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Thermodynamic properties of graphene bilayers
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Thermodynamic properties of graphene bilayers are studied by path-integral molecular dynamics (PIMD)
simulations, considering quantization of vibrational modes and anharmonic effects. Bilayer graphene has been
studied at temperatures between 12 and 1500 K for zero external stress, using the LCBOPII effective potential.
We concentrate on the thermal expansion, in-plane and out-of-plane compressibility, and specific heat. Additional
insight into the meaning of our results for bilayer graphene is obtained from a comparison with data obtained
from PIMD simulations for monolayer graphene and graphite. They are also analyzed in view of experimental
data for graphite. Zero-point and thermal effects on the in-plane and “real” area of bilayer graphene are studied.
The thermal expansion coefficient αxy of the in-plane area is negative at low temperatures and positive for
T � 800 K. The minimum αxy is −6.6 × 10−6 K−1 at T ≈ 220 K. Both in-plane (χxy) and out-of-plane (χz)
compressibilities of graphene bilayers are found to increase for rising temperature, and turn out to be lower
than that corresponding to monolayer graphene and higher than those found for graphite. At 300 K, we find for
the bilayer χxy = 9.5 × 10−2 Å2/eV and χz = 2.97 × 10−2 GPa−1. Results for the specific heat obtained from
the simulations are compared with those given by a harmonic approximation for the vibrational modes. This
approach is noticeably accurate at temperatures lower than 200 K.
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I. INTRODUCTION

Graphene bilayers have attracted great interest in last
years after the finding that they present unconventional su-
perconductivity when stacking both sheets twisted relative to
each other by a small angle [1–3]. It has been also recently
noticed the existence of Mott-like insulator states in these
materials, for the appearance of localized electrons in the
superlattice corresponding to a moire pattern [4,5]. Moreover,
twisted graphene bilayers display magnetic properties which
can be externally controlled by an applied bias voltage [6,7].
Graphene bilayers are known to show ripples and out-of-
plane deformations similar to the monolayers [8], causing a
departure from planarity which is believed to be a relevant
mechanism for electron scattering [9].

From a basic point of view, understanding the thermody-
namic properties of two-dimensional (2D) systems in three-
dimensional (3D) space has been along the years a continuous
objective in the field of statistical physics [10,11]. This prob-
lem has been mainly treated in connection with soft condensed
matter and biological membranes [12,13], whose complexity
makes it very demanding to devise microscopic models built
on realistic interatomic interactions. Graphene bilayers are a
well-controlled instance of crystalline membranes formed by
two atomic sheets, for which an atomic-level description is
possible, allowing for a deep insight into the physical prop-
erties of this kind of systems [14–18]. Moreover, graphene
shows us as a suitable material to study the thermodynamic
stability of 2D crystals, which has been long discussed and
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can be related to anharmonic coupling between in-plane and
out-of-plane vibrational modes [17,19].

Various kinds of atomistic simulations have been employed
to study finite-temperature properties of graphene [20–24]. In
most of them, C atoms were considered as classical particles,
but the Debye temperature of graphene for out-of-plane vibra-
tional modes is �out

D � 1000 K and higher for in-plane modes
[25]. This indicates that the influence of quantum fluctuations
on physical properties should be appreciable even for T much
higher than room temperature.

Some works have presented path-integral-type simulations,
which allow one to study thermal and quantum fluctuations at
finite temperatures. This type of simulations have been carried
out for graphene monolayers to study structural and thermo-
dynamic properties of this material [26–29]. In addition to
this, nuclear quantum effects have been analyzed earlier by
means of a combination of density-functional theory and a
quasiharmonic approximation for vibrational modes in this
crystalline membrane [30,31].

The thermal behavior of monolayer graphene has been
studied by means of path-integral simulations [28], with
particular emphasis on low temperatures. In this paper, we
extend that analysis to graphene bilayers, where new aspects
are expected to appear due to interlayer interactions, and the
associated coupling between atomic displacements of both
layers in the out-of-plane direction.

We employ the path-integral molecular dynamics (PIMD)
method to study thermodynamic properties of graphene bi-
layers at temperatures between 12 and 1500 K. Simulation
cells of different sizes are considered, as finite-size effects
have been found earlier to be important for some equilibrium
properties of graphene [24,27,32]. We analyze the thermal
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behavior of the sheet surface in graphene bilayers, considering
the difference between real and in-plane area. We put spe-
cial attention on the temperature dependence of the thermal
expansion, compressibility, and specific heat cp. In particular,
low-temperature results of the simulations for cp are compared
with the prediction of a harmonic approximation for the
vibrational modes.

The paper is organized as follows. In Sec. II, we describe
the computational method used in the simulations. In Sec. III,
we present results for the real and in-plane areas, as well for
the so-called excess area of graphene bilayers. The thermal
expansion is discussed in Sec. IV, and the compressibility
(in-plane and out-of-plane) is analyzed in Sec. V. In Sec. VI,
we present results for the specific heat, and in Sec. VII, we
summarize the main results.

II. COMPUTATIONAL METHOD

A. Path-integral molecular dynamics

Here we employ PIMD simulations to study structural and
thermodynamic properties of graphene bilayers as a function
of temperature. This method, based on the Feynman path-
integral formulation of statistical mechanics [33], is now
a well-established nonperturbative approach to investigate
finite-temperature properties of many-body quantum systems.
In the applications of this computational technique to numer-
ical simulations, each quantum particle (here atomic nucleus)
is represented as a group of NTr beads (the so-called Trotter
number), behaving like classical particles disposed to form a
ring polymer [34–36].

In actual simulations of condensed matter using the path-
integral method, the configuration space of the classical iso-
morph is explored by means of molecular dynamics or Monte
Carlo sampling. In this paper, we use molecular dynamics, as
we have found that our computing codes are more effectively
parallelizable with this procedure. We note that the dynamics
in this kind of PIMD simulations is artificial, in the sense
that it does not reproduce the dynamics of the actual quantum
particles under consideration. Nevertheless, it is very efficient
to sample the many-body configuration space, giving precise
results for time-independent equilibrium properties of the
quantum system.

