along the x direction. The same reasoning applies to the other two plots.
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TABLE V. Perturbed binding energies, up to order β2, of the
three mostly bounded excitonic states in the three experimental sce-
narios discussed in the text. All energies are in meV. In Ref. [37] we
find different values for the binding energies depending on the model
used; we have chosen results from the Bethe-Salpeter equation. The
abbreviation “Freest.” stands for “freestanding.”

1s 2py 2s

In hBN (κ = 4.5) −256 −89 −61
On SiO2 (κ = 2.4) −449 −206 −149
Freest. (κ = 1) −825 −502 −405
Freest. [37] −775 −580 −380

phosphorene is in agreement with the one obtained in
Ref. [27].

The perturbed binding energies of the three mostly
bounded excitons are given in Table V. As expected, the
mostly bounded states occur for the smallest value of the
average dielectric function κ .

Finally, we give in Table VI a comparison of the unper-
turbed energy for the three first s energy levels with the most
important term in the second-order perturbation calculation
and the next (subdominant) one not included in the numbers
given in Tables I–V. We see that for the 1s level both the dom-
inant correction and the subdominant correction are rather
small, although they are of about the same magnitude. For
the 2s and 3s states the subdominant correction is smaller by
a factor of 10 relative to the dominant correction included in
the previous calculations.

V. CONCLUSIONS

In this work we have studied excitons in phosphorene in
three different scenarios: encapsulated in hBN, on a substrate
of SiO2, and freestanding.

Our semi-analytical approach to this problem hinges on a
change in variable proposed by Rodin et al. [22] that allowed
us to treat the problem as an unperturbed Hamiltonian on
which a perturbation, originating from the crystal structure
anisotropy, acts. We then introduced a simple, yet effective,
semi-analytical method that allowed us to solve the unper-
turbed part of our problem. Essentially, the method requires
the numerical determination of a set of coefficients c j that
define the wave functions of the radial-symmetric problem
once and for all; the rest of the calculations are analytical. To
compute the effect of the crystal anisotropy characteristic of
phosphorene we used perturbation theory. Because the wave
function of the excitons is analytical up to a set of numer-

TABLE VI. Dominant and subdominant corrections (corr.) in the
second-order perturbation theory. All energies are presented in meV
and for phosphorene encapsulated in hBN.

Level Zero-order energies Dominant corr. Subdominant corr.

1s −240 −0.03 −0.02
2s −50 −3 −0.3
3s −20 −1 0.2

ical coefficients, we can give the excitonic wave function
in both real and reciprocal spaces using simple analytical
formulas. This will be important in future work in connec-
tion with the optical nonlinear properties of phosphorene
[38,39].

In possession of an analytical formula for the excitonic
wave function, we computed the exciton binding energies in
three different scenarios, having obtained −256, −449, and
−825 meV for the ground-state binding energy of phospho-
rene encapsulated in hBN, phosphorene on a SiO2 substrate,
and freestanding phosphorene, respectively. These values are
in agreement with (within the same range) the values pre-
sented in other works using different numerical approaches. In
all the considered cases the three more tightly bound excitons
corresponded to the 1s, 2py, and 2s states. We then plotted the
probability density for different exciton states, and although
we did not show it, we could have done the same in the recip-
rocal space since the semi-analytical nature of our approach
allows us to pass between the real and reciprocal spaces with
ease. We have also computed the characteristic length scales
for the exciton ground state, having obtained Lx = 0.78 nm
and Ly = 0.39 nm for freestanding phosphorene, and higher
values for the other two studied cases. The difference between
Lx and Ly reflects the crystal anisotropy that characterizes
this 2D material. Finally, we note that the method can be
generalized to include the effect of electric (Stark effect [40])
and magnetic (magneto-optics) fields.
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APPENDIX: KERNEL EXPRESSIONS

In this Appendix we present the analytical expressions
for the Hamiltonian kernel H (ζi, ζ j ) and the overlap kernel
S(ζi, ζ j ):

S(ζi, ζ j ) = 2π (ζi + ζ j )
−2−2|m|�(2 + 2|m|), (A1)

H (ζi, ζ j ) = K (ζi, ζ j ) + V (ζi, ζ j ), (A2)

with

K (ζi, ζ j ) = πζiζ j (ζi + ζ j )−2−2|m|(μx + μy)(h̄c)2�(2 + 2|m|)
2μxμy

(A3)
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and

V (ζi, ζ j ) = παh̄c

κ2r2
0

{
− 2κ3�(2|m| + 3)(ζi + ζ j )

−2|m|−3
3F2

(
1, |m| + 3

2
, |m| + 2;

3

2
,

3

2
; − κ2

r2
0 (ζi + ζ j )2

)

+ r3
022|m|+1 cos(π |m|)�(|m| + 1)2

(
κ

r0

)−2|m|
2F1

(
|m| + 1, |m| + 1;

1

2
; − r2

0 (ζi + ζ j )2

κ2

)}
. (A4)
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