We describe the interatomic interactions in graphene
with a long-range carbon bond-order potential, the so-called
LCBOPII [37], which has been employed earlier to carry
out classical simulations of carbon-based systems, such as
diamond [37], graphite [37], and liquid carbon [38]. It has
been more recently applied to study graphene [20,24,39], with
particular emphasis on its mechanical properties [40,41]. The
LCBOPII potential has been also used to perform PIMD sim-
ulations of graphene monolayers [27] and bilayers [42], which
has allowed an assessment of quantum effects by comparing
with results of classical simulations. In this paper, accord-
ing to earlier simulations [27,41,43], the original LCBOPII
parametrization has been slightly changed to increase the
zero-temperature bending constant κ of a graphene monolayer
from 0.82 eV to a more realistic value of 1.49 eV, closer
to experimental data and ab initio calculations [44]. The
interlayer interaction is the same as that employed in earlier

simulations of bilayer graphene with this effective potential
[39,42]. Thus the interlayer binding energy for the minimum-
energy configuration with AB stacking is 25 meV/atom for
bilayer graphene and 50 meV/atom for graphite.

Our simulations of graphene bilayers have been performed
in the isothermal-isobaric ensemble, where we fix the number
of carbon atoms (2N), the in-plane stress (here Pxy = 0), and
the temperature (T ). We employed effective algorithms for
carrying out PIMD simulations, as those presented in the liter-
ature [45,46]. Specifically, staging variables [47] were used to
define the bead coordinates, and a constant temperature was
attained by coupling chains of four Nosé-Hoover thermostats
[48,49]. Another chain of four barostats was coupled to the
in-plane area of the simulation box (xy plane) to yield a con-
stant pressure Pxy = 0 [36,45]. The equations of motion were
integrated by using the reversible reference system propagator
algorithm (RESPA), which permits to consider different time
steps for the integration of fast and slow degrees of freedom
[50]. The time step �t associated to the interatomic forces
was taken as 0.5 fs, which was adequate for the atomic mass
and temperatures considered here. The kinetic energy was
calculated by employing the virial estimator, which shows
a statistical uncertainty smaller than the primitive estimator,
in particular at high temperatures [45,51]. More technical
details on this type of PIMD simulations are given elsewhere
[45,52,53].

We have considered graphene bilayers with AB stacking
in rectangular simulation cells including 2N carbon atoms, N
going from 24 to 8400. These cells had similar side lengths in
the x and y directions (Lx ≈ Ly), for which periodic boundary
conditions were assumed. Carbon atoms can move without
restriction in the out-of-plane direction, i.e., we have free
boundary conditions in the z coordinate, reproducing a free-
standing graphene bilayer. We considered temperatures T in
the range from 12.5 to 1500 K. Given a temperature, a typical
simulation run consisted of 2 × 105 PIMD equilibration steps
and 8 × 106 steps for the calculation of average variables. The
number of beads, NTr, was taken proportional to 1/T , so that
NTrT = 6000 K, which keeps a nearly constant accuracy for
the results at different temperatures. To assess the magnitude
of nuclear quantum effects, some classical molecular dynam-
ics simulations of graphene bilayers have been also carried
out. This corresponds in our context to setting NTr = 1. In
Fig. 1, we present a top view of a configuration of bilayer
graphene obtained in our simulations at T = 1000 K. In this
picture, red and black circles represent C atoms in the upper
and lower sheets in AB stacking pattern.

For comparison with the results for graphene bilayers,
we have also performed some PIMD simulations of graphite
with the interatomic potential LCBOPII. For this 3D material,
we used simulation cells containing 4N carbon atoms (four
graphene sheets), and periodic boundary conditions were
assumed in the three space directions. We used cells with
N = 240 and 960.

B. Harmonic approximation

To compare with the results of PIMD simulations for the
specific heat of bilayer graphene, we will present a har-
monic approximation (HA) for the lattice vibrations. This
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FIG. 1. Top view of an instantaneous configuration of bilayer
graphene at T = 1000 K. Red and black circles represent carbon
atoms in the upper and lower sheets, respectively.

approximation turns out to be rather precise at low temper-
ature, but anharmonicity appears for rising temperature, so
that the results of the HA will increasingly deviate from those
derived from the simulations. A basic assumption of the HA is
that vibrational frequencies in the material do not change with
temperature. Then, we take in this model the frequencies cor-
responding to the minimum-energy configuration of bilayer
graphene, obtained from diagonalization of the dynamical
matrix for the LCBOPII potential.

In a quantum HA, the vibrational energy per atom of
bilayer graphene is given by

Evib = 1

2N

∑
j,k

1

2
h̄ω j (k) coth

(
1

2
β h̄ω j (k)

)
, (1)

where β = 1/(kBT ), kB is Boltzmann’s constant, and the
index j ( j = 1, . . . , 12) refers to the phonon bands: four
branches with atomic displacements along the z direction (ZA,
ZO’, and a twofold degenerate ZO band), and eight branches
with in-plane displacements (LA, TA, LO, and TO, all of them
twofold degenerate) [54–57]. The sum in k is extended to
wave vectors k = (kx, ky) in the 2D hexagonal Brillouin zone,
with k points spaced by �kx = 2π/Lx and �ky = 2π/Ly [43].
In the following, k will denote the wave number, i.e., k = |k|.

The specific heat per atom, cv (T ) = dEvib/dT , is given in
the HA by

cv (T ) = kB

2N

∑
j,k

[
1
2β h̄ ω j (k)

]2

sinh2
[

1
2β h̄ ω j (k)

] . (2)

Increasing the system size N causes the appearance of vibra-
tional modes with longer wavelength λ. In fact, one has for the
phonons an effective cutoff λmax ≈ L, with L = (LxLy)1/2, and
the minimum wave number is k0 = 2π/λmax, which means
that k0 scales as N−1/2.

At low temperature, one can obtain an analytic dependence
of the specific heat by assuming a continuous model for
frequencies and wave numbers, which allows to replace sums
by integrals in Eqs. (1) and (2). This is explained in Sec. VI
and Appendix B.

III. EXCESS AREA

In our PIMD simulations in the isothermal-isobaric en-
semble, we fix the applied stress in the (x, y) plane (here
Pxy = 0), as indicated in Sec. II A, thus allowing for changes
in the in-plane area of the simulation cell. Carbon atoms can
freely move in the z coordinate (out-of-plane direction), which
means that at T > 0 the real surface of a graphene layer will
not be planar, with an area (in 3D space) larger than that of
the simulation cell in the (x, y) plane. The difference between
the real area A and in-plane area Ap has been discussed
in the literature for biological membranes [12,58,59] and more
recently for crystalline membranes such as graphene [41]. It
has been shown that values of the compressibility may be very
different when they are related to A or to Ap [41].

A precise distinction between both areas is important to ex-
plain some thermodynamic properties of 2D materials. Thus
the area Ap is the conjugate variable to the in-plane stress
Pxy in the isothermal-isobaric ensemble used here, while the
area A is conjugate to the usually called surface tension [10].
In recent years, Nicholl et al. [60,61] have found that some
experimental techniques are sensitive to properties related to
the real area A, and other procedures can be adequate to study
variables associated to the in-plane area Ap.

In our PIMD simulations, we have calculated the real area
A of the graphene layers by a triangulation based on the atomic
positions [41,42]. In the following, A and Ap = LxLy/N will
refer to the real and in-plane area per atom, respectively. The
areas A and Ap coincide for strictly planar graphene layers,
a condition met in the classical zero-temperature limit, while
for T > 0 one has A > Ap. Even for T → 0, A and Ap are
not exactly equal when nuclear quantum effects are taken into
account, due to zero-point motion in the out-of-plane direction
[28,42]. For graphene monolayers and bilayers, it turns out
that both areas present qualitatively different temperature
dependencies: the in-plane area Ap displays negative thermal
expansion in a large temperature region, while the real area A
does not show that behavior [27,40,42]. Moreover, Ap depends
on the system size, whereas A is rather insensitive to it.

In the results of our PIMD simulations of graphene bilay-
ers, we observe that the in-plane area Ap decreases as T rises
in the region from T = 0 to temperatures of about 800 K,
where it reaches a minimum, and then it grows at higher
T . Ap(T ) presents a minimum for all considered system
sizes. This minimum becomes deeper and smoothly shifts to
higher temperatures as N increases, converging to a value
Tm = 850(±50) K for the largest cells considered here. In
Fig. 2, we display the dependence of Tm on system size, where
solid circles indicate results of PIMD simulations for bilayer
graphene. For comparison, we have also plotted data for
monolayer graphene (squares) and graphite (diamonds), also
derived from PIMD simulations with the LCBOPII potential
model. Dashed lines are polynomial fits to the data points. We
observe that the convergence of Tm to its large-size limit is
slower for bilayer graphene than for graphite, but faster than
in the case of an isolated monolayer. This is due to the larger
out-of-plane vibrational amplitudes in the monolayer, which
are reduced in the bilayer, and are even less for graphite.

Both areas A and Ap derived from PIMD simulations show
a temperature derivative which approaches zero as T → 0,
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FIG. 2. Temperature Tm corresponding to the minimum in-plane
area Ap as a function of system size. Symbols are data points derived
from PIMD simulations for graphene monolayer (ML, circles), bi-
layer (BL, squares), and graphite (diamonds). Lines are polynomial
fits to the data points. Error bars, when not displayed, are in the order
or less than the symbol size.

in agreement with the third law of thermodynamics [28,62].
For T → 0, A is slightly larger than Ap, and the difference
between both areas grows with temperature. Indeed Ap is a
2D projection of the real surface on the (x, y) plane, and
ripples of the actual surface have larger amplitudes at higher
temperatures. The difference between real and in-plane area
has been called hidden area for graphene in Ref. [61], as well
as excess area for fluid membranes [63,64]. In this line, for
each temperature T , we define the dimensionless excess area,
�, of a graphene sheet as [63,64]

� = A − Ap

Ap
. (3)

In Fig. 3, we present � as a function of T for bilayer graphene,
as derived from our PIMD simulations (solid circles). For
comparison, we also display the excess area for monolayer
graphene (squares) and graphite (diamonds). Dashed lines
are guides to the eye. The data shown here were obtained
for system size N = 960. In the three cases, we find a low-
temperature limit �0 = 2.0(1) × 10−3, i.e., A − Ap = 5.3 ×
10−3 Å2/atom, due to zero-point motion in the out-of-plane
direction. As a result, the excess area grows as temperature is
raised, in accord with an increasing amplitude of the out-of-
plane vibrational modes. This increase is lower for the bilayer
than for the monolayer, and it is even smaller for graphite.
Note that in a classical model � vanishes for T → 0, as shown
in Fig. 3 for the results of classical MD simulations of the
bilayer (dashed-dotted line).

The excess area can be calculated in a HA for the vibra-
tional modes, taking into account that the difference between
real and in-plane area is related to the amplitude of the modes
in the out-of-plane direction. For a graphene sheet, the relation
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FIG. 3. Temperature dependence of the dimensionless excess
area � as derived from PIMD simulations for system size N =
960 for graphene monolayer (ML, squares), bilayer (BL, circles),
and graphite (diamonds). Dashed lines are guides to the eye. Error
bars are less than the symbol size. The continuous line is the HA
result derived from Eq. (6) in the main text. The dashed-dotted line
indicates the results of classical MD simulations for the bilayer in the
low-temperature region.

between its instantaneous real area Ainst and the in-plane area
Ap can be written in a continuous approach as [41,58,59]

Ainst =
∫

Ap

dx dy
√

1 + |∇h(r)|2 , (4)

where r ≡ (x, y) is the 2D position and h(r) is the distance to
the mean (x, y) plane of the sheet.

The difference Ainst − Ap can be calculated by expanding
the height h(r) as a Fourier series with wave vectors k =
(kx, ky) in the 2D hexagonal Brillouin zone [10,12,41] (see
Appendix A). One finds

A = 〈Ainst〉 = Ap

[
1 + 1

2N

∑
k

k2〈|H (k)|2〉
]

, (5)

H (k) being the Fourier components of h(r). Then, we have
for the excess area

� = 1

2N

∑
j,k

k2〈|ξ j (k)|2〉 , (6)

with the mean-square displacements (MSDs) in a harmonic
approximation

〈|ξ j (k)|2〉 = h̄

2mω j (k)
coth

(
1

2
β h̄ω j (k)

)
. (7)

For comparison with the results of our PIMD simulations,
we present in Fig. 3 the excess area � calculated for bilayer
graphene by means of Eq. (6) (solid line), considering the
vibrational modes in the bands with out-of-plane displace-
ments (ZA, ZO’, and the twofold degenerate ZO). The HA
yields results for the excess area close to those of the PIMD
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simulations at temperatures up to 200 K. At higher T , this
approximation predicts � values which progressively depart
from those of the simulations, in accordance with an increas-
ing departure from harmonicity of the vibrational modes.

More insight into the physical meaning of the excess area
as calculated from the MSDs 〈|ξ j (k)|2〉 in Eq. (6) can be
obtained by looking at the classical (high temperature) limit
in Eq. (7). In this limit, the MSDs are given by kBT/mω j (k)2.
This means that for low-frequency acoustic modes (LA and
TA) with ω ∼ k, the contribution to the sum in Eq. (6) is
independent of k. However, for the flexural ZA band with
a negligible effective stress σ (σ 	 κk2), one has ωZA ≈√

κ k2, so that k2〈|ξ j (k)|2〉 ∼ k−2, which makes the contri-
bution of the flexural band the dominant part in the sum in
Eq. (6). Taking into account that the minimum wavenumber
k0 scales with cell size as k0 ∼ N−1/2 (see Sec. II B), its
contribution to � scales linearly with N , eventually diverging
in the thermodynamic limit. This divergence is eliminated in
the presence of an effective stress (even small) σ . Note that
in the classical limit � vanishes for T → 0, at odds with
the quantum result shown in Fig. 3, which converges to a
positive value �0 in the low-T limit. In this limit, one has
for a quantum harmonic approximation:

〈|ξ j (k)|2〉0 = h̄

2mω j (k)
, (8)

and the contribution to � of low-frequency LA and TA modes
(ω ∼ k) is proportional to k. For the flexural ZA band we have
ωZA ≈ √

κ k2, so that k2〈|ξ j (k)|2 is independent of k and the
sum in Eq. (6) converges to a finite value.

IV. THERMAL EXPANSION

In the limit T → 0, the areas A and Ap converge to 2.6438
and 2.6388 Å2/atom, respectively. For the classical minimum-
energy bilayer one has a value of 2.6169 Å2/atom for both A
and Ap. Then, there is a zero-point expansion of about 1%
associated to an increase in the mean bond length, caused
by quantum zero-point vibrations (see above). The difference
between in-plane and real area (a 0.2%) is due to out-of-plane
zero-point motion, so that even at T = 0 the graphene layers
are not totally planar, as indicated above.

Associated to the area Ap, we define an in-plane thermal
expansion coefficient (TEC) as

αxy = 1

Ap

(
∂Ap

∂T

)
Pxy

. (9)

In Fig. 4, we show αxy derived from our PIMD simulations
for bilayer graphene (solid circles). These data points were
obtained from a numerical derivative of the area Ap found
in the simulations. For comparison, we also display results
for graphite (diamonds). In both cases, the dashed lines
represent polynomial fits to the data points. The solid line
indicates a fit to results of PIMD simulations of monolayer
graphene presented in Ref. [28]. All these results correspond
to a system size N = 960. In the three cases, αxy vanishes
in the low-temperature limit, in line with the third law of
thermodynamics.

The general trend of αxy versus T is similar in the three
cases shown in Fig. 4: at low temperatures, αxy decreases
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FIG. 4. In-plane thermal expansion coefficients αxy vs tempera-
ture as derived from PIMD simulations for cell size N = 960. Sym-
bols are data points obtained from numerical derivatives of Ap for
graphene bilayer (BL, circles) and graphite (diamonds). Dashed lines
are polynomial fits to the data points. The solid line is a fit to earlier
results for a graphene monolayer (ML) [28]. The dashed-dotted line
indicates the classical result for the bilayer for temperature up to
600 K.

for rising T and reaches a minimum at a temperature T ′
m.

The main difference between them appears in the magnitude
of the minimum of the curves. Moreover, T ′

m increases from
a value of 180 K for monolayer graphene to 235 K for
graphite. At low temperatures, αxy decreases fast for increas-
ing T , and for the bilayer it attains a minimum amounting to
−6.6 × 10−6 K−1 at T ′

m ≈ 220 K. At higher T , αxy approaches
zero and becomes positive at Tm = 820 K (where Ap takes
its minimum value, see Fig. 2). At T > 500 K, the three
materials present almost the same dependence of αxy on T ,
apart from rigid shifts of the corresponding curves. Our results
for αxy presented in Fig. 4 are qualitatively similar to those
derived earlier for monolayer graphene from other theoretical
techniques [65,66] and experimental methods [67,68].

For graphite, experimental data of the area TEC αxy display
a minimum at a temperature between 200 and 300 K, similar
to that derived from our simulations [69–71]. Various data
present a minimum of ≈ −3 × 10−6 K−1, somewhat smaller
than our result for graphite shown in Fig. 4.

The behavior of the in-plane TEC as a function of temper-
ature can be understood as due to two opposing contributions.
First, there appears a trend of the C–C distance to grow as
T is raised, thus favoring an increase in Ap. Second, bending
of the graphene sheets causes a reduction of its projection on
the (x, y) plane, i.e., the in-pane area Ap. At low T , the rise
of the in-plane area caused by the first contribution (bond
expansion) is overshadowed by the second one (bending),
and dAp/dT < 0. At high T , the increase in C–C distance
dominates the reduction in Ap due to out-of-plane atomic
displacements, so that one has dAp/dT > 0. The increase in
Tm for rising system size shown in Fig. 2 is a consequence of
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FIG. 5. Thermal expansion coefficient αz in the out-of-plane
direction vs the temperature as derived from PIMD simulations
for N = 960. Symbols are data points obtained from temperature
derivatives of of the interlayer spacing for bilayer graphene (BL,
circles) and graphite (diamonds). Dashed lines are guides to the eye.
The blue solid line represents data obtained for graphite by Bailey
and Yates [73] from interferometric measurements at T < 300 K.
The green solid line is a fit to experimental data of graphite for
T > 300 K, presented by Marsden et al. [71]. A horizontal arrow
indicates the low-temperature limit of the classical simulations for
the bilayer (labeled as “class”).

the growth of the out-of-plane bending of the graphene sheets
for larger N .

One can equally define a TEC α = (∂A/∂T )/A for the
real area of the graphene sheets. The real area behaves as a
function of T in an analogous way to the crystal volume of
most 3D solids [72], i.e., it increases at all finite temperatures.
The area TEC α is insensitive to the system size [42] and
coincides within error bars for monolayer, bilayer graphene,
and graphite.

In the low-temperature limit our PIMD simulations yield
for bilayer graphene an interlayer spacing, c, of 3.3520 Å, to
be compared with that corresponding to the classical mini-
mum: c0 = 3.3372 Å (planar graphene sheets in AB stacking).
This means a zero-point expansion of 1.5 × 10−2 Å, i.e., the
mean spacing between layers increases by a 0.5% with respect
to the classical prediction. At T = 300 K, PIMD simulations
give c = 3.3758 Å, and the difference between classical and
quantum results is about five times less than in the low-
temperature limit [42].

From the mean interlayer spacing we define the out-of-
plane TEC αz as

αz = 1

c

(
∂c

∂T

)
Pxy

. (10)

This TEC has been usually called αc in the graphite literature,
but we will call it here αz for consistency of our notation.
In Fig. 5, we show results for αz derived from our PIMD
simulations for bilayer graphene (solid circles) and graphite

(diamonds). Dashed lines are guides to the eye. αz turns out
to be higher for the bilayer than for graphite at all finite
temperatures, since the graphene layers are more free to move
in the out-of-plane direction in the bilayer, as compared to
graphite. In both cases one observes a fast increase in αz up to
about 200 K, which becomes rather slow for T > 400 K.

A blue solid line in Fig. 5 represents αz data obtained for
pyrolytic graphite by Bailey and Yates [73] from interfero-
metric measurements at low temperatures. A green solid line
represents a fit to experimental data for graphite at T > 300 K
[71]. Both lines fitted to experimental results do not match
well one with the other, mainly due to data dispersion in
different source references. At high temperature, one observes
that αz derived from our PIMD simulations increases slower
than the experimental data.

To end this section, we comment on the fact that classical
atomistic simulations cannot give reliable results for several
properties of graphene (condensed matter in general) at tem-
peratures below the Debye temperature of the material, �D

[72,74]. This is the case of thermal expansion coefficients,
which have to vanish in the low-temperature limit, accord-
ing to the third law of thermodynamics [62]. In our case
of graphene bilayers, classical simulations yield unphysical
finite (positive) values for αxy and αz when T → 0, as indi-
cated in Figs. 4 and 5 by a dashed-dotted line and an arrow,
respectively. This failure of classical simulations is the same
as that known for solids when atomic vibrations are described
by classical models [72,74] and has been observed earlier for
monolayer graphene [27].

In classical simulations, the vibrational states display a
(nonrealistic) continuous energy distribution that causes phys-
ical anomalies at low temperatures. This is related to the quan-
tization of vibrational states, which is adequately described by
path-integral simulations. Since the actual values of αxy and αz

are given by the relative population of the excited vibrational
states, both variables converge to zero for T → 0 due to the
presence of the energy gap for the vibrational modes. The
failure of classical simulations is remedied at relatively high
T (the scale is set by �D), when excited states are appreciably
populated. We finally note that simultaneous anomalies at low
temperature in thermal expansion coefficients and the spe-
cific heat cp derived from classical simulations are expected
from the thermodynamic relations between these variables
[28,62,72].

V. COMPRESSIBILITY

A. In-plane compressibility

PIMD simulations allow one to obtain insight into the
elastic properties of materials under different conditions,
i.e., various kinds of external stresses such as hydrostatic
or uniaxial. For a two-dimensional material, we understand
a hydrostatic stress in a similar way to three-dimensional
materials, but applied in a plane (with units of force per unit
length). In the language of elasticity this means in our case
σxx = σyy = Pxy (see Ref. [75]). Then, we define the in-plane
isothermal compressibility per layer as

χxy = − n

Ap

(
∂Ap

∂Pxy

)
T

. (11)
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FIG. 6. Temperature dependence of the compressibility χxy as
derived from PIMD simulations for monolayer (ML, squares), bi-
layer graphene (BL, circles) and graphite (diamonds). Lines are
guides to the eye. An open triangle (labeled “exp”) indicates the
result derived from experimental data for graphite [78].

where n is the number of layers, i.e., n = 1 for the monolayer
and n = 2 for bilayer graphene. In this equation, the variables
on the right-hand side (r.h.s.) correspond to in-plane quanti-
ties, since the pressure Pxy in the isothermal-isobaric ensemble
employed here is the conjugate variable to the in-plane area
Ap. Note that the normalizing factor n appears in the numera-
tor in Eq. (11), because the inverse of the compressibility (the
2D modulus of hydrostatic compression [75]) is an extensive
magnitude proportional to the number of layers.

An alternative way to calculate the compressibility χxy is
based on the fluctuation formula [41,76,77]

χxy = nN�2
p

kBTAp
, (12)

where �2
p are the mean-square fluctuations of the area Ap,

which in our case are obtained from PIMD simulations at
Pxy = 0. In our context, this formula turns out to be more
convenient than calculating (∂Ap/∂Pxy)T , because obtaining
this derivative by numerical procedures involves additional
simulations at nonzero stresses. For some selected temper-
atures, we have checked that both methods yield the same
results for χxy, inside the statistical error bars.

In Fig. 6, we show the temperature dependence of the
compressibility χxy of bilayer graphene (solid circles), as
derived from our PIMD simulations by using Eq. (12). For
comparison, we also present results for monolayer graphene
(squares), as well as for graphite (diamonds). At low T ,
we find in the three cases compressibility values close to
χxy = 0.08 Å2/eV, and the difference between them becomes
larger as temperature is raised. χxy for bilayer graphene
is intermediate between those of monolayer graphene and
graphite. Interactions between layers cause a reduction in the
out-of-plane vibrational amplitudes of the carbon atoms, so

that the layers effectively become “harder,” i.e., the in-plane
compressibility decreases. Something similar is observed for
the out-of-plane compressibility χz, as shown below.

As noted above, the inverse of χxy, Bxy = 1/χxy, is the 2D
modulus of hydrostatic compression [75], with units of eV/Å2

or N/m. For graphene, with in-plane hexagonal symmetry, Bxy

may be written as a function of the elastic constants of the
material as

Bxy = 1
2 (c11 + c12) , (13)

These elastic constants are related with the Lamé parameters,
μ and λ by c11 = λ + 2μ and c12 = λ, so that Bxy = λ + μ

[75].
In the case of graphite, we can make connection of the

results obtained here for χxy with material properties derived
from experiment. For this purpose, we can convert the elastic
constants of graphite C11 and C12 (units of force per square
length) into in-plane elastic constants ci j as ci j = c Ci j , us-
ing the mean interlayer distance c. Then, for graphite we
take C11 = 1060 ± 20 GPa, C12 = 180 ± 20 GPa [78], and
c = 3.3538 Å [79], and find χxy = 1/Bxy = 0.077(2) Å2/eV.
For comparison with the results of our simulations, this data
point is shown in Fig. 6 as an open triangle at 300 K. The result
of our simulations for graphite at T = 300 K is somewhat
higher than that derived from experimental data.

B. Out-of-plane compressibility

We now turn to the compressibility χz of bilayer graphene
in the out-of-plane direction. Similarly to the in-plane com-
pressibility χxy, χz can be calculated from the interlayer
spacing and its fluctuations along a simulation run at a given
temperature. The isothermal compressibility in the z direction
is defined as

χz = − 1

V

∂V

∂Pz
, (14)

where V = cLxLy and Pz is a uniaxial stress in the out-of-plane
direction. The compressibility χz of bilayer graphene at a
temperature T may be calculated from PIMD simulations with
Pz = 0 by employing the fluctuation formula [76,80]

χz = �2
V

kBTV
, (15)

where the volume mean-square fluctuations associated to
changes in the interlayer distance c are given by �2

V =
L2

x L2
y�

2
c . Then, we obtain χz by using the expression

χz = LxLy

kBT

�2
c

c
. (16)

Note that in this expression Lx, Ly, and c indicate mean values
of these variables along a simulation run at temperature T .

The temperature dependence of χz is shown in Fig. 7. Solid
circles are data points obtained from our PIMD simulations
for bilayer graphene. Besides, we display in Fig. 7 data
for the compressibility of graphite, derived also from PIMD
simulations, using Eq. (16). Both sets of results converge
at low temperature to the same value of the compressibility
(within error bars): χz = 2.79(2) × 10−2 GPa−1, because the
MSDs �2

c are found to be nearly identical for bilayer graphene
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FIG. 7. Temperature dependence of the compressibility χz as
derived from PIMD simulations for bilayer graphene (BL, circles)
and graphite (diamonds). Lines are guides to the eye. Open triangles
indicate results derived from experimental data of graphite at room
temperature: triangle up from Ref. [78] and triangle down from
Ref. [81]. A horizontal arrow shows the classical zero-temperature
limit χz0.

and graphite. For higher T , �2
c is smaller for graphite, and

therefore its compressibility χz is lower than that of bilayer
graphene.

We note that the classical compressibility χz0 for T →
0 can be calculated from the dependence of the system
energy on the interlayer spacing c close to the minimum-
energy value c0. This yields χz0 = 2.63 × 10−12 cm2 dyn−1

or 0.0263 GPa−1 (see Ref. [42]), a value indicated in Fig. 7
by a horizontal arrow. This means an appreciable increase of
a 6% in the low-temperature quantum value of χz with respect
to the classical limit.

The compressibility χz coincides in the case of graphite
with the elastic compliance constant S33 of this material, since
this constant connects stress and strain in the z direction
[71]. In Fig. 7, we show S33 obtained for pyrolytic graphite
from neutron diffraction data combined with a force model
[81] (triangle down), and from ultrasonic test methods [78]
(triangle up). These data were obtained at room temperature
and are horizontally moved around 300 K in Fig. 7 for the
sake of clarity. Note that for graphite S33 is related to the
elastic constant C33 as S33C33 ≈ 1, and the difference between
S33 and C−1

33 is less than the error bars of the experimental
data [78,81]. Our results overestimate the compressibility χz

of graphite by nearly a 5% with respect to those data derived
from experiments at room temperature.

Komatsu [82] found at low-temperature (T ≈ 2 K) a value
of the elastic constant C33 = 35.6 GPa from specific-heat
measurements of natural and pile graphite, which translates
to χz = 0.0282 GPa−1. This value (not shown in Fig. 7) is
close to our results for graphite, but there is no available error
bar for it.
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FIG. 8. Specific heat of graphene as a function of temperature.
Solid symbols represent results for cp derived from PIMD simu-
lations for N = 960: squares for graphene monolayer and circles
for the bilayer. The solid line is cv obtained from the 12 phonon
bands of bilayer graphene, corresponding to the LCBOPII potential
in a harmonic approximation. The dashed-dotted line indicates cv

for monolayer graphene in the HA [28]. Open diamonds represent
experimental data for graphite obtained by Desorbo and Tyler [88].
The dashed line shows the dependence cp ∝ T 2.

VI. SPECIFIC HEAT

The calculation of low-temperature specific heats of ma-
terials by means of path-integral simulations is not straight-
forward in general. Even obtaining the Debye law cp ∼ T 3

for 3D solids has been a challenge for PIMD, because of the
effective low-frequency cut-off associated to the finite size
of the simulation cells [83,84]. This situation is improved
in simulations of 2D materials such as graphene, mainly for
two reasons. First, the length of the cell sides scales as L ∼
N1/d (d , dimension of the space), and the minimum wave
number k0 available in the simulation scales as k0 ∼ N−1/d .
Thus, for increasing number of atoms, k0 decreases faster
for d = 2 than for d = 3. This means that the low-frequency
region is described better for 2D materials, and therefore also
the low-temperature region. Second, the internal energy for
graphene rises at low temperature as T 2 (i.e., cp ∼ T ), which
is a fast increase at low temperature, when compared with the
typical expectancy (E ∼ T 4) for the phonon contribution in
3D materials (cp ∼ T 3).

The specific heat of graphene is controlled by the vibra-
tional contribution, the electronic part cel

p being negligible
with respect to the former. In fact, cel

p has been estimated in
various works, and it results to be between three and four
orders of magnitude less than the vibrational part [85–87].

In Fig. 8, we present the temperature dependence of the
specific heat in the low-temperature region in a logarith-
mic plot. Solid symbols are results for cp obtained from
PIMD simulations for N = 960: circles for a graphene bilayer
and squares for a monolayer. They were obtained from a
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numerical derivative of the internal energy E (T ). The solid
line represents cv for the bilayer, derived from the harmonic
approximation given by Eq. (2) for the same cell size. The
dashed-dotted line indicates the HA for the monolayer, ob-
tained by adding the contributions of the six phonon bands
appearing in this case [28].

We first observe in Fig. 8 a good agreement between the
results of the HA and those derived from PIMD simulations
at T < 100 K in both cases, monolayer and bilayer graphene.
Results of the simulations are close to the HA up to about
300 K, and at higher T they gradually depart from the solid
line, in a temperature region where anharmonic effects are
expected to be observable. For monolayer graphene, one
observes a linear dependence of the specific heat for T �
40 K (slope unity in the logarithmic plot), given by cp ≈ CT
with C = 1.4 × 10−7 eV K−2 For the bilayer, a similar trend
with a linear dependence of cp appears also at low T with
a constant C = 5.0 × 10−8 eV K−2, but for T � 15 K the
temperature dependence becomes superlinear. This trend is
explained below.

For comparison with the results of our simulations, we
also show in Fig. 8 experimental data for cp of graphite,
obtained by Desorbo and Tyler from calorimetric measure-
ments [88] (open diamonds). The specific heat of graphite has
been thoroughly analyzed in a wide range of temperatures
[81,89–91]. For this 3D material, cp increases as T 3 for
T < 10 K (a region not reached in our simulations and not
presented in Fig. 8). For T between 10 and 100 K, cp rises
as T 2, a typical dependence in strongly anisotropic solids
[81,86]. The most important difference between graphite and
graphene (monolayer and bilayer) in this temperature range
consists in the dominant contribution to cp coming from
phonons with linear dispersion relation (ω ∼ k) for small k
in graphite. At room temperature (T = 300 K) the measured
specific heat of graphite equals 8.90 × 10−5 eV/(K atom), or
8.59 J K−1 mol−1 [88], to be compared with the result of our
PIMD simulations for bilayer graphene, cp = 9.2(±0.1) ×
10−5 eV K−1 atom−1, and for a monolayer, cp = 9.4(±0.1) ×
10−5 eV K−1 atom−1 [28].

One can also calculate the specific heat cv from constant-Ap

simulations, analogous to NV T simulations in 3D materials.
From thermodynamic considerations, one should have cv �
cp at any temperature, but the difference between them for
bilayer graphene is smaller than the statistical error bar of our
numerical results, and they are indistinguishable in the results
derived from PIMD simulations [28].

The difference between cp and cv can be obtained from the
formula [28]

cp − cv = nT α2
xyAp

χxy
, (17)

which is similar to the well-known thermodynamic expression
for this difference of specific heats in 3D systems [62,76]. The
variables present on the r.h.s. of Eq. (17) refer to in-plane
properties, since the pressure appearing in our isothermal-
isobaric ensemble is the conjugate variable of the in-plane
area Ap.

For thermodynamic consistency, one needs cp � cv , in
accord with Eq. (17), and we have cp − cv = 0 whenever αxy
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FIG. 9. Contributions c j
v of the phonon bands to the specific heat

of bilayer graphene as a function of temperature.

vanishes. This happens for bilayer graphene at Tm ≈ 850 K,
as shown in Sec. III (apart from the trivial coincidence cp =
cv = 0 at T = 0). In the interval from T = 0 to 850 K, the
maximum difference is reached at T ≈ 200 K, close to the
maximum of |αxy|, where we find using Eq. (17): cp − cv =
5.6 × 10−7 eV K−1 atom−1. For T < 50 K, we have cp −
cv < 4 × 10−8 eV K−1 atom−1, less than the statistical error
bars of the results for cp derived from our PIMD simulations.

The low-temperature behavior of the specific heat can be
analyzed by considering a continuous model for frequencies
and wave numbers, as in the well-known Debye model for
solids [72] (see Appendix B). At low T , cv is controlled
by the input of acoustic modes with small k. In the case of
graphene, these are TA and LA modes with ω j ∝ k and ZA
modes with ω j ∝ k2. Note that an effective stress σ introduces
a linear contribution for ZA modes of small k, but this will be
negligible for the temperatures considered here and vanishing
external in-plane stress. For bilayer graphene, it is appreciable
at T > 15 K the role of the layer-breathing ZO’ band, which
is nearly flat close to the � point (k = 0), with a frequency
ω0 = 92 cm−1 [42,55].

To understand the behavior of the specific heat of bilayer
graphene in the temperature region displayed in Fig. 8, we
discuss the contributions of the different phonon branches in
the HA. In Fig. 9, we present as dashed lines these contribu-
tions as a function of T . At temperatures lower than 10 K,
the specific heat is controlled by the flexural ZA modes with
ω(k) ∼ k2 and out-of-plane displacements. This gives c j

v ∼ T ,
as in the case of monolayer graphene (see Appendix B). For
the bilayer, however, the input of the ZO’ band is relevant
for T � 15 K, and cv appreciably departs from linearity. The
contributions of the acoustic LA and TA branches (ω ∼ k)
appear in Fig. 9 for T > 20 K with a slope of two, i.e., c j

v ∼
T 2. The input of the optical ZO band increases exponentially
at low T and becomes observable at temperatures in the order
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of 100 K. The other optical bands (LO and TO), with higher
frequencies, are important for the specific heat at T > 300 K.

The specific heat of graphene bilayer is lower than that
of the monolayer due to the relative contributions of acoustic
phonons at low T . In particular, the shape of the flexural ZA
band is nearly the same in both cases, and it is not degen-
erate. This means that it contributes less in bilayer graphene
(12 bands) than in the monolayer (6 bands).

We finally note that several atomistic simulations of
graphene monolayers and bilayers have been carried out in the
past using classical Monte Carlo and molecular dynamics sim-
ulations. These are well-established methods to study struc-
tural, dynamical, and thermodynamic properties in condensed
matter, but some of these properties may be far from the cor-
responding real values at temperatures lower than the Debye
temperature �D of the considered material [72], as indicated
for the thermal expansion in Sec. IV. Thus values presented
in the literature for the specific heat of graphene monolayers
[92] and bilayers [39], derived from classical simulations,
are close to the Dulong-Petit specific heat, i.e., ccl

v = 3kB.
This means in our units ccl

v = 2.6 × 10−4 eV K−1 atom−1,
which turns out to be about three times larger than the value
obtained from our quantum PIMD simulations at 300 K. The
difference between classical and quantum results increases as
temperature is lowered, and at T = 20 K the classical value is
two orders of magnitude larger than the quantum result. Even
at T = 1000 K the quantum data are still appreciably lower
than the classical limit.

VII. SUMMARY

PIMD simulations have revealed as a suitable tool to study
thermodynamic properties of graphene bilayers. In this paper,
we have presented results obtained in the isothermal-isobaric
ensemble in a wide range of temperatures and zero external
stress. We have concentrated on physical properties as the
excess area, thermal expansion, in-plane and out-of-plane
compressibility, and specific heat. Explicit consideration of
the quantum character of atomic nuclei is crucial for a realistic
description of these crystalline membranes, even for T higher
than room temperature. This is particularly important for the
heat capacity and compressibility.

A thermal contraction of the in-plane area Ap appears in
bilayer graphene in a similar way to an isolated monolayer,
although this contraction is less important in the former case.
This is due to a reduction of out-of-plane vibrational ampli-
tudes of the C atoms in the bilayer, associated to interlayer
interactions. We find a negative αxy for T � 800 K, and it be-
comes positive at higher temperature. The difference A − Ap

between the real area A and the in-plane area Ap grows as tem-
perature rises and deviations from planarity of the graphene
sheets become more appreciable. This has been quantified
by the dimensionless excess area �, which converges to a
value �0 = 2 × 10−3 for T → 0, due to quantum zero-point
motion.

The in-plane χxy and out-of-plane χz compressibilities of
graphene bilayers have been obtained from the fluctuations of
the in-plane area and the interlayer distance, respectively. This
procedure accurately yields the increase in χxy and χz as T is
raised.

Comparison of our simulation results with those yielded
by a HA for the vibrational modes has allowed us to assess
the effects of anharmonicity in finite-temperature properties
of graphene bilayers. Such anharmonicity clearly shows up at
temperatures higher than 200 K, as shown in Fig. 3 for the ex-
cess area. At lower temperatures, however, thermal properties
of the graphene bilayers considered here are well described
by the HA, using the vibrational frequencies obtained for the
classical equilibrium geometry at T = 0.

At the lowest temperatures studied here (T > 10 K), the
HA predicts a linear dependence of the specific heat cv = CT ,
with C = 5.0 × 10−8 eV K−2, and for T � 15 K the tem-
perature dependence becomes superlinear, in agreement with
the results of our PIMD simulations. This trend is different
than that corresponding to monolayer graphene, due to the
contribution of the layer-breathing ZO’ band in the case of
the bilayer.

PIMD simulations similar to those presented here can
provide insight about the thermal properties of free-standing
graphene multilayers under tensile and compressive stress.
This would give information on the relative stability of these
multilayers in a stress-temperature phase diagram.
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APPENDIX A: CALCULATION OF THE EXCESS AREA

In the continuum limit, the instantaneous real area Ainst of
a graphene sheet is given by [41,58,59]

Ainst =
∫

Ap

dx dy
√

1 + |∇h(r)|2 , (A1)

where r ≡ (x, y) indicates the 2D position and h(r) is the
height of the surface, i.e., the distance to the mean (x, y)
plane of the sheet. For small |∇h(r)| [in fact for (∂h/∂x)2 +
(∂h/∂y)2 	 1, which is the case here], one has

Ainst ≈
∫

Ap

dx dy

[
1 + 1

2
|∇h(r)|2

]
. (A2)

We now write the out-of-plane displacement h(r) as a
Fourier series

h(r) = 1√
N

∑
k

eik·rH (k) (A3)

with wave vectors k = (kx, ky) in the 2D hexagonal Brillouin
zone, i.e., kx = 2πnx/Lx and ky = 2πny/Ly with integers nx

and ny [43]. The Fourier components are given by

H (k) =
√

N

Ap

∫
Ap

dx dy e−ik·rh(r) . (A4)
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With H (k) so defined, the thermal average of MSD in the z
direction is given by

〈h(r)2〉 = 1

N

∑
k

〈|H (k)|2〉. (A5)

Thus we have

∇h(r) = i√
N

∑
k

k eik·rH (k) (A6)

and

|∇h(r)|2 = 1

N

∑
k1,k2

k1 · k2 ei(k1−k2 )·rH (k1)H (k2)∗ , (A7)

which yields

〈|∇h(r)|2〉 = 1

N

∑
k

k2〈|H (k)|2〉 . (A8)

Then, the mean real area is given by

A = 〈Ainst〉 = Ap + Ap

2N

∑
k

k2〈|H (k)|2〉 , (A9)

and for uncoupled vibrational modes in the out-of-plane direc-
tion (harmonic approximation), 〈|H (k)|2〉 can be written as a
sum of their MSDs:

〈|H (k)|2〉 =
∑

j

〈|ξ j (k)|2〉 (A10)

so that

� = A − Ap

Ap
= 1

2N

∑
j,k

k2〈|ξ j (k)|2〉 (A11)

with

〈|ξ j (k)|2〉 = h̄

2mω j (k)
coth

(
1

2
β h̄ω j (k)

)
. (A12)

The sum in j in Eq. (A11) is extended to the phonon bands
with displacements in the z direction (ZA, ZO’, and the
twofold degenerate ZO). Note that in our simulations the

in-plane area also fluctuates, but its fluctuations are not con-
sidered in the harmonic calculation presented here.

APPENDIX B: PHONON CONTRIBUTIONS TO THE
LOW-TEMPERATURE SPECIFIC HEAT

Here we present a continuous model for wave numbers and
frequencies of vibrational modes, to find an analytic depen-
dence for the contributions of the different phonon bands to
the low-temperature specific heat of bilayer graphene. For a
phonon branch with dispersion relation ω j ∝ kn for small k,
the low-temperature contribution to the specific heat may be
approximated as

c j
v (T ) ≈ kB

2

∫ km

k0

[
1
2β h̄ ω j (k)

]2

sinh2
[

1
2β h̄ ω j (k)

] ρ(k) dk , (B1)

where km is the maximum wave number km = (2π/A0)1/2, A0

is the in-plane area for the minimum-energy configuration,
and ρ(k) = A0k/2π for 2D systems. From the dispersion
relation ω j (k), we have a vibrational density of states

ρ̄r (ω) = ρ(k)
dk

dω
∼ ω

2
n −1 (B2)

so that

c j
v (T ) ∼ kB

∫ ωm

ω0

(
1
2β h̄ ω

)2

sinh2
(

1
2β h̄ ω

) ω
2
n −1 dω . (B3)

Taking the limit ω0 → 0 (N → ∞) and putting x =
1
2β h̄ ω, we have

c j
v ∼ kB

K

(β h̄)
2
n

∫ xm

0

x
2
n +1

sinh2 x
dx , (B4)

K being a constant. At low temperature, kBT 	 h̄ ωm (large
xm), we have c j

v ∼ T 2/n. In general, for d-dimensional sys-
tems, one has an exponent d/n [93,94]. Then, in graphene we
expect for the ZA phonon branch (n = 2): cZA

v ∼ T , and for
the acoustic LA and TA branches (n = 1): cac

v ∼ T 2.
For the ZO’ band in bilayer graphene, we have ω ≈ ω0

for small k. Then, at low T , the corresponding contribution
to the specific heat, cZO′

v , coincides with that of a collec-
tion of harmonic oscillators with frequency ω0, i.e., cZO′

v ∼
exp(−h̄ω0/kBT ).
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